395 research outputs found

    Transition to adult care in Finnish adolescents with juvenile idiopathic arthritis

    Get PDF
    Objective The symptoms of juvenile idiopathic arthritis (JIA) and the necessity for continuous treatment may persist in adulthood. Therefore, patients with JIA need to be appropriately transferred to adult care. We aimed to analyse the timing of the patients' transition to adult care, and patients' self-management skills with the process and the quality of the transition. Method This study included 161 Finnish participants of the population-based Nordic JIA cohort who attended a 17 year follow-up appointment. Special attention was paid to the three groups: those referred by the paediatric rheumatology outpatient clinic to primary healthcare (PHC), those who were directly transferred to adult rheumatology care, and those who were later referred. Results A total of 136 patients (84%) were eligible to participate in the study, and 40% of them were directly transferred to an adult rheumatology clinic. Of the patients, 72% eventually ended up being referred to an adult rheumatology outpatient clinic. However, 16% of the patients in the PHC group had active disease during the study appointment and were referred to adult services after the study visit. Conclusion This study reveals the need to improve the transition process from paediatric care to adult care and to find the variables that can indicate the need for immediate transition. Although challenging, it is important to avoid treatment delay in adult patients with JIA who may have active disease but who do not have appropriate access to an adult rheumatological outpatient clinic.Peer reviewe

    Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation

    Get PDF
    © 2015 Elsevier Ltd. We investigated the bioremediation of 16 polycyclic aromatic hydrocarbons (PAH) in historically creosote contaminated soil using both laboratory and field scale experiments. We found that nutrient amendments and circulation of methyl-β-cyclodextrin (CD) solution enhanced soil microbial degradation capacity. In the laboratory experiment, the degradation of lower molecular weight, 2-3 ringed PAHs was achieved already by circulating nutrient solution and the use of CD mainly increased the desorption and removal of larger, 4-5 aromatic ringed PAH compounds. The 1% CD concentration was most feasible for bioremediation as most of the extracted PAH compounds were degraded. In the 5% CD treatment, the PAH desorption from soil was too fast compared to the degradation capacity and 25% of the total PAH amount remained in the circulated solution. Similar lab-scale results have been generated earlier, but very little has been done in full field scale, and none in freezing conditions. Although freezing stopped circulation and degradation completely during the winter, PAH degradation returned during the warm period in the field test. Circulation effectiveness was lower than in the laboratory but the improved nutrient and moisture content seemed to be the main reason for decreasing soil PAH concentrations. It also appeared that PAH extraction yield in chemical analysis was increased by the CD treatment in field conditions and the results of CD-treated and non-treated soil may therefore not be directly comparable. Therefore, a positive effect of CD on PAH degradation velocity could not be statistically confirmed in the field test. Based on our results, we recommend initiating the bioremediation of PAH contaminated soil by enhancing the microbial degradation with nutrient amendments. The CD seems to be useful only at the later stage when it increases the solubilisation of strongly absorbed contaminants to some extent. More investigation is also needed of the CD effect on the PAH yield in the chemical analysis

    Leaf N resorption efficiency and litter N mineralization rate have a genotypic tradeoff in a silver birch population

    Get PDF
    Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H-2 = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH4+ yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population.Peer reviewe

    A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland

    Get PDF
    In peatlands drained for forestry, the soil carbon (C) or carbon dioxide (CO2) balance is affected by both (i) higher heterotrophic CO2-C release from faster decomposing soil organic matter (SOM) and (ii) higher plant litter C input from more vigorously growing forests. This balance and other greenhouse gas (GHG) sinks and sources in managed lands are annually reported by national GHG inventories to the United Nations Climate Change Convention. In this paper, we present a revised, fully dynamic method for reporting the CO2 balance of drained peatland forest soils in Finland. Our method can follow temporal changes in tree biomass growth, tree harvesting and climatic parameters, and it is built on empirical regression models of SOM decomposition and litter input in drained peatland forests. All major components of aboveground and belowground litter input from ground vegetation as well as live trees and trees that died naturally are included, supplemented by newly acquired turnover rates of woody plant fine roots. Annual litter input from harvesting residues is calculated using national statistics of logging and energy use of trees. Leaching, which also exports dissolved C from drained peatlands, is not included. The results are reported as time series from 1990–2021 following the practice in the GHG inventory. Our revised method produces an increasing trend of annual emissions from 0.2 to 2.1 t CO2 ha−1 yr−1 for the period 1990–2021 in Finland (equal to a trend from 1.4 to 7.9 Mt CO2 yr−1 for the entire 4.3 Mha of drained peatland forests), with a statistically significant difference between the years 1990 and 2021. Across the period 1990–2021, annual emissions are on average 1.5 t CO2 ha−1 yr−1 (3.4 Mt CO2 yr−1 for 2.2 Mha area) in warmer southern Finland and −0.14 t CO2 ha−1 yr−1 (−0.3 Mt CO2 yr−1 for 2.1 Mha area) in cooler northern Finland. When combined with data on the CO2 sink created by the growing tree stock, in 2021 the drained peatland forest ecosystems were a source of 1.0 t CO2 ha−1 yr−1 (2.3 Mt CO2 yr−1) in southern Finland and a sink of 1.2 t CO2 ha−1 yr−1 (2.5 Mt CO2 yr−1) in northern Finland. We compare these results to those produced by the semi-dynamic method used earlier in the Finnish GHG inventory and discuss the strengths and vulnerabilities of the new revised method in comparison to more static emission factors.</p

    Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil

    Get PDF
    In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we established a full factorial experiment of defoliation (monthly mowing) and soil compaction (using a rammer, annually) on a clay-rich salt marsh at the Dutch coast, aiming to disentangle the importance of these two factors. Additionally, we compared the effects on soil physical properties, plants, and arthropods to those at a nearby cattle-grazed marsh under dry and under waterlogged conditions. Soil physical conditions of the compacted plots were similar to the conditions at cattle-grazed plots, showing decreased soil aeration and increased waterlogging. Soil salinity was doubled by defoliation and quadrupled by combined defoliation and compaction. Cover of the dominant tall grass Elytrigia atherica was decreased by 80% in the defoliated plots, but cover of halophytes only increased under combined defoliation and compaction. Effects on soil micro-arthropods were most severe under waterlogging, showing a fourfold decrease in abundance and a smaller mean body size under compaction. Although the combined treatment of defoliation and trampling indeed proved most similar to the grazed marsh, large discrepancies remained for both plant and soil fauna communities, presumably because of colonization time lags. We conclude that soil compaction and defoliation differently affect plant and arthropod communities in grazed ecosystems, and that the magnitude of their effects depends on herbivore density, productivity, and soil physical properties

    FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.</p> <p>Methods</p> <p>Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration.</p> <p>Results</p> <p>Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 <it>μ</it>m diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations.</p> <p>Conclusion</p> <p>Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.</p

    Soil resource supply influences faunal size–specific distributions in natural food webs

    Get PDF
    The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways
    corecore