645 research outputs found

    Changing the νmax\nu_{\max} Scaling Relation: The Need For a Mean Molecular Weight Term

    Get PDF
    The scaling relations that relate the average asteroseismic parameters Δν\Delta \nu and νmax\nu_{\max} to the global properties of stars are used quite extensively to determine stellar properties. While the Δν\Delta \nu scaling relation has been examined carefully and the deviations from the relation have been well documented, the νmax\nu_{\max} scaling relation has not been examined as extensively. In this paper we examine the νmax\nu_{\max} scaling relation using a set of stellar models constructed to have a wide range of mass, metallicity, and age. We find that as with Δν\Delta \nu, νmax\nu_{\max} does not follow the simple scaling relation. The most visible deviation is because of a mean molecular weight term and a Γ1\Gamma_1 term that are commonly ignored. The remaining deviation is more difficult to address. We find that the influence of the scaling relation errors on asteroseismically derived values of logg\log g are well within uncertainties. The influence of the errors on mass and radius estimates is small for main sequence and subgiants, but can be quite large for red giants.Comment: 15 pages, 14 figures, accepted for publication in Ap

    An Investigation into Cognitive Radio System Performance

    Get PDF
    The objective of this thesis is to explore cognitive radio performance through an in-depth literature review and an implementation of a software-defined radio prototyping system. Specifically, this thesis investigates the spectrum-sensing aspect of cognitive radio by comparing two spectrum-sensing methods. It was found in the literature review that a system utilizing matched filter detection would provide higher probability of detection in low signal-to-noise ratio environments when compared to a system utilizing energy detection. These spectrum sensing methods were thus implemented and compared in the cognitive radio systems presented in this thesis. Additionally, experiments were conducted to determine the most efficient intervals for the spectrum sensing and cycle interval periods. Therefore, system performance was measured on the basis of probability of successful primary user signal detection and maximum throughput capabilities, quantified by bit error rate. It was found that a cognitive radio system based on matched filter detection was more robust, given that the transmitted signal of interest was previously known. However, compared to a system based on energy detection, the implementation of the matched filter required more complex algorithms and computational power. These results are consistent with the findings in the literature review

    Number theoretic example of scale-free topology inducing self-organized criticality

    Full text link
    In this work we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    Get PDF
    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be performed. These are the first ever detections of solar-like oscillations in main-sequence stars in an open cluster.Comment: 12 pages, 8 figures, 2 tables; accepted for publication in MNRA

    Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    Get PDF
    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be performed. These are the first ever detections of solar-like oscillations in main-sequence stars in an open cluster

    Short and soft: multi-domain organization, tunable dynamics and jamming in suspensions of grafted colloidal cylinders with small aspect ratio

    Full text link
    The yet virtually unexplored class of soft colloidal rods with small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to one with preferred local orientation and eventually a multi-domain arrangement with local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on increasing concentration reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/ml: I) from 0.03 to 0.1 g/mol the system undergoes a liquid-to-solid like transition with a structural relaxation time that grows by four orders of magnitude. II) from 0.1 to 0.2 g/ml a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to multi-domain structure. III) between 0.2 and 0.6 g/mol the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. IV) at 0.74 g/ml in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime, as well as and for tailoring the flow properties of non-spherical soft colloids

    Information and Risk Modification Trial (INFORM): design of a randomised controlled trial of communicating different types of information about coronary heart disease risk, alongside lifestyle advice, to achieve change in health-related behaviour

    Get PDF
    Abstract Background Cardiovascular disease (CVD) remains the leading cause of death globally. Primary prevention of CVD requires cost-effective strategies to identify individuals at high risk in order to help target preventive interventions. An integral part of this approach is the use of CVD risk scores. Limitations in previous studies have prevented reliable inference about the potential advantages and the potential harms of using CVD risk scores as part of preventive strategies. We aim to evaluate short-term effects of providing different types of information about coronary heart disease (CHD) risk, alongside lifestyle advice, on health-related behaviours. Methods/Design In a parallel-group, open randomised trial, we are allocating 932 male and female blood donors with no previous history of CVD aged 40–84 years in England to either no intervention (control group) or to one of three active intervention groups: i) lifestyle advice only; ii) lifestyle advice plus information on estimated 10-year CHD risk based on phenotypic characteristics; and iii) lifestyle advice plus information on estimated 10-year CHD risk based on phenotypic and genetic characteristics. The primary outcome is change in objectively measured physical activity. Secondary outcomes include: objectively measured dietary behaviours; cardiovascular risk factors; current medication and healthcare usage; perceived risk; cognitive evaluation of provision of CHD risk scores; and psychological outcomes. The follow-up assessment takes place 12 weeks after randomisation. The experiences, attitudes and concerns of a subset of participants will be also studied using individual interviews and focus groups. Discussion The INFORM study has been designed to provide robust findings about the short-term effects of providing different types of information on estimated 10-year CHD risk and lifestyle advice on health-related behaviours. Trial registration Current Controlled Trials ISRCTN17721237 . Registered 12 January 2015

    Seismic Constraints on Helium Abundances from the TESS Southern CVZ

    Get PDF
    Poster for Cool Stars 21 Stellar helium abundances strongly determine their structure and evolution. However, since helium cannot be detected directly in the photospheres of cool stars, helium abundances are one of the most poorly-constrained inputs to stellar models. It is therefore typical to assume a relationship with the initial abundances of other heavy elements, typically of linear form described by a gradient ΔY/ΔZ. Attempts to determine from globular-cluster stellar populations and Galactic H-II regions have so far not yielded any consensus about empirically reasonable values of ΔY/ΔZ, or, for that matter, even whether such a linear relation is observationally justifiable. Separately, asteroseismology permits the inference of stellar helium abundances, either directly through acoustic-glitch measurements, or indirectly through the forward modelling of stellar oscillation mode frequencies. Using constraints on the initial helium abundance derived from ensemble asteroseismology and stellar forward modelling against individual mode frequencies of a collection of field stars in the TESS, Kepler, and K2 fields, we characterise the helium-metallicity relation of the brightest cool stars in the solar neighbourhood. We find a large spread of seismic initial helium abundances for any given metallicity, rather than a single well-defined linear enrichment law

    Radio continuum observations of Class I protostellar disks in Taurus: constraining the greybody tail at centimetre wavelengths

    Get PDF
    We present deep 1.8 cm (16 GHz) radio continuum imaging of seven young stellar objects in the Taurus molecular cloud. These objects have previously been extensively studied in the sub-mm to NIR range and their SEDs modelled to provide reliable physical and geometrical parametres.We use this new data to constrain the properties of the long-wavelength tail of the greybody spectrum, which is expected to be dominated by emission from large dust grains in the protostellar disk. We find spectra consistent with the opacity indices expected for such a population, with an average opacity index of beta = 0.26+/-0.22 indicating grain growth within the disks. We use spectra fitted jointly to radio and sub-mm data to separate the contributions from thermal dust and radio emission at 1.8 cm and derive disk masses directly from the cm-wave dust contribution. We find that disk masses derived from these flux densities under assumptions consistent with the literature are systematically higher than those calculated from sub-mm data, and meet the criteria for giant planet formation in a number of cases.Comment: submitted MNRA
    corecore