437 research outputs found

    On the stationary vibrations of a rectangular plate subjected to stress prescribed partially at the circumference

    Get PDF
    The stationary periodical problem of a vibrating rectangular plate, stressed at a segment while fixed elsewhere at one of its edges, is considered. Using the finite Fourier transformation, the problem is converted to a singular integral equation that in turn can be reduced to an infinite system of algebraic equations. The truncation of the algebraic system is justified

    The BAH domain of Rsc2 is a histone H3 binding domain

    Get PDF
    Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction

    Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1

    Get PDF
    TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR-ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2

    Holographic rho mesons in an external magnetic field

    Full text link
    We study the rho meson in a uniform magnetic field eB using a holographic QCD-model, more specifically a D4/D8/Dbar8 brane setup in the confinement phase at zero temperature with two quenched flavours. The parameters of the model are fixed by matching to corresponding dual field theory parameters at zero magnetic field. We show that the up- and down-flavour branes respond differently to the presence of the magnetic field in the dual QCD-like theory, as expected because of the different electromagnetic charge carried by up- and down-quark. We discuss how to recover the Landau levels, indicating an instability of the QCD vacuum at eB = m_rho^2 towards a phase where charged rho mesons are condensed, as predicted by Chernodub using effective QCD-models. We improve on these existing effective QCD-model analyses by also taking into account the chiral magnetic catalysis effect, which tells us that the constituent quark masses rise with eB. This turns out to increase the value of the critical magnetic field for the onset of rho meson condensation to eB = 1.1 m_rho^2 = 0.67 GeV^2. We briefly discuss the influence of pions, which turn out to be irrelevant for the condensation in the approximation made.Comment: 26 pages, 10 .pdf figures, v2: version accepted for publication in JHE

    Origin of terminal voltage variations due to self-mixing in terahertz frequency quantum cascade lasers

    Get PDF
    We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current–voltage (I–V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I–V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL

    Silver-based surface plasmon waveguide for terahertz quantum cascade lasers

    Get PDF
    Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10¹⁵ cm‾³, an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures

    Alpha-COPI Coatomer Protein Is Required for Rough Endoplasmic Reticulum Whorl Formation in Mosquito Midgut Epithelial Cells

    Get PDF
    One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation.Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked.alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Assigning a function to a conserved archaeal metallo-β-lactamase from Haloferax volcanii

    Get PDF
    The metallo-β-lactamase family of enzymes comprises a large group of proteins with diverse functions in the metabolism of the cell. Among others, this superfamily contains proteins which are involved in DNA and RNA metabolism, acting as nucleases in e.g. repair and maturation. Many proteins have been annotated in prokaryotic genomes as being potential metallo-β-lactamases, but very often the function has not been proven. The protein HVO_2763 from Haloferax volcanii is such a potential metallo-β-lactamase. HVO_2763 has sequence similarity to the metallo-β-lactamase tRNase Z, a tRNA 3′ processing endonuclease. Here, we report the characterisation of this metallo-β-lactamase HVO_2763 in the halophilic archaeon Haloferax volcanii. Using different in vitro assays with the recombinant HVO_2763, we could show that the protein does not have tRNA 3′ processing or exonuclease activity. According to transcriptome analyses of the HVO_2763 deletion strain, expression of proteins involved in membrane transport is downregulated in the mutant. Therefore, HVO_2763 might be involved directly or indirectly in membrane transport
    corecore