261 research outputs found

    Re-framing the climate change debate in the livestock sector: mitigation and adaptation options

    Get PDF
    Livestock play a key role in the climate change debate. As with crop-based agriculture, the sector is both a net greenhouse gas emitter and vulnerable to climate change. At the same time, it is an essential food source for millions of people worldwide, with other functions apart from food security such as savings and insurance. By comparison with crop-based agriculture, the interactions of livestock and climate change have been much less studied. The debate around livestock is confusing due to the coexistence of multiple livestock farming systems with differing functions for humans, greenhouse gas (GHG) emission profiles and different characteristics and boundary issues in their measurement, which are often pooled together. Consequently, the diversity of livestock farming systems and their functions to human systems are poorly represented and the role of the livestock sector in the climate change debate has not been adequately addressed. In this article, building upon the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC 5AR) findings, we review recent literature on livestock and climate change so as better to include this diversity in the adaptation and mitigation debate around livestock systems. For comparative purposes we use the same categories of managerial, technical, behavioral and policy-related action to organize both mitigation and adaptation options. We conclude that different livestock systems provide different functions to different human systems and require different strategies, so they cannot readily be pooled together. We also observe that, for the different livestock systems, several win-win strategies exist that effectively tackle both mitigation and adaptation options as well as food security

    Sequential versus nonsequential two-photon double ionization of the D2 molecule at 38 eV

    Get PDF
    ABSTRACT: A simple theoretical model is used to interpret recent experimental results for two-photon double ionization (DI) of D2 at 38 eV. We show that the measured kinetic energy distribution associated with emission of two protons can be interpreted as a sum of two processes: a sequential and an instantaneous absorption of the two incident photons. These processes lead to peaks in di erent regions of the spaectrum

    Sequential and Direct Two-Photon Double Ionization of D₂ at Flash

    Get PDF
    Sequential and direct two-photon double ionization (DI) of D2 molecule is studied experimentally and theoretically at a photon energy of 38.8 eV. Experimental and theoretical kinetic energy releases of D++D+fragments, consisting of the contributions of sequential DI via the D2+(1sσg) state and direct DI via a virtual state, agree well with each other

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf 0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    On the Wegener granulomatosis associated region on chromosome 6p21.3

    Get PDF
    BACKGROUND: Wegener granulomatosis (WG) belongs to the heterogeneous group of systemic vasculitides. The multifactorial pathophysiology of WG is supposedly caused by yet unknown environmental influence(s) on the basis of genetic predisposition. The presence of anti-neutrophil cytoplasmic antibodies (ANCA) in the plasma of patients and genetic involvement of the human leukocyte antigen system reflect an autoimmune background of the disease. Strong associations were revealed with WG by markers located in the major histocompatibility complex class II (MHC II) region in the vicinity of human leukocyte antigen (HLA)-DPB1 and the retinoid X receptor B (RXRB) loci. In order to define the involvement of the 6p21.3 region in WG in more detail this previous population-based association study was expanded here to the respective 3.6 megabase encompassing this region on chromosome 6. The RXRB gene was analysed as well as a splice-site variation of the butyrophilin-like (BTNL2) gene which is also located within the respective region. The latter polymorphism has been evaluated here as it appears as a HLA independent susceptibility factor in another granulomatous disorder, sarcoidosis. METHODS: 150–180 German WG patients and a corresponding cohort of healthy controls (n = 100–261) were used in a two-step study. A panel of 94 microsatellites was designed for the initial step using a DNA pooling approach. Markers with significantly differing allele frequencies between patient and control pools were individually genotyped. The RXRB gene was analysed for single strand conformation polymorphisms (SSCP) and restriction fragment length polymorphisms (RFLP). The splice-site polymorphism in the BTNL2 gene was also investigated by RFLP analysis. RESULTS: A previously investigated microsatellite (#1.0.3.7, Santa Cruz genome browser (UCSC) May 2004 Freeze localisation: chr6:31257596-34999883), which was used as a positive control, remained associated throughout the whole two-step approach. Yet, no additional evidence for association of other microsatellite markers was found in the entire investigated region. Analysis of the RXRB gene located in the WG associated region revealed associations of two variations (rs10548957 p(allelic )= 0.02 and rs6531 p(allelic )= 5.20 × 10(-5), OR = 1.88). Several alleles of markers located between HLA-DPB1, SNP rs6531 and microsatellite 1.0.3.7 showed linkage disequilibrium with r(2 )values exceeding 0.10. Significant differences were not demonstrable for the sarcoidosis associated splice-site variation (rs2076530 p(allelic )= 0.80) in our WG cohort. CONCLUSION: Since a microsatellite flanking the RXRB gene and two intragenic polymorphisms are associated significantly with WG on chromosome 6p21.3, further investigations should be focussed on extensive fine-mapping in this region by densely mapping with additional markers such as SNPs. This strategy may reveal even deeper insights into the genetic contributions of the respective region for the pathogenesis of WG

    Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    Get PDF
    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room

    Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis.

    Get PDF
    Transcranial direct current stimulation (tDCS) is an attractive protocol for stroke motor recovery. The current systematic review and meta-analysis investigated the effects of tDCS on motor learning post-stroke. Specifically, we determined long-term learning effects by examining motor improvements from baseline to at least 5 days after tDCS intervention and motor practise. 17 studies reported long-term retention testing (mean retention interval=43.8 days; SD=56.6 days) and qualified for inclusion in our meta-analysis. Assessing primary outcome measures for groups that received tDCS and motor practise versus sham control groups created 21 valid comparisons: (1) 16 clinical assessments and (2) 5 motor skill acquisition tests. A random effects model meta-analysis showed a significant overall effect size=0.59 (p<0.0001; low heterogeneity, T(2)=0.04; I(2)=22.75%; and high classic fail-safe N=240). 4 moderator variable analyses revealed beneficial effects of tDCS on long-term motor learning: (1) stimulation protocols: anodal on the ipsilesional hemisphere, cathodal on the contralesional hemisphere, or bilateral; (2) recovery stage: subacute or chronic stroke; (3) stimulation timing: tDCS before or during motor practise; and (4) task-specific training or conventional rehabilitation protocols. This robust meta-analysis identified novel long-term motor learning effects with tDCS and motor practise post-stroke
    corecore