17 research outputs found
Effects of urban living environments on mental health in adults
Urban-living individuals are exposed to many environmental factors that may combine and interact to influence mental health. While individual factors of an urban environment have been investigated in isolation, no attempt has been made to model how complex, real-life exposure to living in the city relates to brain and mental health, and how this is moderated by genetic factors. Using the data of 156,075 participants from the UK Biobank, we carried out sparse canonical correlation analyses to investigate the relationships between urban environments and psychiatric symptoms. We found an environmental profile of social deprivation, air pollution, street network and urban land-use density that was positively correlated with an affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume differences consistent with reward processing, and moderated by genes enriched for stress response, including CRHR1, explaining 2.01% of the variance in brain volume differences. Protective factors such as greenness and generous destination accessibility were negatively correlated with an anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions necessary for emotion regulation and moderated by EXD3, explaining 1.65% of the variance. The third urban environmental profile was correlated with an emotional instability symptom group (r = 0.03, Pperm < 0.001). Our findings suggest that different environmental profiles of urban living may influence specific psychiatric symptom groups through distinct neurobiological pathways
Multisensory Stimulation Can Induce an Illusion of Larger Belly Size in Immersive Virtual Reality
Background: Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area.Methodology: Twenty two participants entered into a virtual reality (VR) delivered through a stereo head-tracked wide field-of-view head-mounted display. They saw from a first person perspective a virtual body substituting their own that had an inflated belly. For four minutes they repeatedly prodded their real belly with a rod that had a virtual counterpart that they saw in the VR. There was a synchronous condition where their prodding movements were synchronous with what they felt and saw and an asynchronous condition where this was not the case. The experiment was repeated twice for each participant in counter-balanced order. Responses were measured by questionnaire, and also a comparison of before and after self-estimates of belly size produced by direct visual manipulation of the virtual body seen from the first person perspective.Conclusions: The results show that first person perspective of a virtual body that substitutes for the own body in virtual reality, together with synchronous multisensory stimulation can temporarily produce changes in body representation towards the larger belly size. This was demonstrated by (a) questionnaire results, (b) the difference between the self-estimated belly size, judged from a first person perspective, after and before the experimental manipulation, and (c) significant positive correlations between these two measures. We discuss this result in the general context of body ownership illusions, and suggest applications including treatment for body size distortion illnesses
Do You Feel Like Passing Through Walls?: Effect of Self-Avatar Appearance on Facilitating Realistic Behavior in Virtual Environments
A protocol for data harmonization in large cohorts
This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation
