4,153 research outputs found
On nonsupersymmetric \BC^4/\BZ_N, tachyons, terminal singularities and flips
We investigate nonsupersymmetric \BC^4/\BZ_N orbifold singularities using
their description in terms of the string worldsheet conformal field theory and
its close relation with the toric geometry description of these singularities
and their possible resolutions. Analytic and numerical study strongly suggest
the absence of nonsupersymmetric Type II terminal singularities (i.e. with no
marginal or relevant blowup modes) so that there are always moduli or closed
string tachyons that give rise to resolutions of these singularities, although
supersymmetric and Type 0 terminal singularities do exist. Using gauged linear
sigma models, we analyze the phase structure of these singularities, which
often involves 4-dimensional flip transitions, occurring between resolution
endpoints of distinct topology. We then discuss 4-dim analogs of unstable
conifold-like singularities that exhibit flips, in particular their Type II GSO
projection and the phase structure. We also briefly discuss aspects of
M2-branes stacked at such singularities and nonsupersymmetric AdS_4\times
S^7/\BZ_N backgrounds.Comment: Latex, 43pgs incl. appendices, 2 eps figs, v2. minor clarifications
added, to appear in JHE
F-Theorem without Supersymmetry
The conjectured F-theorem for three-dimensional field theories states that
the finite part of the free energy on S^3 decreases along RG trajectories and
is stationary at the fixed points. In previous work various successful tests of
this proposal were carried out for theories with {\cal N}=2 supersymmetry. In
this paper we perform more general tests that do not rely on supersymmetry. We
study perturbatively the RG flows produced by weakly relevant operators and
show that the free energy decreases monotonically. We also consider large N
field theories perturbed by relevant double trace operators, free massive field
theories, and some Chern-Simons gauge theories. In all cases the free energy in
the IR is smaller than in the UV, consistent with the F-theorem. We discuss
other odd-dimensional Euclidean theories on S^d and provide evidence that
(-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1
this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs
added, improved section 4.3; v4 minor improvement
The Conformal Manifold of Chern-Simons Matter Theories
We determine perturbatively the conformal manifold of N=2 Chern-Simons matter
theories with the aim of checking in the three dimensional case the general
prescription based on global symmetry breaking, recently introduced. We discuss
in details few remarkable cases like the N=6 ABJM theory and its less
supersymmetric generalizations with/without flavors. In all cases we find
perfect agreement with the predictions of global symmetry breaking
prescription.Comment: 1+17 pages, 1 figure, references adde
Effective action of three-dimensional extended supersymmetric matter on gauge superfield background
We study the low-energy effective actions for gauge superfields induced by
quantum N=2 and N=4 supersymmetric matter fields in three-dimensional Minkowski
space. Analyzing the superconformal invariants in the N=2 superspace we propose
a general form of the N=2 gauge invariant and superconformal effective action.
The leading terms in this action are fixed by the symmetry up to the
coefficients while the higher order terms with respect to the Maxwell field
strength are found up to one arbitrary function of quasi-primary N=2
superfields constructed from the superfield strength and its covariant spinor
derivatives. Then we find this function and the coefficients by direct quantum
computations in the N=2 superspace. The effective action of N=4 gauge multiplet
is obtained by generalizing the N=2 effective action.Comment: 1+27 pages; v2: minor corrections, references adde
Discrimination of outer membrane proteins with improved performance
<p>Abstract</p> <p>Background</p> <p>Outer membrane proteins (OMPs) perform diverse functional roles in Gram-negative bacteria. Identification of outer membrane proteins is an important task.</p> <p>Results</p> <p>This paper presents a method for distinguishing outer membrane proteins (OMPs) from non-OMPs (that is, globular proteins and inner membrane proteins (IMPs)). First, we calculated the average residue compositions of OMPs, globular proteins and IMPs separately using a training set. Then for each protein from the test set, its distances to the three groups were calculated based on residue composition using a weighted Euclidean distance (WED) approach. Proteins from the test set were classified into OMP versus non-OMP classes based on the least distance. The proposed method can distinguish between OMPs and non-OMPs with 91.0% accuracy and 0.639 Matthews correlation coefficient (MCC). We then improved the method by including homologous sequences into the calculation of residue composition and using a feature-selection method to select the single residue and di-peptides that were useful for OMP prediction. The final method achieves an accuracy of 96.8% with 0.859 MCC. In direct comparisons, the proposed method outperforms previously published methods.</p> <p>Conclusion</p> <p>The proposed method can identify OMPs with improved performance. It will be very helpful to the discovery of OMPs in a genome scale.</p
Biochemical mutagens affect the preservation of fungi and biodiversity estimations
Many fungi have significant industrial applications
or biosafety concerns and maintaining the original
characteristics is essential. The preserved fungi have to
represent the situation in nature for posterity, biodiversity
estimations, and taxonomic research. However, spontaneous
fungal mutations and secondary metabolites affecting
producing fungi are well known. There is increasing
interest in the preservation of microbes in Biological
Resource Centers (BRC) to ensure that the organisms
remain viable and stable genetically. It would be anathema
if they contacted mutagens routinely. However, for
the purpose of this discussion, there are three potential
sources of biochemical mutagens when obtaining individual
fungi from the environment: (a) mixtures of microorganisms
are plated routinely onto growth media
containing mutagenic antibiotics to control overgrowth
by contaminants, (b) the microbial mixtures may contain
microorganisms capable of producing mutagenic secondary
metabolites, and (c) target fungi for isolation may
produce “self” mutagens in pure culture. The probability
that these compounds could interact with fungi undermines
confidence in the preservation process and the
potential effects of these biochemical mutagens are considered
for the first time on strains held in BRC in this
review
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV
The production of b jets in association with a Z/gamma* boson is studied
using proton-proton collisions delivered by the LHC at a centre-of-mass energy
of 7 TeV and recorded by the CMS detector. The inclusive cross section for
Z/gamma* + b-jet production is measured in a sample corresponding to an
integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross
section with Z/gamma* to ll (where ll = ee or mu mu) for events with the
invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level
with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and
the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.)
+(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also
studied and found to be in agreement with the predictions made by the MadGraph
event generator with the parton shower and the hadronisation performed by
PYTHIA.Comment: Submitted to the Journal of High Energy Physic
Irrelevant deformations and the holographic Callan-Symanzik equation
We discuss the systematics of obtaining the Callan-Symanzik equation within
the framework of the gauge/gravity dualities. We present a completely general
formula which in particular takes into account the new holographic
renormalization results of arXiv:1102.2239. Non-trivial beta functions are
obtained from new logarithmic terms in the radial expansion of the fields. The
appearance of multi-trace counterterms is also discussed in detail and we show
that mixing between single- and multi-trace operators leads to very specific
non-linearities in the Callan-Symanzik equation. Additionally, we compute the
conformal anomaly for a scalar three-point function in a CFT.Comment: 40 page
- …