18 research outputs found

    Avoiding moving obstacles

    Get PDF
    To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag

    Impaired peripheral reaching and on-line corrections in patient DF: optic ataxia with visual form agnosia

    Get PDF
    An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DF’s on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DF’s dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal occipital cortex. We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations

    An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia

    No full text
    International audienceWe designed a protocol distinguishing between automatic and intentional motor reactions to changes in target location triggered at movement onset. In response to target jumps, but not to a similar change cued by a color switch, normal subjects often could not avoid automatically correcting fast aiming movements. This suggests that an 'automatic pilot' relying on spatial vision drives fast corrective arm movements that can escape intentional control. In a patient with a bilateral posterior parietal cortex (PPC) lesion, motor corrections could only be slow and deliberate. We propose that 'on-line' control is the most specific function of the PPC and that optic ataxia could result from a disruption of automatic hand guidance

    Preserved prism adaptation in bilateral optic ataxia: strategic versus adaptive reaction to prisms

    No full text
    International audienceTo date the anatomical substrate(s) of prism adaptation remain(s) particularly debated, with two main candidates emerging from the literature: the posterior parietal cortex (PPC) and the cerebellum. The functional processes involved in the acquisition of the adaptive aftereffects also remain largely unknown. The main result shown here is that a patient with a bilateral optic ataxia can adapt to an optical deviation, which allows us to make a step forward on these two issues. First, it demonstrates that the corresponding part of the PPC is not a necessary substrate for prism adaptation. Second, since this patient exhibits deficit for fast visuo-motor guidance, it provides direct evidence for a dissociation between on-line visuo-motor control and visuo-motor plasticity. Since the intermanual transfer rate of adaptation is larger in this patient than in control subjects, the PPC may still have an influence on adaptation under normal conditions. We propose a model of the relative contribution of the PPC and the cerebellum during prism exposure, associating these two structures with the two interacting behavioural components of prism adaptation described by previous psychophysical experiments: the strategic component would be linked to the PPC and the adaptive component to the cerebellum. In this model, the strategic component enters in conflict with the development and the generalisation of the adaptive aftereffects. This idea is compatible with the fact that a lesion of the PPC increases the transfer rate and the generalisation of the adaptation, as is also observed in unilateral neglect

    Collision-Avoidance Characteristics of Grasping. Early Signs in Hand and Arm Kinematics

    No full text
    Contains fulltext : 76661.pdf (publisher's version ) (Closed access)Grasping an object successfully implies avoiding colliding into it before the hand is closed around the object. The present study focuses on prehension kinematics that typically reflect collision-avoidance characteristics of grasping movements. Twelve participants repeatedly grasped vertically-oriented cylinders of various heights, starting from two starting positions and performing the task at two different speeds. Movements of trunk, arm and hand were recorded by means of a 3D motion-tracking system. The results show that cylinder-height moderated the approach phase as expected: small cylinders induced grasps from above whereas large cylinders elicited grasps from the side. The collision-avoidance constraint proved not only to be accommodated by aperture overshoots but its effects already showed up early on as differential adaptations of the distal upper limb parameters. We discuss some implications of the present analysis of grasping movements for designing anthropomorphic robots

    Age-related differences in corrected and inhibited pointing movements

    Get PDF
    It has been widely reported that aging is accompanied by a decline in motor skill performance and in particular, it has been shown that older subjects take longer to adapt their ongoing reach in response to a target location shift. In the present experiment, we investigated the influence of aging on the ability to perform trajectory corrections in response to a target jump, but also assessed inhibition by asking a younger and an older group of participants to either adapt or stop their ongoing movement in response to a target location change. Results showed that although older subjects took longer to initiate, execute, correct and inhibit an ongoing reach, they performed both tasks with the same level of accuracy as the younger sample. Moreover, the slowing was also observed when older subjects were asked to point to stationary targets. Our findings thus indicate that aging does not specifically influence the ability to perform or inhibit fast online corrections to target location changes, but rather produces a general slowing and increased variability of movement planning, initiation and execution to both perturbed and stationary targets. For the first time, we demonstrate that aging is not accompanied by a decrease in the inhibition of motor control
    corecore