44 research outputs found

    Multilocus phylogeny and ecological differentiation of the "Eupelmus urozonus species group" (Hymenoptera, Eupelmidae) in the West-Palaearctic

    Get PDF
    Background: The ecological differentiation of insects with parasitic life-style is a complex process that may involve phylogenetic constraints as well as morphological and/ or behavioural adaptations. In most cases, the relative importance of these driving forces remains unexplored. We investigate here this question for the “ Eupelmus urozonus species group ” which encompasses parasitoid wasps of potential interest in biological control. This was achieved using seven molecular markers, re liable records on 91 host species and a proxy of the ovipositor length. Results: After using an adequate partitioning scheme, Maximum likelihood and Bayesian approaches provide a well-resolved phylogeny supporting the monophyly of this species group and highlighting its subdivision into three sub-groups. Great variations of both the ovipositor length and the host range (specialist versus generalist) were observed at this scale, with these two features being not significantly constrained by the phylogeny. Ovipositor length was not shown as a significant predictor of the parasitoid host range. Conclusions: This study provides firstly the first evidence for the strong lability of both the ovipositor's length and the realised host range in a set of phylogeneticall y related and sympatric species. In both cases, strong contrasts were observed between sister species. Moreover, no significant correlation was found between these two features. Alternative drivers of the ecological differentiation such as interspecific interactions are proposed and the consequences on the recruitment of these parasitoids on native and exotic pests are discussed

    A multilocus phylogeny of the world Sycoecinae fig wasps (Chalcidoidea: Pteromalidae)

    Get PDF
    The Sycoecinae is one of five chalcid subfamilies of fig wasps that are mostly dependent on Ficus inflorescences for reproduction. Here, we analysed two mitochondrial ( COI , Cyt b ) and four nuclear genes (ITS2, EF-1α, RpL27a, mago nashi ) from a worldwide sample of 56 sycoecine species. Various alignment and partitioning strategies were used to test the stability of major clades. All topologies estimated using maximum likelihood and Bayesian methods were similar and well resolved but did not support the existing classification. A high degree of morphological convergence was highlighted and several species appeared best described as species complexes. We therefore proposed a new classification for the subfamily. Our analyses revealed several cases of probable speciation on the same host trees (up to 8 closely related species on one single tree of F. sumatrana ), which raises the question of how resource partitioning occurs to avoid competitive exclusion. Comparisons of our results with fig phylogenies showed that, despite sycoecines being internally ovipositing wasps host-switches are common incidents in their evolutionary history. Finally, by studying the evolutionary properties of the markers we used and profiling their phylogenetic informativeness, we predicted their utility for resolving phylogenetic relationships of Chalcidoidea at various taxonomic levels

    An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps

    Get PDF
    It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification

    Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea) form small communities within <it>Urostigma </it>and <it>Sycomorus </it>fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb) on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated.</p> <p>Results</p> <p>The resulting trees are well resolved and strongly supported. With the exception of <it>Apocrytophagus</it>, which is paraphyletic with respect to <it>Sycophaga</it>, all genera are monophyletic. The Sycophaginae are divided into three clades: (i) <it>Eukoebelea</it>; (ii) <it>Pseudidarnes</it>, <it>Anidarnes </it>and <it>Conidarnes </it>and (iii) <it>Apocryptophagus</it>, <it>Sycophaga </it>and <it>Idarnes</it>. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile.</p> <p>Conclusions</p> <p>The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gall-inducers are the only monophyletic group. In 15 Myr, they evolved several morphological adaptations to enter the syconia that make them strongly divergent from their sister taxa. Sycophaginae appears to be another example where sexual selection on male mating opportunities favored winged males in species with small broods and wingless males in species with large broods. However, some species are exceptional in that they lay few eggs but exhibit apterous males, which we hypothesize could be due to other selective pressures selecting against the re-appearance of winged morphs.</p

    FIGURES 5 – 8 in Molecular phylogenetics, systematics and host-plant associations of the Bruchidius albosparsus (FĂ„hraeus) species group (Coleoptera, Chrysomelidae, Bruchinae) with the description of four new species

    No full text
    FIGURES 5 – 8. Bruchidius elnairensis (male): 5 — median lobe (ventral view); 6 — lateral lobes (ventral view); Bruchidius eminingensis (male): 7 — median lobe (ventral view); 8 — lateral lobes (ventral view)

    Data from: Multilocus phylogeny and ecological differentiation of the “Eupelmus urozonus species group” (Hymenoptera, Eupelmidae) in the West-Palaearctic

    No full text
    Background: The ecological differentiation of insects with parasitic life-style is a complex process that may involve phylogenetic constraints as well as morphological and/or behavioural adaptations. In most cases, the relative importance of these driving forces remains unexplored. We investigate here this question for the “Eupelmus urozonus species group” which encompasses parasitoid wasps of potential interest in biological control. This was achieved using seven molecular markers, reliable records on 91 host species and a proxy of the ovipositor length. Results: After using an adequate partitioning scheme, Maximum likelihood and Bayesian approaches provide a well-resolved phylogeny supporting the monophyly of this species group and highlighting its subdivision into three sub-groups. Great variations of both the ovipositor length and the host range (specialist versus generalist) were observed at this scale, with these two features being not significantly constrained by the phylogeny. Ovipositor length was not shown as a significant predictor of the parasitoid host range. Conclusions: This study provides firstly the first evidence for the strong lability of both the ovipositor’s length and the realised host range in a set of phylogenetically related and sympatric species. In both cases, strong contrasts were observed between sister species. Moreover, no significant correlation was found between these two features. Alternative drivers of the ecological differentiation such as interspecific interactions are proposed and the consequences on the recruitment of these parasitoids on native and exotic pests are discussed

    Description of Eretmocerus cocois sp. n. (Hymenoptera: Chalcidoidea), a parasitoid of Aleurotrachelus atratus (Hemiptera: Aleyrodidae) on the coconut palm

    No full text
     Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699International audienceEretmocerus cocois Delvare sp. n. (Hymenoptera, Chalcidoidea) is described and illustrated. The adults emerge from fourth instar larvae of Aleurotrachelus atratus Hempel (Hemiptera, Aleyrodidae) which presently heavily infest the coconut plantations in Comoros Islands. It is compared with E. pallidus Dozier a diagnosis of which is given, together with new illustrations and with two other Eretmocerus also reared from Aleurotrachelus nymphs. A lectotype is selected for E. pallidus

    Présence sur l'ßle de La Réunion de deux espÚces de Punaises prédatrices potentiellement utilisables pour la lutte biologique : Orius naivashae et Cyrtopeltis callosus (Hemiptera, Anthocoridae et Miridae)

    Full text link
    Dans le cadre de recherche de solutions alternatives Ă  la lutte chimique, deux Punaises prĂ©datrices ont Ă©tĂ© dĂ©couvertes dans les systĂšmes de cultures maraĂźchers de La RĂ©union : Orius naivashae (Poppius, 1920) (Heteroptera, Anthocoridae) et Cyrtopeltis callosus Odhiambo, 1961 (Heteroptera, Miridae). Ces deux Punaises connues Ă©galement de l'est de l'Afrique n'ont, a priori, pas Ă©tĂ© introduites volontairement et sont Ă©tablies sur l'Ăźle de La RĂ©union. O. naivashae a dĂ©jĂ  Ă©tĂ© Ă©tudiĂ©e en Afrique du Sud dans le cadre de programmes de lutte biologique et est un prĂ©dateur potentiellement intĂ©ressant dans le contexte de programmes de lutte intĂ©grĂ©e Ă  La RĂ©union ; la biologie de C. callosus est complĂštement inconnue et nĂ©cessite d'ĂȘtre Ă©tudiĂ©e avant d'envisager son utilisation en protection des cultures
    corecore