397 research outputs found

    Five-Year Optical and Near Infrared Observations of the Extremely Slow Nova V1280 Scorpii

    Full text link
    We present optical (BB, VV, RcR_{\rm c}, IcI_{\rm c} and yy) and near infrared (JJ, HH and KsK_{\rm s}) photometric and spectroscopic observations of a classical nova V1280 Scorpii for five years from 2007 to 2011. Our photometric observations show a declining event in optical bands shortly after the maximum light which continues \sim 250 days. The event is most probably caused by a dust formation. The event is accompanied by a short (\sim 30 days) re-brightening episode (\sim 2.5 mag in VV), which suggests a re-ignition of the surface nuclear burning. After 2008, the yy band observations show a very long plateau at around yy = 10.5 for more than 1000 days until April 2011 (\sim 1500 days after the maximum light). The nova had taken a very long time (\sim 50 months) before entering the nebular phase (clear detection of both [\ion{O}{iii}] 4959 and 5007) and is still continuing to generate the wind caused by H-burning. The finding suggests that V1280 Sco is going through the historically slowest evolution. The interval from the maximum light (2007 February 16) to the beginning of the nebular phase is longer than any previously known slow novae: V723 Cas (18 months), RR Pic (10 months), or HR Del (8 months). It suggests that the mass of a white dwarf in the V1280 Sco system might be 0.6 M_\mathrm{\sun} or smaller. The distance, based on our measurements of the expansion velocity combined with the directly measured size of the dust shell, is estimated to be 1.1 ±\pm 0.5 kpc.Comment: 17 pages, 14 figures, accepted for publication in A&

    Stationary structures of irrotational binary systems -- models for close binary systems of compact stars

    Get PDF
    We propose a new numerical method to calculate irrotational binary systems composed of compressible gaseous stars in Newtonian gravity. Assuming irrotationality, i.e. vanishing of the vorticity vector everywhere in the star in the inertial frame, we can introduce the velocity potential for the flow field. Using this velocity potential we can derive a set of basic equations for stationary states which consist of (i) the generalized Bernoulli equation, (ii) the Poisson equation for the Newtonian gravitational potential and (iii) the equation for the velocity potential with the Neumann type boundary condition. We succeeded in developing a new code to compute numerically exact solutions to these equations for the first time. Such irrotational configurations of binary systems are appropriate models for realistic neutron star binaries composed of inviscid gases, just prior to coalescence of two stars caused by emission of gravitational waves. Accuracies of our numerical solutions are so high that we can compute reliable models for fully deformed final stationary configurations and hence determine the inner most stable circular orbit of binary neutron star systems under the approximations of weak gravity and inviscid limit.Comment: 32 pages, 25 bitmapped ps files, to appear in ApJ supplemen

    Electrodynamic trapping of spinless neutral atoms with an atom chip

    Full text link
    Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly 10210^2 strontium atoms in the 1S0^1S_0 state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.Comment: 4pages, 4figures, to appear in Phys. Rev. Let

    Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae

    Full text link
    Type Ia supernovae (SNe Ia) have relatively uniform light curves and spectral evolution, which make SNe Ia useful standard candles to determine cosmological parameters. However, the peak brightness is not completely uniform, and the origin of the diversity has not been clear. We examine whether the rotation of progenitor white dwarfs (WDs) can be the important source of the diversity of the brightness of SNe Ia. We calculate the structure of rotating WDs with an axisymmetric hydrostatic code. The diversity of the mass induced by the rotation is ~0.08 Msun and is not enough to explain the diversity of luminosity. However, we found the following relation between the initial mass of the WDs and their final state; i.e., a WD of smaller initial mass will rotate more rapidly before the supernova explosion than that of larger initial mass. This result might explain the dependence of SNe Ia on their host galaxies.Comment: 7 pages, 6 figure

    A Theoretical Light-Curve Model for the Recurrent Nova V394 Coronae Austrinae

    Get PDF
    A theoretical light curve for the 1987 outburst of V394 Coronae Austrinae (V394 CrA) is modeled to obtain various physical parameters of this recurrent nova. We then apply the same set of parametersto a quiescent phase and confirm that these parameters give a unified picture of the binary. The early visual light curve (1-10 days after the optical maximum) is well reproduced by a thermonuclear runaway model on a very massive WD close to the Chandrasekhar limit (1.37 +- 0.01 M_sun). The ensuing plateau phase (10-30 days) is also reproduced by the combination of a slightly irradiated MS and a fully irradiated flaring-up disk with a radius ~1.4 times the Roche lobe size. The best fit parameters are the WD mass 1.37 M_sun, the companion mass 1.5 M_sun (0.8-2.0 M_sun is acceptable), the inclination angle of the orbit i~65-68 degree, and the flaring-up rim ~0.30 times the disk radius. The envelope mass at the optical peak is estimated to be ~6 x 10^{-6} M_sun, which indicates an average mass accretion rate of 1.5 x 10^{-7} M_sun yr^{-1} during the quiescent phase between the 1949 and 1987 outbursts. In the quiescent phase, the observed light curve can be reproduced with a disk size of 0.7 times the Roche lobe size and a rather slim thickness of 0.05 times the accretion disk size at the rim. About 0.5 mag sinusoidal variation of the light curve requires the mass accretion rate higher than ~1.0 x 10^{-7} M_sun yr^{-1}, which is consistent with the above estimation from the 1987 outburst. These newly obtained quantities are exactly the same as those predicted in a new progenitor model of Type Ia supernovae.Comment: 9 pages including 4 figures, to appear in the Astrophysical Journal, Part

    Nucleosynthesis and Clump Formation in a Core Collapse Supernova

    Get PDF
    High-resolution two-dimensional simulations were performed for the first five minutes of the evolution of a core collapse supernova explosion in a 15 solar mass blue supergiant progenitor. The computations start shortly after bounce and include neutrino-matter interactions by using a light-bulb approximation for the neutrinos, and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout the inner half of the helium core by Rayleigh-Taylor instabilities at the Ni+Si/O and C+O/He interfaces, seeded by convective overturn during the early stages of the explosion. Fast moving nickel mushrooms with velocities up to about 4000 km/s are observed. This offers a natural explanation for the mixing required in light curve and spectral synthesis studies of Type Ib explosions. A continuation of the calculations to later times, however, indicates that the iron velocities observed in SN 1987 A cannot be reproduced because of a strong deceleration of the clumps in the dense shell left behind by the shock at the He/H interface.Comment: 8 pages, LaTeX, 2 postscript figures, 2 gif figures, shortened and slightly revised text and references, accepted by ApJ Letter

    Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    Full text link
    We report a vapor-cell magneto-optical trapping of Hg isotopes on the 1S03P1{}^1S_0-{}^3P_1 intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest non-radioactive atom trapped so far, which enables sensitive atomic searches for ``new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 101810^{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.Comment: 4 pages, 3 figure

    Nova M31N 2007-12b: Supersoft X-rays reveal an intermediate polar?

    Get PDF
    For the He/N nova M31N 2007-12b, we analyzed XMM-Newton EPIC and Chandra HRC-I observations of our monitoring program performed at intervals of ten days and added results of a XMM-Newton target of opportunity observation and Swift XRT observations. The supersoft source (SSS) emission started between 21 and 30 d after the optical outburst and ended between 60 and 120 d after outburst, making M31N 2007-12b one of the few novae with the shortest SSS phase known. The X-ray spectrum was supersoft and can be fitted with a white dwarf (WD) atmosphere model with solar abundances absorbed by the Galactic foreground. The temperature of the WD atmosphere seems to increase at the beginning of the SSS phase from ~70 to ~80 eV. The luminosity of M31N 2007-12b during maximum was at the Eddington limit of a massive WD and dropped by ~30% in the observation 60 d after outburst. The radius of the emission region is ~6x10^8 cm. In the four bright state observations, we detected a stable 1110 s pulsation, which we interpret as the WD rotation period. In addition, we detect dips in three observations that might represent a 4.9 h or 9.8 h binary period of the system. Nova envelope models with <50% mixing between solar-like accreted material and the degenerate core of the WD can be used to describe the data. We derive a WD mass of 1.2 Msun, as well as an ejected and burned mass of 2.0x10^{-6} Msun} and 0.2x10^{-6} Msun, respectively. The observed periodicities indicate that nova M31N 2007-12b erupted in an intermediate polar (IP) system. The WD photospheric radius seems to be larger than expected for a non-magnetic WD but in the range for magnetic WDs in an IP system. (abridged)Comment: 10 pages, 5 figures, A&A accepte
    corecore