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ABSTRACT 

Livestock play a key role in the climate change debate. As with crop-based agriculture, the sector is both 

a net greenhouse gas emitter and vulnerable to climate change. At the same time, it is an essential food 

source for millions of people worldwide, with other functions apart from food security such as savings 

and insurance.  By comparison with crop-based agriculture, the interactions of livestock and climate 

change have been much less studied. The debate around livestock is confusing due to the coexistence of 

multiple livestock farming systems with differing functions for humans, GHG emission profiles and 

different characteristics and boundary issues in their measurement, which are often pooled together. 

Consequently, the diversity of livestock farming systems and their functions to human systems are 

poorly represented and the role of the livestock sector in the climate change debate has not been 

adequately addressed. In this article, building upon the IPCC 5AR findings, we review recent literature on 

livestock and climate change so as better include this diversity in the adaptation and mitigation debate 

around livestock systems. For comparative purposes we use the same categories of managerial, 

technical, behavioural and policy-related action to organise both mitigation and adaptation options. We 

conclude that different livestock systems provide different functions to different human systems and 

require different strategies, so they cannot readily be pooled together. We also observe that, for the 

different livestock systems, several win-win strategies exist that effectively tackle both mitigation and 

adaptation options as well as food security. 

 

1. INTRODUCTION 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report deals with the role of 

livestock in delivering food security in future food systems and sustainable livelihoods (through its 
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Working Group 2 on Impacts, Adaptation and Vulnerability), and in the degree that it contributes to 

climate change via net emissions (through its Working Group 3 on Mitigation). Livestock farming and 

climate change interact in several domains: livestock emit greenhouse gases (GHGs), farming practices 

can also contribute to GHG sequestration, livestock farming can generate products that substitute for 

fossil fuels, and livestock systems are impacted by climate change, are vulnerable to it and will need to 

adapt to it, all to different degrees. However, the IPCC Fifth Assessment clearly states that the different 

intersections of climate change with livestock systems, despite being crucial, are still relatively under-

studied research areas1.  

 

Agreement exists on the multiple functions of livestock in different contexts. The livestock sector plays a 

crucial role in global food security, supplying between 13% and 17% of calories and between 28% and 

33% of protein consumption, globally2, 3. Livestock farming in developing countries, especially that of 

small-scale farmers, is characterised by the provision of multiple benefits, such as improving livelihoods 

for the rural poor, being a source of direct nutrition, draught power, fertilization, household fuel, fibre, 

wealth storage, social status, cultural identity, control of insects and weeds, and as a buffer against crop 

failure4-8. The benefits of animal-sourced protein to poor people are particularly relevant 9-12. In 

industrialised countries by contrast, livestock production is more likely to be carried out by large-scale 

enterprises structured to produce single commodities, generally meat or milk. 

The supply of goods and services provided by livestock has been accompanied by the ongoing use and in 

some cases degradation of natural resources. It is estimated that 26% of the world’s ice-free terrestrial 

area is devoted to pasture and 33% of cropland is used for feed crop production5. The livestock sector 

accounts for 80% of the agricultural land13 and 8% of human water use, mostly for irrigation of feed 

crops14. Also, humans appropriate 24% of world’s potential net primary productivity15 of which 58% is 

devoted to livestock farming16. This high level of global activity is particularly reflected in high levels of 

GHG emissions. A total of 80% of the agricultural non-CO2 emissions are due to livestock17 while the 

livestock sector has been estimated to contribute between 9 and 25% of anthropogenic emissions13, 18-23. 

Assuming that GHG emissions are expected to increase worldwide in the years to come18, 24, it is of 

crucial importance to examine under what conditions the livestock sector can best contribute to reduce 

net emissions. In addition, we need to consider that the livestock sector is vulnerable to climate changes 
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and will need to adapt to them. In examples of vulnerable human groups in rural areas highlighted in 

IPCC AR5 WGII, two were livestock dependent – pastoralists and mountain farmers25. Potential 

adaptation strategies have been identified, but even if fully implemented, there is likely to be 

considerable residual vulnerability and so further adaptations will need to be developed. 

Thus, the livestock sector will be bound up in a nexus of augmented shocks and uncertainties, and acts 

both as a driver and recipient of these, with uncertain implications. Responses to these reflect 

sometimes polarised value systems (e.g. in relation to meat consumption), leading to significant public 

debates as to the best pathway forward (e.g. 26, 27). This is made more complex by the coexistence of 

multiple systems of livestock farming with differing GHG emissions and different characteristics and 

boundary issues in their measurement, which, however, are often pooled together. Consequently, the 

diversity of livestock farming systems is poorly represented and the role of the livestock sector in the 

climate change debate has not been adequately addressed, which is a major omission since distinct 

livestock systems involve diverse interactions between livestock, population, climate and natural 

resources.   

A large body of work 28-33 already notes the importance of differentiating between livestock production 

systems, suggesting that this differentiation is a necessity in the evaluation of different technology and 

policy options. It is important to consider that the existence of different livestock systems is the 

outcome of the different functions played by livestock in different human systems in a variety of 

contexts. For instance, large industrial systems are in play in the US because the function of livestock 

production is mainly as a competitive corporate business activity, and there is little demand today for 

livestock in the U.S. to play the same role as they do in Africa (as repositories of savings, providers of 

unspoiled milk to the family, a source of income in the non-cropping season, etc.). It is important to 

consider this in addressing strategies for action in different regions. 

In order to illustrate the need to consider the existing diversity of livestock farming systems and shed 

light on the interactions between climate change, livestock and human systems, we employ the broad 

classification proposed by Thornton et al.28 and Kurska et al.29, based on Seré and Steinfeld34. This 

classification system has been used widely for poverty mapping28; animal health targeting35; climate 

change impacts and vulnerability30, 36; and the assessment of environmental impacts22, 32, 37-41 amongst 

others.33. It comprises three general types of livestock system, namely: grazing, mixed crop-livestock, 
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and industrial systems (Table 1). Even though these systems grossly simplify the existing diversity, the 

use of this accepted classification allows us to maximise data availability and reframe recent findings. 

We will show in this paper that distinctions between the systems entail radically different interactions 

with people and climate change.  

 
Table 1. Characterization of livestock farming systems. 
 GRAZING SYSTEM MIXED CROP-LIVESTOCK SYSTEM INDUSTRIAL SYSTEM 
People Pastoralism engages 120/190 million 

people42, 43 
Involves ~2/3 of the world population. 
Main system for smallholder farmers in 
developing countries44 

Relatively small numbers of people, 
often highly skilled 

Purpose Traditional grazing systems are sources 
of food, income, waste recycling, fibre, 
lending, status, social and cultural 
identity, and insurance against hard 
times. Large-scale private ranching 
systems are geared to extensive meat 
production for sale. 

Source of food, income, fertilization 
and manure, and draught power. 

Source of food, income. 90% of the 
value of livestock attributed to 
marketed outputs45 

Modalities 
- Mobile systems on communal 

grasslands 
- Sedentary systems on communal 

grasslands 
- Ranching and grassland farming 

- Mixed, communal grazing 
- Mixed, crop residues 
- Mixed, cut and carry 
- Mixed, feed from farm 
- Mixed, external feed 

- Intensive poultry production 
- Intensive pig production 
- Ruminant feedlot meat production 
- Large-scale dairy production often 
in grain-producing regions or near 
to urban centres 

Location In lands that are too wet, dry, 
mountainous, distant or stony for 
cultivation, and where grassland and 
fodder production sustain large herds. 
In Arid, Semi-Arid, Sub-Humid zones 
and Temperate and Tropical Highlands 

Near sources of crops and by-products.  
In nearly all Agro Ecological Zones: 
from rainforests to oases in arid zones. 

Often near large urban centres or 
transport systems. More or less 
independent of the agro-ecological 
zone, of special relevance in Europe, 
North America, and some parts of 
Latin America, the Near East, and 
East and Southeast Asia 

Feed Source Dependent on the natural productivity 
of grasslands. Convert human-inedible 
forage and rangelands into edible 
animal source food. 

Use of crop residues and permanent 
crop cultivation. Scarce reliance on 
external feed (if any). Convert human-
inedible self-produced residues into 
edible animal source food. 

Concentrated animal feeding 
operations. Depend on external feed 
(grains, industrial by-products). Can 
convert human-edible purchased 
products into edible animal source 
food. 

Human edible 
protein 
Output/ Input 

Some examples: Kenya, 21.16; 
Mongolia, 14.603 

An example: New Zealand, 10.063 Some examples: Brazil, 1.17; 
Germany, 0.62; USA, 0.533  

Land and 
tenure 

Rangelands including communal and 
open-access grasslands. Low 
infrastructure. 

Communal and private high-quality 
grasslands and fodder crops and crop 
residues. Moderate infrastructure. 

Relatively small areas. Large 
infrastructure development.  

Input nature Little or minimal dependence from 
purchased feed and external inputs. In 
usual conditions, 0 kg of external feed 
per kg of meat.46  
12,000l of water per kg of edible beef in 
ranching14  

Dependent on system and land tenure. 
Inputs range from small to significant.  
42l water per pig/day (drinking and 
service)46 

Dependent on purchased feedstuffs. 
Estimate 8 kg of feed per kg of beef, 4 
kg for pork, 1 kg for broiler46  
53,200l of water per kg of edible 

beef14. 142l water pig/ day (drinking 

and service)46  
World food 
production 

24% beef, 32% sheep & goat meat, 1% 
pork, 2% poultry meat and 1% of 
eggs32. Provides 9% global meat47 

69% milk & 61% of meat from 
ruminants40, 38% of eggs32. Provides 
54% global meat47. 

Provides 76% pork & 79% of poultry 
meat40, 61% eggs, 6% beef, 1% of 
sheep & goat meat32 

Genetic 
diversity 

86% (6,536) and 7% (523) of the 7,616 recorded breeds are local and regional 
transboundary breeds, respectively45 

7% (557) of the breeds are 
international transboundary45 
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2. LIVESTOCK SYSTEMS AND CLIMATE CHANGE MITIGATION 

Livestock and GHG emission metrics 

The livestock sector contributes to GHG emissions through the emission of methane (CH4), largely from 

enteric fermentation; nitrous oxide (N2O), from manure and the use of nitrogenous fertilizers in growing 

feed; and carbon dioxide (CO2), from fossil fuel burning, land use change driven by agricultural 

expansion and reductions in soil carbon in some circumstances. Estimates of the GHG emissions from 

livestock differ according to the system boundaries established for calculation. Emissions can be 

classified as direct, if they are produced on- farm by the animal (e.g., enteric fermentation), or during 

the rearing process (e.g., manure), and indirect, if they are produced pre-farm by associated industries 

(e.g., nitrogenous fertilizers in growing feed or associated land use changes). The range of estimates of 

global GHG emissions attributable to livestock is large, ranging from 9 to 25% of total emissions13, 18-23, 

with differences mainly due to different calculation methods and whether or not indirect emissions are 

considered in the equations. In presenting emissions we also need to differentiate between absolute 

and efficiency measures as these can lead to different outcomes. For example, a livestock system might 

improve its efficiency parameter (e.g. emissions per unit product), even though its absolute parameter 

(total emissions) increases. Absolute emission metrics are important in terms of addressing the global 

commons issue of mitigating GHG emissions whereas efficiency metrics are most relevant to financial 

and other livestock system performance measures.  

The most common method to determine GHG emission relates to the volume of CO2-equivalents which 

integrates the effects of the multiple greenhouse gases which may be produced (or removed) by 

livestock systems (e.g.48). This absolute measure is fundamental to setting emission limits and emission-

reduction goals for the UNFCCC and national policies, as it links livestock activities to the change in 

composition and function of the atmosphere. But other efficiency-based or rate metrics exist, which can 

be used to plot pathways to efficient and/or equitable achievement of these goals. These include 

emissions per hectare, per unit value or per unit livestock product19, 49 or per unit of protein50. When 

expressed in these efficiency terms (e.g. GHG per edible output), the confined operations of industrial 

livestock systems can appear to directly emit less than grazing and mixed systems, and intensive grazing 

less than extensive grazing51. In contrast, when the method of calculation takes into consideration the 
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direct and indirect amounts of resources used as inputs by the livestock system (e.g. land, kg of fossil 

fuels), mixed systems, through livestock and cropland integration, and extensive grazing systems, 

through moving the herd opportunistically and benefiting from the natural productivity of grasslands, 

can show smaller GHG emissions than the confined and sedentary operations of ‘industrial’ livestock 

systems52. The different metrics employed therefore affect the outcome of the analysis and the GHG 

emission responsibility attributed to diverse livestock systems and thus, they provide different data to 

inform policy-makers and the broader pubic debate.  

Nonetheless, several general omissions are identified in the literature. Firstly, to give the clearest 

picture, the measurement of the GHG emissions should relate to the whole life cycle of the livestock 

product, including the feed footprint, since obviously emissions occur throughout the production and 

distribution phases of feed inputs23, 27, 53. Secondly, not only the quantity but the quality of the resources 

used by livestock farming should be integrated into the calculation. The same quantity of GHG emissions 

from using human-edible grain to feed the animals, or from wastes and pastures of marginal lands, 

should be accounted for in a consistent way but differentiated so as to deal with it explicitly in nutrition 

security policy design and implementation. Also, other environmental and social costs and benefits can 

be included in the calculation, such as the value of the non-monetized economic activities, the 

subsistence function of grazing and mixed systems, which provide valuable nutrition to the poor as well 

as of unique livelihood in areas characterized by pastoralism and extensive grazing where a lack of 

alternative livelihood opportunities exist, and the value of preserving the health of ecosystems54, 55. 

According to Ripoll-Bosch et al.56 when accounting for the multifunctionality of livestock systems, 

considering multiple-outputs and allocating the GHG emissions to the diverse outputs on their relative 

economic value, grazing systems emit less GHG emissions per unit of livestock product (CO2-eq /kg of 

lamb live weight in that case) than mixed-grazing systems, and those in turn have lower emissions than 

industrial systems. There are additional grounds for speculation over whether grazing areas without 

domestic livestock might be repopulated with methane-producing wild ungulates52, 57. A useful change 

would be to see GHG mitigation as one variable in considering policy and management in changes to 

livestock systems. 
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Livestock and mitigation potential  

The main strategies described to reduce GHG emission and to increase GHG sequestration by the 

livestock sector can be divided into supply- and demand-side strategies. While the former have been 

better studied than the latter58 clearly no measure in isolation will encompass the full emission 

reduction potential (e.g.27). Instead, a combination will be required, selected from the full range of 

existing options, as adapted to different livestock systems and their functions according to geographical, 

social and institutional contexts. In this article we sub-divide supply and demand-driven mitigation 

strategies into managerial, technological, policy-related and behavioural. 

 

Table 2. Livestock farming systems and climate change mitigation.  
 GRAZING SYSTEM MIXED CROP-LIVESTOCK  SYSTEM INDUSTRIAL SYSTEM 

GHG emissions 
(examples) 

27-31kg of CH4 per animal per year 
in grazing cattle in Africa and 
India46 
12% total non-CO2 emissions40 

53-60kg of CH4 per animal per year in 
beef & dairy cattle in USA and Europe; 
45-58kg of CH4 per animal per year in 
dairy cattle in Africa and India46. 77% 
emissions from cattle (not all mixed 
crop-livestock)40 

117-128kg of CH4 per animal per 
year in dairy cattle in USA and 
Europe46 
10% total non-CO2 emissions 
from monogastric (not all 
industrial)40 

GHG emission 
metrics giving 
the most 
favourable 
outcome  

Area (kg CO2eq/area of land); 
resource based (kg CO2eq/kg of 
fossil fuel based inputs; kg edible 
output/quantity of ecosystem 
services provided; kg CO2eq. 
avoided by use of marginal land)52.  

Quantity based (e.g. kg CO2eq./kg food 
and non-food goods – leather, wool, 
manure, traction, etc.)52 

Quantity based (e.g. kg CO2eq/kg 
produce)52 

Mitigation 
assets 

Grazing responsive to 
environmental variation and low 
dependence on fossil-fuel-based 
practices and external inputs. 
Enhanced animal husbandry, GHG 
sequestration.  

Maintenance of soil fertility, low 
dependence on fossil-fuel based 
practices and external inputs. Enhanced 
animal husbandry and herd/flock 
management, supplements, feed 
budgets. 

Increased productivity and 
efficiency through better 
nutrition and genetics, adjusting 
the growing environment, animal 
health. 

 

SUPPLY-SIDE mitigation strategies 

Supply-side strategies refer to the actions directly related to animal production at the farming level. 

These include managerial, technological and policy-related options. Managerial mitigation strategies in 

the livestock sector fundamentally comprise (i) improved energy and nutrient utilisation on land, 

through management of land, grazing, vegetation, water and fire; (ii) improved productivity, through 

capital and labour intensification; and (iii) improved energy conversion in livestock, through appropriate 

breeding, health and feeding, which also include technological strategies; Policy-related options include 

both (iv) market mechanisms, through GHG emission trading systems and GHG footprint labelling  

(including sequestration activities); and (v) enhancing the production and use of alternative fuels, 

through recycling livestock waste into biogas58-63. 
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A) Improved nutrient and carbon cycling on land 

The control of land degradation and deforestation, and regulating the use of fertilizer inputs for feed 

production, are the main issues when dealing with the enhancing of nutrient cycling on land. 

Deforestation prevention is one of the most developed GHG mitigation policies64. Land degradation and 

deforestation are associated with overgrazing65, with conversion of forests into pastures for ranching in 

grazing systems60, and with land clearing for feed production in industrial systems66, 67. Conversion of 

forests into croplands and pastures, and grassland degradation, result in carbon losses which work 

against any mitigation from soil carbon sequestration68, 69. Soil carbon is often lost more rapidly than it is 

gained70. In fact, deforestation, either to open new pasture or to create new cropland for feed 

production, is calculated to release more CO2 than any other livestock-related activity60. A total of 4% of 

anthropogenic emissions are attributed to land use change and deforestation for livestock production32.  

Land and soil management is a key mitigation strategy22 since there is twice as much carbon in the top 

metre of soil globally as there is in the entire atmosphere71. Soil is one of the largest carbon stores 

globally that can be increased through management62. Grasslands are estimated to store up to 30% of 

the world’s soil carbon72, 73. The carbon sequestration capacity through soil erosion control and soil 

restoration has been estimated to be between 5 and 15% of global emissions74. Soil carbon 

sequestration potential in global agriculture is estimated to contribute to 89% of the technical 

mitigation potential59. However, the costs of mitigation substantially limit that potential, such that 

economic potentials are only around 1/3 of technical mitigation potentials59. In both grazing and mixed 

systems, improved grassland management and appropriate stocking density can help to increase soil C 

stocks75. Other strategies include limiting grazing on seasonally wet soils and adequate management of 

irrigation in pastures20, 62, 76, 77. 

The need to efficiently apply fertilizer inputs is widely accepted due to the multiple benefits that accrue. 

However, this is often driven by an interest in tailoring fertilizer input with a focus on economic benefit, 

rather than for GHG mitigation. Livestock excreta contain more nutrients than the inorganic fertilizer 

used annually32 so consideration of this seems germane. The separation of livestock from land, mainly 

via the livestock housing of industrial systems, interrupts nutrient flows which triggers soil organic 

matter depletion in the location of the food source, and often pollution at the point of the housed 

livestock60, while entailing feed production on large areas of cropland with the associated application of 
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inorganic fertilizers and GHG emissions. While the manure from these types of systems deposited on 

fields and pastures does not usually generate significant amounts of CH4
78, the confined rearing and 

feedlots of the industrial systems release an estimated 18 million tons of CH4 annually32. To further 

reduce in-house emissions of CH4 and N2O in industrial systems, deep cooling of slurry can be a feasible 

option79. In addition to this mitigation potential, and despite the existence of transport, storage and 

odour issues, it should also be noted that smallholders cannot usually afford inorganic fertilizers.  

B) Improved nutrient and energy cycling in livestock 

The different degrees of inefficiency of animals in nutrient and feed conversion are the main issues 

when tackling improvement of nutrient cycling in livestock. Both plants and animals are particularly 

inefficient in nitrogen uptake80, 81. Practices to reduce N2O emissions include animal and herd 

management to improve energy and nutrient balances, such as: (i) reducing the number of unproductive 

animals; (ii) genetic manipulation or animal breeding to improve the N conversion efficiency in the 

rumen, (iii) changes in feed quality and composition and, iv) use of feeding additives, such as condensed 

tannins, to improve the digestion of amino acids and reducing N excretion, or salt supplementation to 

induce more frequent urination events and thus a more even spreading of urine across pastures20, 76, 77. 

Livestock also show differential performance in feed conversion and associated CH4 emissions, with the 

largest difference between ruminants and monogastrics. Thus, given the higher feed conversion 

efficiency of monogastrics, some GHG mitigation can be achieved by shifting production from ruminants 

to monogastrics - e.g. chicken, pigs23, 82 or from large to small ruminants. Additionally, taking into 

account the large potential of ruminants to generate CH4 emissions via enteric fermentation, the 

following are specific GHG mitigation measures focused on ruminants: (i) improving forage quality, such 

as forage with lower fiber and higher soluble carbohydrates - changing from C4 to C3 grasses; (ii) dietary 

supplements to improve ruminant fibre digestion and productivity and reducing methanogenesis, such 

as dietary lipids, probiotics, proprionate precursors, enzymes in the form of cellulases or hemicellulases, 

or condensed tannins and saponins; and (iii) manipulations of microbial populations in the rumen to 

reduce CH4 production, such as CH4 inhibitory vaccinations against methanogens or chemical 

defaunation to eliminate rumen protozoa83, although these techniques are still in their infancy or are 

sub-economic to use20, 76, 84-87. It must be acknowledged too the higher potential of ruminants for non-

competition with human food production, since they are able to utilize non-human-edible feedstuff (e.g. 
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grass, shrubs), whereas monogastrics often compete for human-edible food19 unless they use by-

products or waste products, which makes the comparison complex.  

C) Improving input capital and labour productivity 

Enhancing capital and labour productivity to increase yields at the same time as reducing GHG emissions 

and natural resource use per unit of produce is a goal that is widely being advocated to tackle both food 

security and climate change46, 88. Several studies suggest the potential to improve the environmental 

performance of livestock systems can stem from capital and labour intensification that reduce inputs 

and GHG emissions per unit of livestock product89. For instance, in Europe (EU-12) livestock production 

increased slightly during the 1990-2002 period, while CH4 and N2O emissions were reduced by 8% due to 

intensification90. Similar linkages have been long-established elsewhere (e.g. Australia91). However, it is 

also important to consider other trade-offs. For instance, though it is assumed that the adoption of 

more productive breeds will result in the keeping of fewer animals and reduced greenhouse gas 

emissions, there may be negative environmental impacts from using more productive breeds, even in 

lower numbers, for example via an increased use of concentrate feeds rather than the use of crop 

residues or grazing on non-arable land92. Strategies in this category can be implemented for all types of 

livestock system.  

D) Market mechanisms 

Mitigation strategies based on market mechanisms fundamentally comprise schemes of payment for 

environmental services for carbon storage and sequestration, such as REDD+, the Joint Implementation 

or the Clean Development Mechanism under the United Nations Framework Convention on Climate 

Change. These are mechanisms to provide market-based incentives to manage ecosystems, in this case 

livestock systems, to reduce GHG emissions. These systems can be used to provide monetary 

alternatives to GHG emissions. They aim at promoting the protection of the environment, as well as 

GHG mitigation, while alleviating poverty93. Institutional factors are crucial to determine who is involved 

and who benefits from these schemes94. Some studies show that these mechanisms can promote GHG 

mitigation and improve the livelihood of service providers, via the provision of institutional frameworks 

for management and regulation and through incentives for behavioural change95, 96. Critics question the 

appropriateness of these mechanisms for GHG mitigation in relation to: the large transaction costs 

associated with identifying and working with potential project partners, and ensuring parties accomplish 
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their obligations that might constrain the participation of the communities97; the existence of unclear 

property rights98; or the potential alteration of culturally-based conservation values and land 

development aspirations93. These critics are linked to the complexity surrounding diverse stakeholders 

acting at multiple scales, and being exposed to drivers operating across multiple scales too. The 

different scales of demand create a complex market, where small and large landowners deal with 

different costs and interests. For instance, the interests of international businesses can collide with local 

communities seeking to secure food sovereignty99. For an effective implementation of payment for 

environmental services, it is thus necessary to understand the local institutional context in terms of the 

characteristics of buyers, sellers, and their relationship100. It should also be considered that collecting 

the required data to calculate the emissions is unlikely to be feasible for most smallholders101. It is also 

important to note that in livestock systems, informational, cultural and institutional drivers can 

substantially affect the balancing of the grass/forage available with animal intake, and thus become 

additional costs or barriers to the implementation of mitigation strategies for carbon sequestration. 

Specifically in rangelands, the low sequestration capacity per unit of area, the consequent large 

monitoring costs, and unclear or communal land tenure entail costs for carbon sequestration additional 

to those derived from assessing technical feasibility alone.  

Given the increasing importance of international trade of animal products, which accounted for 22% of 

total livestock-related carbon emissions in 2004102, there is an increasing concern regarding the trade-

offs inherent in these market mechanisms, if not addressed from a food system perspective. For 

instance, industrialised countries promoted the REDD+ initiative to reduce forest loss in developing 

countries, some of which are associated to indirect GHG emissions allocated to livestock for feed 

production. But as they pay to protect forests, they indirectly drive deforestation via consumption of 

livestock103. That is, global drivers, such as consumption and international trade, contribute to 

deforestation in particular countries, suggesting that market mechanisms targeting the supply-side need 

to be accompanied by market mechanisms targeting the demand-side if they are to be more efficient, as 

well as both coherent and fairer. Other market mechanisms linked to demand-side strategies will be 

discussed below.  
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E) Alternative fuels 

The use of alternative fuels, such as recycling livestock waste into biogas by means of anaerobic 

digesters, is both a policy-related strategy and a technological strategy, aiming to reduce the climate 

impact of livestock from manure management, while increasing profit and reducing fossil fuel use 104, 105. 

In industrialised contexts, biogas production through anaerobic digestion can achieve between 50 and 

75% reduction in emissions in manure storage systems32. In the EU, using manure to produce methane 

can potentially reduce 57% of supply chain energy use in pig farming106. At present, only 1% of global 

manure is being used to produce biogas107. This offers a mitigation opportunity, particularly for the high-

livestock-density operations, which can reduce GHG emissions while reducing the cost of waste disposal. 

Anaerobic digesters, now in use at some large intensive farms, may not always be economically viable 

for small-scale farms108. However, recovering the methane and using it as an energy source alternative 

to wood, charcoal or fossil fuel could become an option to improve the welfare of smallholder livestock 

farmers with co-benefits for soil fertility and health while favouring GHG mitigation105, 109. Flexi-biogas, 

as developed by IFAD, could be an option110. 

Oils such as canola and cottonseed can be used to reduce methane emissions from ruminants (whilst 

also enhancing production) or for conversion into biofuel (thus substituting for fossil fuels). A recent 

analysis of which of these two options is the most beneficial in terms of GHG emissions across the 

production chain suggests that conversion into biofuel reduces net GHG most63. 

 

DEMAND-SIDE strategies 

Although most mitigation strategies focus on supply-side and technical solutions, the need to focus on 

the demand-side is being increasingly recognized27, 58, 62, 111, 112. That is, if we are to achieve substantial 

reduction in GHG emissions in the livestock sector, we need to address not only how we raise livestock, 

but also what, where and how much livestock produce is consumed, in order to develop low-GHG 

emission diets26, 27. Demand-side strategies are more general and do not refer to specific production 

systems but rather to consumption options. Thus, there is a need to take a food systems approach in 

order to combine the best mitigation options for different livestock systems in different contexts. At the 

same time, it is important to note that, as currently addressed in the literature, there is more emphasis 

on industrialised contexts given the overconsumption of animal products and their role in driving 
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deforestation in developing countries. However, we need to consider that most of the present day and 

likely future changes in consumption patterns occur in developing countries113 that present completely 

different issues not well addressed yet. Here, the increased consumption of animal source foods will be 

beneficial to poor people, involving large numbers of people with very different nutritional issues114, so 

the scope for such solutions may be limited. The behavioural modifications of the demand-side 

mitigation strategies include dietary choices, such as (i) reduction in meat consumption, consumption of 

animal products with lower net emissions, or a dietary shift from meat to plant-based protein115, 116; (ii) 

avoidance of food wastage where possible; and (iii) reduction of life cycle emissions. Most of these 

mechanisms require supportive policies to facilitate changes in behaviour.  

F) Reduction of meat consumption 

A number of authors have estimated the mitigation potential of dietary choices117, 118. For instance, Popp 

et al.119 estimate a 24% reduction in global soil N2O emissions by 2055, if per capita calorific intake 

increases as a function of increases in GDP, but the share of animal-source foods in this intake is 

reduced by 25% every ten years between 2005 and 2055. However, whilst reduction of livestock 

consumption may be an acceptable form of mitigation for those in developed countries, or wealthier 

people elsewhere, it may well be deleterious for the poor. Animal-sourced food offers valuable nutrition 

for rural poor, both in protein and in micronutrients, particularly for those suffering from malnutrition 

and during periods of climate stress4, 10, 12. This is why some authors9, 120 suggest that a redistribution of 

livestock consumption from food surplus to food deficit regions would trigger coupled health and 

environmental benefits, as well as mitigation gains, although the mechanisms to do this are challenging. 

To illustrate the potential benefits associated with a reduction in livestock consumption, Westhoek et 

al.121 estimated that halving the consumption of animal products in the European Union, which at 

present consumes 70% more animal protein than recommended by the WHO, would deliver a 40% 

reduction in nitrogen emissions, 25–40% reduction in greenhouse gas emissions and 23% per capita less 

use of cropland for food production, while at the same time would lead to a reduction in cardiovascular 

diseases and some cancers. The environmental, health and food security benefits of healthy diets, with 

reduced livestock content, were also emphasised by Tilman and Clark116. In addressing the nutritional 

contributions of meat to food security, it must be considered that grazing animals often provide higher 

nutritional quality products than animals raised industrially122, 123. Taxes and subsidies to favour 



14 
 

behavioural modification have recently been proposed124 and in that manner, mitigation through the 

promotion of low-emission diets could offer good opportunities for boosting the role of smallholders in 

the mitigation of climate change. 

G) Food wastage reduction 

Reduction in food wastage is another behavioural modification that can trigger mitigation gains, 

particularly concerning GHG-intensive foodstuffs125, 126. In the USA, food losses contribute 1.4 kilograms 

(kg) carbon dioxide equivalents (CO2-eq) per capita per day, that is, 28% of the overall carbon footprint 

of the average U.S. diet127. Similarly, the avoidance of food losses in the consumer phase of milk, poultry 

meat, pig meat, sheep meat and potatoes in UK would reduce annual N2O emissions by at least 2 Gg 

N2O-N per year117.  

H) Reduction of life cycle emissions 

Most strategies in this category look for the reduction of large travel distances and energy costs of 

refrigeration/preservation27, 46, 120, 128-130. The consideration of the indirect GHG emissions associated 

with grain-based feed production131, mostly due to land use change strongly associated with confined 

ruminant and monogastric operations, can neutralize the difference in GHG emission between 

monogastric and ruminant livestock when calculated with only feed conversion efficiency. In line with 

this, some authors suggest a shift towards the local consumption of livestock produce from grazing and 

mixed systems as a mitigation option132. In contrast with the land-sparing strategy, mixed and grazing 

systems seek to integrate cropping and grasslands with livestock, reducing GHG emissions through a 

decrease in nitrogen-fertilizer use and enhancing soil fertility by partially closing nutrient loops, while 

local consumption of the livestock produce reduces fossil fuel use for transport133-135. These strategies fit 

well with the production conditions of small farmers both in industrialised and developing countries. 

I) Market mechanisms: Voluntary standards and labelling 

Market-based mechanisms on the demand-side can mitigate GHG through the development of livestock 

product standards and labelling, such as the Carbon Reduction Label in United Kingdom, ClimaTop label 

in Switzerland, or the Carbon Label in France. Product carbon footprint standards are also being 

increasingly integrated within labels of organic food, such as the Swedish label KRAV. Based on the 

lessons learned from the development of organic farming, it is suggested that GHG footprint labelling 

might become a good option for the benefit of smallholders in developed countries 135. Besides the issue 
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of calculating the emissions, which is likely to be difficult particularly for smallholders and developing 

countries, there are not only technological issues to be overcome, but also equity and social justice 

issues between industrialised and impoverished countries136. 

 

3. IMPACTS, VULNERABILITY AND ADAPTATION OF LIVESTOCK SYSTEMS TO CLIMATE 

CHANGE: THE HUMAN DIMENSION 

Climate-change impacts, vulnerability and adaptation options of the livestock sector are multiple, varied 

and complex137, 138 but in the IPCC 5th AR Working Group 2 they were under-represented when 

compared with cropping systems (Figure 1). In large part, this reflects the relativities of the size of the 

literature on livestock and climate versus the expansive literature on crops, but it also reflects the lack at 

the time of global livestock modelling analyses which are only now coming available (e.g. 22) and the 

paucity of synthetic reviews of the issue. Addressing the impacts, vulnerability and potential adaptation 

capacity of diverse livestock systems is an important part of global analysis of the risks of climate 

changes. For instance, grazing and mixed systems involve large numbers of poor people and people at 

risk of poverty worldwide (Table 1), for whom livestock production accounts directly or indirectly for a 

significant share of household income and consumption, and for whom there are often no practical 

alternative livelihoods139. Impacts of climate change on these production systems are likely to therefore 

have more severe impacts on more people than impacts on industrial systems, and possible in these 

contexts, the only potential adaptation under climate change is to raise livestock140. 

Figure 1.  Frequency of appearance of the word and phrases relating to livestock versus cropping 

systems and their outputs in a) the Summary for Policymakers, b) the Food Security chapter and c) the 

regional chapters of the IPPC Fifth Assessment Report. 

 

Observed and projected impacts of climate change on livestock systems 

Considering the different dimensions of climate change, impacts can be distinguished between those 

related to (i) extreme events, such as floods, storms, hurricanes, droughts and heat waves, and (ii) the 

more gradual changes in the averages of climate-related variables, such as local temperature, rainfall 

and its seasonality, sea level rise and higher atmospheric concentrations of CO2. Considering causality, 
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impacts can be grouped as (a) direct impacts on animals, such as heat and cold stress, water stress, 

physical damage during extremes, and (b) indirect impacts, such as modification in the geographical 

distribution of vector-borne diseases, location, quality and quantity of feed and water and destruction of 

livestock farming infrastructures 141 (Table 3). In terms of observed and projected impacts in the 

literature, they mostly relate to animal feed, whether through impacts on grassland and pastures, or 

impacts via grain-feed production138. From a food systems perspective, other impacts on livestock 

systems will affect storage infrastructures (both of animal feed and animal products, e.g., milk), 

processing operations, transport facilities and retailing142. 

In industrial livestock systems, the most important impacts are expected to be indirect, leading to rises 

in the costs of water, feeding, housing143, transport and the destruction of infrastructure due to extreme 

events, as well as an increasing volatility of the price of feedstuff which increases the level of 

uncertainty in production. Given the high costs involved in moving the associated infrastructure, climate 

change will likely result in increasing effort to isolate the animals from climate influences. When 

financial returns pass below a context-specific threshold, transformational change via relocation may 

occur144. 

The most important direct impacts on mixed livestock systems are linked to increased water and 

temperature stress on the animals, while indirect impacts are mostly the result of impacts on the feed 

base, whether pastures or crops, leading to increased variability and sometimes reductions in availability 

and quality of the feed for the animals. Changes towards breeds with higher heat resistance but lower 

productivity potential and to fodder bases which are more able to cope with difficult climate conditions 

may be needed. This may require changes in knowledge base and practice changes. Those mixed 

systems which are dependent on external infrastructures, such as irrigation infrastructure, may be 

exposed to increased risk of damage from extreme weather events.  

Extensive grazing systems will be more affected by those impacts which significantly alter ecosystem 

processes, such as changes in the feed base or increased risk of animal diseases145, 146. As for mixed-

systems, direct impacts result from water and temperature stress to the animals potentially leading to 

animal morbidity, mortality and distress sales. Indirect impacts presumably will be more linked to 

decreasing or changing rangeland productivity138 and may entail systemic changes such as moves 

toward smaller breeds or species more tolerant of emerging climate conditions, noting that this often 
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has cultural dimensions as well as financial and knowledge investment implications. Although the effects 

of CO2 fertilization on grassland and forage production and quality need to be better quantified under 

conditions of water stress and high temperature, when considered along with projected climate 

changes, in many regions, forage availability and quality will be reduced and become more variable. This 

is likely to lead towards overgrazing and land degradation if farmers are not able to adjust stocking 

rates147 due to economic or cultural pressures or relocate or alter seasonal migratory patterns. The 

capacity to address the non-climate-related stressors that threaten the capacity to change is crucial101 as 

shown later, to reduce the vulnerability of these farming systems25. 

 
 
Table 3. Some direct and indirect impacts of climate change on livestock in different livestock systems.  

 GRAZING SYSTEM MIXED CROP-LIVESTOCK SYSTEM  INDUSTRIAL SYSTEM  

DIRECT  
IMPACT 

 

Mean 
climate 
changes 

 Chronic temperature stress 
 Water stress 
 Reduced feed intakes 
 Decreased production and 

reproduction of livestock 

 Chronic temperature stress 
 Water stress  
 Reduced feed intakes 
 Decreased production and 

reproduction of livestock 

 Decreased production and 
reproduction of livestock 

 

Extreme 
events 

 Temperature stress events 
 Livestock mortality and 

distress sales  

 Temperature stress events 
 Lowered productivity 

 Increased likelihood and 
severity of heat stress events 

 Animal morbidity and 
mortality 

 Lowered productivity 

INDIRECT 
IMPACT 

 

Mean 
climate 
changes 

 Variation of the quality, 
quantity, seasonality and 
distribution of pasture 

 Changes in grass/browse cover 
in rangelands 

 Increased incidence of 
livestock pests and disease  

 Change in disease distributions 
 Decreased productivity of 

livestock 
 Moving to smaller breeds 
 Increased conflict in pastoral 

regions 

 Variation of the quality and 
quantity of fodder (stover, 
pastures) 

 Increased incidence of livestock 
pests and disease 

 Change in disease distributions 
 Move to lower productivity but 

higher heat stress resistance breeds 
 Better conditions for crop weeds 

and pests 
 Cropping often favoured financially  
 In dry margins, grazing may 

increase overcropping 

 Increased cost of animal 
housing 

 Increased risk of disease 
epidemics 

 Increased cost of feed and 
water 

 Moving to lower productivity 
but higher heat stress 
resistance breeds 

 Changing enterprise viability 
due to extra costs 

 Moving location 

 

Extreme 
events 

 Pasture shortage 
 Increased variability in ground-

cover 
 Altered distributions of 

livestock vectors 
 Soil erosion and vegetation 

damage 

 Fodder shortage 
 Damage to standing feed 
 Negative impacts on livestock 

managers 
 Increased costs through insurance 
 Soil erosion 
 Destruction of infrastructure 

 Increased transport cost 
 Increased cost of feed and 

water 
 Increased volatility of feed 

supplies and their price 

 Increased costs through 
additional insurance 

 Destruction of infrastructure 
Source: Adapted from31, 138, 141. 

 

 

Vulnerability of livestock systems to climate change 

Different livestock farming systems have clearly differentiated vulnerabilities and adaptive capacity to 

climate change (Table 4). Following the IPCC WG2, we highlight here contextual vulnerability, in which 
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not only climate-related drivers are considered, but also non-climate drivers, to give a more complete 

picture of systems’ vulnerability and to understand adaptation capacities with respect to observed and 

projected impacts. Here, we divide these drivers into internal and external drivers. In general terms, 

grazing and mixed systems’ vulnerabilities derive both from external and internal drivers, while 

industrial systems’ vulnerability arise mainly from internal drivers, particularly the high dependence on 

fossil-fuel-based and external inputs, the current narrow livestock gene pool, limitations on waste 

disposal and constraints on relocation141. 

Grazing systems’ external vulnerability mainly arises from being a remote, often marginal economic 

activity with relatively low value in export or economic development terms, and a range of constraints 

on improvement including the high cost and often low supply of basic services101, 148. This and the 

‘distant voice’ characteristic of extensive grazing communities – geographical and political distance from 

the decision-makers149 - tend to limit investment by government and business. Also, land encroachment 

through expansion of crop-only land use can increase this vulnerability for the livestock activities. These 

conditions also result in a lack of other economic options to the people depending on these farming 

systems, further increasing their vulnerability to climate change. Non-climate stressors increasing 

grazing systems’ and smallholders’ vulnerability8, 101 can be grouped into: (i) demographic growth and 

rising competition for the use of rangelands, (ii) disregard of traditional knowledge, institutions and 

customary practices in policy-making, and (iii) increasing but unequal and precarious integration within 

the market economy resulting in increased risk of market failures. For instance, recent findings show 

that while efforts to enhance access to markets and alleviate constraints to mobility may have some 

positive effects, further benefits would arise if current inequities in market development were 

addressed. Indeed, poor and middle-income pastoralists are shown to participate very little in high-

value export trade and thus market-based benefits for them will be greater in relatively low-value 

market chains, such as domestic and cross-border trade150. Overall, these drivers are causing gradual 

dismissal of local knowledge, abandonment of communal planning and institutions, increase in social 

differentiation, and over-exploitation of natural resources.  

Mixed systems’ vulnerabilities arise from different sources. In contrast to grazing systems, the limited 

mobility of mixed livestock systems increases their vulnerability to climate change, which is augmented 

by the seasonal scarcity of available land to graze and use for animal feed. External drivers of 
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vulnerability of mixed livestock systems are linked to the rise of food safety standards, population 

growth, land competition, capital constraints, degradation of resources and more limited economic 

opportunities as compared to cropping options60.  

 

 
Table 4. Vulnerability of livestock farming systems and climate change adaptation capacity.  

 GRAZING SYSTEM MIXED CROP-LIVESTOCK  SYSTEM INDUSTRIAL SYSTEM 
Vulnerabilities - Marginalization 

- Land encroachment 
- Land degradation 
- Land fragmentation 
- Remoteness 
- Lack of financial capital and 

alternative economic options 

- Limited mobility 
- Land degradation 
- Land scarcity especially from urban 
expansion 

- Rising food safety standards 
- Population growth 
- Economic margins often small and financial 
capital often low, resulting in lock-in  

- Economic relativities favouring cropping 
- Co-managing price and climate variability 
- Learning and capital demands from having 
multiple farm components 

- Labour supply for peak periods of activity 
- Shrinking farm sizes 

- Dependence on fossil-fuel-based 
practices, external inputs and 
hired labour  

- Difficulties in re-locating  
- Narrow gene pools in livestock 
and input crops 

- Challenges in waste disposal and 
animal welfare impacting on 
social licence to operate 

- Susceptibility to disease outbreaks 
- Low economic margins 
- Operating close to or at maximum 
physiological and financial  limits 

Adaptation 
capacity 

- Mobility to adapt to spatial 
climate variability 

- Family labour 
- Communal land and social 

collaboration 
- Local knowledge of diverse 

resources 
- Capacity to add value to 

marginal land 
- Wide livestock gene pool 
- Recycling plant nutrients 
- Transformation to mixed 

systems 
- Off farm income 

- Integration of agriculture and livestock 
- Capacity to use crop residues 
-  Often private land, hence have agency 
- Flexibility in crop-:livestock allocation and 
other decisions 

- Diversification 
- Family labour 
- Wide livestock and forage gene pool 
- Recycling plant nutrients 
- Flexibility in allocating produce to 
subsistence or market 

- Off farm income 

- Access to global feed and input 
supply chains 

- Access to credit and modern 
technology 

- Access to global consumer market 
- Capital mobility and exploiting 
economies of scale. 

- Control of many aspects of the 
system 

- Good information systems 
(climate, financial, supply) 
allowing rapid responses 

 

Adaptation options 

Numerous adaptation strategies in the livestock sector have been described8, 55, 101, 151-154, that could 

individually and collectively improve food security under climate change138. For analytical purposes we 

focus on adaptation strategies of livestock systems. Considering that livestock systems have different 

functions to different human systems, the nature of how these systems contribute to livelihoods 

resilience, mostly to poor people in developing countries, is of major importance and needs to be 

considered139. 

Like mitigation strategies, we classify adaptation options as managerial, technological, policy-related 

and behavioural (Table 5). Managerial options include (i) production adjustments, such as 

intensification, integration of livestock and crop production, altering the timing of the farming practices, 

shifting from grazing to browsing species, herd mobility, soil and nutrient management, water 
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management, pasture management, control of livestock (e.g. corralling), feed and food storage 

including processing of animal products (e.g., fermented, salted), multispecies herds, farm 

diversification or cooling systems (e.g. in livestock housing); and (ii) alterations in labour allocation, such 

as diversifying livelihoods, shifting to irrigated farming, and labour flexibility. Technological options 

include (iii) breeding strategies, such as adoption of high-yield breeds, selecting breeds with improved 

feed-conversion efficiency, and cross-breeding with heat- and disease-tolerant breeds; (iv) information 

and communication technology research to provide greater understanding of climate and livestock 

interactions, such as fenceless grazing using GPS or improved short-term weather and seasonal climate 

forecasts. Policy-related options include (v) institutional and policy plans, such as schemes of 

sedentarization, access to resources to reduce vulnerability, such as early-warning systems, food relief 

and national safety programs, weather-indexed insurance for impacts of climate extremes or 

development and maintenance of supportive infrastructure (roads, rail, harbours, storage, processing 

etc); (vi) modifications in market integration and wealth storage, such as supporting different market 

access, credit schemes, promotion of interregional trading, bartering, herd accumulation, food 

preservation, and cash and asset management. Behavioural options are linked to cultural patterns such 

as (vii) boosting social collaboration and reciprocity, e.g. livestock loans, friendly collaboration, 

communal planning, communal ownership and food exchange; and viii) information exchange155.  

Some of these strategies can be considered as deriving from local traditional knowledge that promotes 

endogenous adaptation and to be easier to implement, others require exogenous knowledge and more 

inputs to be implemented, but all may have some utility in different contexts and livestock systems. 

Access to technologically-advanced breeding strategies, cooling systems, insurance, credit or veterinary 

services, which allow industrial, intensive systems to reduce the impact of local climate variability, are 

beyond the means of most smallholders, particularly in developing countries. In contrast, farmers in 

developing countries are highly experienced in managing livestock in marginal situations including 

managing variable and sometimes extreme climatic conditions101. Their sometimes ambiguous 

institutions156, 157, knowledge, and customary practices which are often highly adapted to the local 

conditions and developed over centuries of co-evolution with changing environments, can be of great 

value in adapting the whole livestock sector to changes in climate means and variability. But adaptation 

to a variable and changing climate is an on-going process, since vulnerabilities and impacts are 
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permanently evolving, which means that some forms of adaptation that have proved to be appropriate 

in the past or at present, may became inappropriate or inadequate in the future138 and vice versa. Also, 

as previously mentioned, diverse non-climate-related stressors can severely hinder the adaptive 

capacity of smallholders. 

 

4. INTEGRATED ADAPTATION AND MITIGATION OPTIONS 

In looking at the potential mitigation and adaptation strategies discussed in this paper, and facilitated by 

the use of the same categories for both, we can identify integrative solutions that provide potential win-

win strategies for mitigation and adaptation (and food security) for each livestock system, and even for 

the livestock sector in general. Similarly, we can identify trade-off (or win-lose) situations. Table 5 

qualitatively assess all the mitigation and adaptation strategies collected in this review for each category 

and farming system, including whether they depend on traditional or/and scientific knowledge, and 

whether policy actions are required. 

Starting with the strategies described in this paper classified as having mitigation potential, we observe 

that all the strategies under the managerial category also have adaptation potential, and are suitable for 

at least two of the three farming systems categories. In general terms, these strategies do not require 

high investments, being more dependent on adequate policy incentives or institutional environments to 

facilitate changes in management. Thus, their overall potential to contribute to both mitigation and 

adaptation in all livestock systems is very high, as well as their potential effectiveness (Figure 2). From 

these, land management strategies offer the greatest options. For instance, avoiding deforestation is a 

very important strategy to mitigate and adapt to climate change, since in adaptation terms it can also 

provide other resources (e.g. bush foods, medicinal plants) to livestock keepers, which can buffer 

climate variations via diversification of income and obtaining other food sources158, 159. These land 

management strategies are mainly managerial and technological and are often intended to improve the 

efficiency of livestock systems in a form of sustainable intensification. Strategies linked to sustainable 

intensification that consider all the other objectives (ethical, health, development, social justice, 

including concerns around vulnerability and social equity, biodiversity and land use, animal welfare, 

human nutrition and rural economies139, 160) can offer promising outcomes in both adaptation and 

mitigation terms. Indeed, sustainable intensification measures in livestock have also been suggested for 
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adaptation purposes161. For instance, changing species or breeds, strategies widely used by grazing and 

mixed farmers to adapt to changing conditions, can also aid mitigation in certain cases. For example, by 

improving breeds to obtain more efficient animals and then keeping a lower number of animals, or by 

changing to non-ruminants (e.g. from cattle to camels) which are more efficient in the use of nutrients. 

In promoting these strategies, it is very important to look at the system where they will be applied with 

a complex systems perspective, to consider future potential vulnerability and resilience 139. Finally, we 

can observe that demand-driven strategies, linked to changes in behaviour, strongly depend on 

adequate policies to promote these changes.  

Mixed-systems appear to present greater opportunities for mitigation strategies than the other systems, 

consistent with the quantitative estimations of Havlik et al.22. They showed that transitioning from 

grazing to mixed systems contributes to reduced GHG emissions, mostly through gain in feed and forage 

productivity from more intensive inputs and management. This is an attractive mitigation opportunity 

for reducing CH4 and N2O emissions per unit of livestock product, while at the same time increasing 

productivity59, 162. It is important to note however, that increased efficiencies by themselves do not 

necessarily assist meeting global GHG reduction targets if the demand for underlying production 

increases to a greater extent27 and where the GHG impacts of the feed production is included. 

Additionally, not all grazing systems can shift to mixed systems, since many of them are located in 

marginal areas where cropping is difficult, if not impossible, and in others various constraints operate to 

limit change, with livestock currently being the only viable livelihood139. A call for analysing crop-

livestock interactions to increase resilience to global environmental change, including responses of 

these interactions to climate change, has recently been made163.  

In terms of adaptation, once again managerial strategies appear to offer the greatest potential to favour 

both adaptation and mitigation options, many of which (e.g. herd mobility or pasture enclosure) need 

support from favourable policies and institutions. This suggests a need to focus more research on the 

role they can play164. In terms of farming systems, both grazing and mixed systems have the highest 

number of adaptation options identified. Industrial systems, as previously stated, have fewer options, 

resulting from their high dependence on external knowledge, and the need to control the system in 

order to reduce its internal vulnerability.  
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If we allocate to each of the described strategies in this article the type of knowledge (broadly 

categorised into local and traditional knowledge, and scientific and technological knowledge) required 

to support adaptation and mitigation strategies (Table 5), and which integrated strategies have higher 

difficulty or cost in implementation (Figure 2), some patterns emerge. In general, we observe that 

adaptation is more related to management of both the internal and external environment (i.e. market 

conditions, input availability, finance options, access to knowledge and technology, climate, robust 

institutions etc.) with often strong contributions from local and traditional knowledge, whereas 

mitigation is more about managing just the internal operations, bringing in new technology on an 

occasional basis, with fewer inputs from local and traditional knowledge. Across farming systems, we 

observe that options for mitigation in industrial livestock systems are more dependent on scientific and 

technological knowledge, and are facilitated by increased levels of control within these systems. Policy 

strategies are important both in mitigation and adaptation strategies, and more research is needed to 

further develop the potential of different policies (e.g. addressing changes in management and 

behaviour) to both mitigate and adapt to climate change with a relatively low economic cost. 

 

Table 5. Qualitative integrated assessment of adaptation and mitigation strategies and its potential applicability by livestock 

farming system, including the type ok knowledge associated to develop the strategies. 

Category Sub-category Practices GRAZING 
SYSTEM 

MIXED 
SYSTEM 

INDUSTRIAL 
SYSTEM 

Co-benefits 
 

Knowledge 
type 

MITIGATION Adaptation  

Managerial 

Land management 

Avoid deforestation ++ ++ ++ ++ LTK/STK 
Control land degradation (soil erosion, restoration) ++ ++ ++ ++ LTK/STK 
Grassland management, stocking density ++ ++ 0 ++ LTK/STK 
Limited grazing on wet soils, pastures irrigation 
management  

+ ++ 0 ++ STK 

Farm nutrient cycling 

Efficient use of fertilizers for feed 0 ++ ++ + STK 
Organic manure 0 ++ 0 + LTK 
Integration livestock-crop ++ 0 + +  

Livestock nutrient 
cycling 

Breeding to improve rumen N conversion efficiency ++ ++ + + STK 
Reducing the number of unproductive animals ++ ++ 0 ++ LTK 
Change species: ruminant to monogastric; large to 
small 

++ ++ ++ + LTK/STK 

Changes in feed quality and composition + ++ ++ ++ LTK/STK 
Capital-labour 
intensification 

Capital intensification 0 + ++ 0 STK 
Labour intensification ++ ++ ++ + LTK/STK 

Technological 

Farm nutrient cycling Urease or Nitrification inhibitors 0 + 0 0 STK 

Livestock nutrient 
cycling & reduction of 
CH4 emissions 

Feeding additives (eg. condensed tannins) 0 ++ + 0 STK 
Salt supplementation ++ ++ 0 + STK 
Improving forage quality ++ ++ 0 ++ LTK/ STK 
Manipulations of microbial populations 0 ++ ++ 0 STK 
Deep cooling slurry 0 0 ++ 0 STK 

Policy-related 

Market mechanisms Policy schemes (REDD++, CDM) ++ ++ ++ + P 

Alternative fuels 
Anaerobic digesters 0 0 ++ ++ STK 
Flexi-biogas systems ++ ++ 0 ++  STK 

Behavioural  Reduction in meat consumption + ++ ++ + P 
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(Demand-
driven) 

Food waste reduction ++ ++ ++ ++ LTK/STK/P 
Reduction of life cycle emissions (local food, low 
energy) 

++ ++ +/- ++ LTK/P 

Labelling products + + + 0 P 
ADAPTATION Mitigation  

Managerial 

Farm management 

Integration crop-livestock ++ 0 0 ++ LTK 
Altering timing of farming practices ++ ++ 0 0 LTK 
Shifting species (grazer to browser) and/or breeds ++ ++ ++ ++ LTK 
Herd mobility ++ + - + LTK 
Soil management (composting, crop residues, legumes) + ++ 0 ++ LTK/STK 
Water management (irrigation, traditional storage, 
etc.) 

++ ++ ++ 0 LTK/STK 

Pasture management (enclosure) ++ ++ 0 ++ LTK/STK 
Control of livestock (corralling) ++ ++ 0 ++ LTK 
Feed and food storage ++ ++ ++ 0 LTK/STK 
Food processing ++ ++ 0 0 LTK/STK 
Multispecies herds + ++ - + LTK 
Farm diversification + ++ - + LTK 
Cooling system 0 0 ++ - STK 

Labour allocation 

Diversifying livelihoods + ++ - 0 LTK 
Shift to irrigated farming -- +/- 0 0 STK 
Labour flexibility ++ ++ ++ +  

Technological 
Livestock 
management 

Breeding (I): high-yield, good feed-conversion breeds + ++ ++ ++ STK 
Breeding (II): Cross-breeding heat, disease-tolerant 
breeds 

++ ++ + 0 LTK/STK 

ICT Weather forecasting ++ ++ ++ 0 LTK/STK 

Policy-

related 

Institutional and 

policy plans 

Early-warning systems ++ ++ ++ 0 P 
Schemes of sedentarization + 0 0 0 P 
Weather-indexed insurance/catastrophic coverage ++ ++ ++ 0 P 
Access to resources (land, water) ++ ++ 0 0  P 
Food relief, National safety programs ++ ++ 0 0  P 

Market (integration 
and wealth storage) 

Market access (local-regional-global) ++ ++ ++ ++(local)  
--(global) 

P 

Credit schemes ++ ++ ++ 0  LTK/P 
Interregional trading ++ ++ ++ -  P 
Bartering ++ ++ 0 0 LTK 
Herd accumulation ++ ++ 0 - LTK 
Food preservation ++ ++ 0 0 LTK/STK 
Cash and asset management (bank savings) ++ ++ ++ 0  

Behavioural 
(cultural) 

Social collaboration & 
reciprocity 

Livestock loans ++ 0 0 0 LTK 
Friends-family collaboration ++ ++ 0 0 LTK 
Communal planning ++ 0 0 0 LTK 
Communal ownership ++ - 0 0 LTK 
Food sharing ++ ++ 0 0 LTK 

Notes: Potential refers to relevance for the specific farming system, or capacity of the system to adopt such a 
strategy (e.g. poor farmers cannot adopt some expensive technologies). 0 can indicate a lack of potential or that the 
strategy is already part of the system (e.g., mixed livestock systems already integrate livestock and crops). + and ++ 
indicate greater degrees of potential for application.  Type of knowledge: LTK = Local and traditional knowledge; STK 
+ Scientific and technological knowledge; P = Policy-driven actions. 

 

Finally, our analysis reveals relevant information in terms of efficiency, that is, which cost or trade-off is 

involved in some of the integrated strategies (Figure 2). Crop-livestock integration, land management 

and reduction of meat consumption offer the greatest advantages as integrated adaptation and 

mitigation strategies. But each of them has its specificities. For example, crop-livestock integration is a 

highly efficient strategy with relatively low barriers for implementation except those explained above. In 

contrast, the cultural changes needed for broad scale implementation of dietary change, with large 

impact for mitigation, are relatively difficult in the short-term, but possible if we accept that current 
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increasing demand of meat products is also a policy-driven trend111. Clearly, more research to develop a 

complex array of behavioural, policy and technological approaches is needed to facilitate dietary 

transition. Land management strategies can be relatively easy to implement, depending on the context, 

being very efficient in terms of adaptation and mitigation. These strategies should be high priorities for 

policy makers if we consider efficiency and implementation costs. Figure 2 also indicates that in general, 

adaptation strategies seem to be less difficult to implement, or have fewer barriers and trade-offs than 

mitigation options. It is important also to highlight that some strategies are context-dependent, and this 

makes them difficult to evaluate broadly. For instance, inter-regional trading, which can be a valid 

adaptation strategy, can have mitigation trade-offs given the increasing CO2 emissions associated with 

livestock transport. 

Figure 2. Effectiveness of different adaptation and mitigation options.  

 

5. CONCLUSIONS 

The rapid growth of the livestock sector and demands for its products has given rise to unexpected and 

major implications for the environment and livelihoods, particularly in relation to climate change. 

Clearly, drawing greater distinctions between different livestock systems is needed. Renewed attention 

to diversity within the livestock sector and the multiple objectives it meets are required to address the 

increased demand in ways that contribute to environmental sustainability, poverty reduction, social 

equity, food security and human health. To meet these requirements, all livestock systems must 

improve their performance via combinations of managerial, technological and policy responses. 

Particularly, more research is needed to assess the potential of managerial strategies to promote win-

win solutions, including their economic cost and their social outcomes. We identify some responses that 

can improve both climate change adaptation and mitigation and their interaction but in doing so we 

identify the need for more integrative assessment processes. Notable progress could be made firstly by 

approaching the issue from a food system perspective, with more attention being paid to the whole 

food chain, since GHG emissions and use of natural resources occur throughout the entire livestock 

production, distribution and consumption chains; and secondly by paying attention to social and equity 

issues and livelihoods, with the aim of addressing more comprehensively the multiple benefits and costs 
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associated with different livestock farming systems in different contexts, and specifically the 

fundamental contribution of livestock to the livelihoods of the world’s poor.  

There is great potential for all livestock systems to reduce net GHG emissions, and a combination of 

different strategies will be required from the full range of existing options, adjusted to different 

livestock systems and geographical, social and institutional contexts. Specifically, grazing and mixed 

systems have strong mitigation potential through practices such as moderate grazing, soil conservation, 

and use of local resources; whereas most technological and market-oriented mitigation strategies are 

generally more applicable to large-scale confined operations of some industrial systems. However, 

mitigation objectives are unlikely to be met only through using these solutions, and changes in the 

demand side are needed. Here again a more integrated assessment of demand-side strategies linked to 

changes in consumption that takes into account the needs of the poor is also needed. This could include  

research into consumer behaviour and how policy can provide a supportive environment for improved 

adaptation and mitigation decisions to different contexts. From a policy perspective, the simultaneous 

reduction in net GHG emissions, enhancement of carbon sequestration, the sustainable use of natural 

and world food resources, as well as the maintenance of desirable social systems might be considered as 

outcomes of appropriate livestock farming practices, rather than goals per se, that can favour both 

mitigation and adaptation strategies. There are critical questions as to why producers and consumers 

are not adopting these approaches currently, and what policy stances would enhance implementation.  
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