
University of Mississippi University of Mississippi

eGrove eGrove

Honors Theses Honors College (Sally McDonnell Barksdale
Honors College)

Spring 5-1-2021

An Investigation into Cognitive Radio System Performance An Investigation into Cognitive Radio System Performance

Courtney Hardy

Lucas F. Feather
University of Mississippi Main Campus

William S. Guy
University of Mississippi Main Campus

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis

 Part of the Systems and Communications Commons

Recommended Citation Recommended Citation
Hardy, Courtney; Feather, Lucas F.; and Guy, William S., "An Investigation into Cognitive Radio System
Performance" (2021). Honors Theses. 1799.
https://egrove.olemiss.edu/hon_thesis/1799

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized
administrator of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/1799?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

AN INVESTIGATION INTO COGNITIVE RADIO SYSTEM PERFORMANCE

by
Lucas Feather, William Guy, and Courtney Hardy

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of
the requirements of the Sally McDonnell Barksdale Honors College

Oxford
May 2021

Approved by

Advisor: Professor John N. Daigle

Reader: Professor Paul M. Goggans

Reader: Professor Md Sakib Hasan

©2021
Lucas Feather, William Guy, and Courtney Hardy

ALL RIGHTS RESERVED

ii

ACKNOWLEDGEMENTS

First, we would like to thank Dr. John N. Daigle for his advisory role in this project. For
the duration of our research, Dr. Daigle graciously provided us with the materials and advice
we needed, using his own personal time to make sure that we could always move forward
with our project. We are grateful for his dedication to us and his interest in our continued
education. As he had in our classes with him, he constantly challenged us, motivated us,
encouraged us, and pushed us to accomplish our goals and to see this project through to the
end. During our time working with him, he has provided our group with invaluable insight
into engineering and life.

I would like to thank my parents, Dr. Timothy and Jacqueline Feather. Their support
and encouragement has inspired me to pursue an engineering degree, and their lessons of
patience and humility have helped me to stick with it. I would also like to thank Jack
Reynolds Holiman, for sharing with me his relentless creativity, love, and innocent curiosity
in the time that I was lucky enough to know him.

Lucas Feather

Firstly, I would like to acknowledge and thank my incredible parents, David and Lori
Guy. I would not be who I am today without their constant love and support. Throughout
my life, they have always encouraged me, always been there to celebrate and cry with, and
always inspire me to be the best person I can be. I would also like to acknowledge and thank
my Savior, Jesus Christ, for his love for me and for his faithfulness.

William Guy

I would like to thank my parents and my best friend for their support and unconditional
love. Their presence in my life has shaped me into the person I am today.

Courtney Hardy

iii

ABSTRACT

The objective of this thesis is to explore cognitive radio performance through an in-depth

literature review and an implementation of a software-defined radio prototyping system.

Specifically, this thesis investigates the spectrum-sensing aspect of cognitive radio by com-

paring two spectrum-sensing methods. It was found in the literature review that a system

utilizing matched filter detection would provide higher probability of detection in low signal-

to-noise ratio environments when compared to a system utilizing energy detection. These

spectrum sensing methods were thus implemented and compared in the cognitive radio sys-

tems presented in this thesis. Additionally, experiments were conducted to determine the

most efficient intervals for the spectrum sensing and cycle interval periods. Therefore, sys-

tem performance was measured on the basis of probability of successful primary user signal

detection and maximum throughput capabilities, quantified by bit error rate. It was found

that a cognitive radio system based on matched filter detection was more robust, given that

the transmitted signal of interest was previously known. However, compared to a system

based on energy detection, the implementation of the matched filter required more complex

algorithms and computational power. These results are consistent with the findings in the

literature review.

iv

Contents

List of Figures . vii

List of Tables . ix

List of Abbreviations . xi

1 Introduction 1

1.1 Background . 2

1.2 Summary of Thesis Content . 3

2 Cognitive Radio Overview 4

2.1 Software Defined Radio . 4

2.2 Cognitive Radio Definition . 5

2.3 CR Network Architecture . 6

2.4 Spectrum Management Process . 7

2.4.1 Spectrum Sensing . 8

2.4.2 Spectrum Decision . 12

2.4.3 Spectrum Mobility . 13

2.4.4 Spectrum Sharing . 13

2.5 State of the Art . 14

2.5.1 TVWS and Related Standards . 15

2.5.2 Practical Applications of CR Techniques 17

2.5.3 Ongoing Challenges . 21

2.6 Conclusions . 24

v

3 Experimental Background 25

3.1 Equipment . 25

3.1.1 Computer Systems . 26

3.1.2 Ettus B210 USRP . 26

3.1.3 GNU Radio . 27

3.2 Flowgraphs, Blocks, and External Python Code 30

3.2.1 GR-MAC . 30

3.2.2 Channel Switching Block . 32

3.2.3 Rapid Testing Block and Drivers . 39

3.2.4 Primary User . 41

3.2.5 Python UDP Sockets . 41

3.3 Spectrum Sensing Flowgraphs and Theory 43

3.3.1 Energy Detector . 43

3.3.2 Matched Filter Detector . 47

3.4 Physical Setup . 52

3.5 Summary of Experimental Background . 52

4 Experimental Execution and Results 54

4.1 Discussion of Units, Measurements, and Thresholds 55

4.1.1 Units and Measurements . 55

4.1.2 Thresholds . 59

4.2 Experiments . 59

4.2.1 Experiment One: Sensing Method Comparison 60

4.2.2 Experiment Two: Finding Ideal Sensing Interval 62

4.2.3 Experiment Three: Finding Ideal Cycle Interval 64

4.2.4 Experiment Four: Display of Cognitive Radio Functionality 67

4.3 Results . 68

4.3.1 Experiment One: Sensing Method Comparison 68

4.3.2 Experiment Two: Finding Ideal Sensing Interval 70

4.3.3 Experiment Three: Finding Ideal Cycle Interval 74

vi

4.3.4 Experiment Four: Display of Cognitive Radio Functionality 77

5 Conclusions 80

Bibliography 87

Appendices 93

A Channel Switching Block 93

B Simplified Channel Switching Block 97

C Rapid Testing Block 99

D UDP Transmitter 101

E UDP Receiver 102

F Rapid Test Driver 103

vii

List of Figures

2.1 Cognitive Radio Network Architecture . 7

2.2 Spectrum management process . 8

2.3 Spectrum sensing methods . 10

2.4 Spectrum Access System Network Architecture 19

2.5 Uncertainties of cognitive radio systems . 22

3.1 Interface between USRP and a host computer 27

3.2 Example of a GNU Radio flowgraph and its generated Python code 28

3.3 Organization of GNU Radio software . 29

3.4 Internet Protocol stack . 31

3.5 GR-MAC Flowgraph in GNU Radio . 31

3.6 Embedded Python block and neighboring blocks from the energy detector

flowgraph . 36

3.7 A logical flowchart of the embedded Python block 37

3.8 The rapid testing block and simplified channel block 41

3.9 Flowgraph of primary user . 41

3.10 Energy detector child block . 44

3.11 Energy detector hierarchical block in the parent GR-MAC flowgraph 45

3.12 Matched filter detector correlation flowgraph 49

3.13 Matched filter detector flowgraph with channel switching block 51

3.14 Matched filter detector hierarchical block in the parent GR-MAC flowgraph . 51

3.15 Physical setup of USRP systems . 52

4.1 Power meter flowgraph . 57

viii

4.2 Comparison of matched filter detector and energy detector performance based

on the number of successful detections out of 10,000 detection attempts for

varying primary user signal-to-noise ratios 69

4.3 Successful detections out of 10,000 detection attempts for matched filter de-

tector and energy detector for varying spectrum sensing intervals 71

4.4 The results of top for the energy detector (top) and matched filter detector

(bottom) . 73

4.5 Bit error rate for energy detector with network functionality for increasing

cycle intervals . 76

ix

List of Tables

3.1 Example scheduling timeline for secondary users with a cycle interval of 5

seconds and a sensing interval of 0.2 seconds 35

4.1 Bit error rate for energy detector with network functionality for increasing

cycle intervals . 75

4.2 Bit error rate for different primary user signal-to-noise ratios for the energy

detector and matched filter detector . 79

x

LIST OF ABBREVIATIONS

FCC Federal Communications Commission

SDR Software Defined Radio

CR Cognitive Radio

ED Energy Detection

MFD Matched Filter Detection

CRN Cognitive Radio Network

PU Primary User

SU Secondary User

RAT Radio Access Technology

RAN Radio Access Network

QoS Quality of Service

TVWS TV White Space

SAS Spectrum Access System

MNO Mobile Network Operator

GRC GNU Radio Companion

USRP Universal Software Radio Peripheral

UHD USRP Hardware Driver

GR-MAC GNU Radio MAC

DFT Discrete Fourier Transform

IDFT Inverse Discrete Fourier Transform

BER Bit Error Rate

xi

Chapter 1

Introduction

This thesis aims to evaluate cognitive radio (CR) system performance through the lens of

spectrum sensing reliability. Two cognitive radio implementations are presented in this work,

one of which employs blind spectrum sensing while the other uses signal-specific sensing.

The blind sensing method and signal-specific sensing method used in this study are energy

detection and matched filter detection, respectively. These sensing methods are responsible

for detecting primary user transmission in specific frequency bands. The CR implementations

are given in the form of GNU Radio flowgraphs and Python scripts. System performance is

measured based on several criteria, including spectrum sensing reliability and communication

throughput, quantified by bit error rate. A selection of experiments measuring the signal-

to-noise ratio (SNR) sensitivity and throughput capabilities of each implementation were

conducted with the goal of determining which sensing paradigm produces a more robust

system. The following section provides some high level background information on cognitive

radio as a preface to this thesis. Section 1.2 gives a summary of the remaining content in

this thesis.

1

1.1 Background

The vast majority of the radio spectrum between 8.3 kHz and 275 GHz is divided into bands

that are reserved for specific activities such as terrestrial broadcasting, satellite communica-

tion, space research, radionavigation, and mobile communication. The Federal Communica-

tions Commission (FCC) makes these fixed frequency band assignments in order to minimize

interference between operating entities. However, studies show that between 15 and 85% of

the licensed spectrum consists of vacant portions, also commonly referred to as ‘white spaces’

or spectrum holes [1]. The frequent presence of these temporarily unused portions of licensed

bands suggest that the spectrum is underutilized at times [2].

Given that additional RF spectrum cannot be created, the only other means for im-

proving spectral efficiency is through access to temporarily unoccupied portions of licensed

bands. Cognitive radio was devised with this heightened spectral usage capability in mind.

According to the FCC, “CR can be viewed as a combined application of software defined

radio and intelligent signal processing with functional elements of radio flexibility, spectral

awareness and the intelligence of decision-making” [3]. With these intelligent features, CRs

are designed to better utilize the spectrum while avoiding interference with other users. In

addition to addressing the spectral scarcity dilemma, CR has also emerged as an interesting

solution to interoperability issues that have historically challenged emergency responders [3]

[4]. Thus, CR technology has the potential to revolutionize the world of communications.

While the potential applications of CR have been explored extensively in the literature,

CR technology is still in the early stages of widespread deployment. This trend is largely

attributed to the fact that the performance of cognitive radio networks in practical settings

2

is not well known and is difficult to predict based on theoretical models alone [5]. As a result,

the amount of throughput a cognitive radio network can realistically achieve and the ways

in which the CR may impact the primary network require further investigation. The future

of CR deployment will very likely depend on a clearer understanding of these performance

issues. It is for this reason that this thesis focuses on CR performance.

1.2 Summary of Thesis Content

The remainder of this thesis is organized as follows. Chapter 2 provides a comprehensive

literature review of cognitive radio, with a focus on the spectrum management process,

prominent commercial use cases, and ongoing research challenges. Next, in chapter 3, our

implementations of two cognitive radio systems are presented and explained. We will discuss

equipment used, flowgraphs developed, and physical setups that will be relevant to our

experiments. Background theory of energy detection and matched filter detection are also

explained in the context of GNU Radio flowgraphs. Chapter 4 breaks down our experiments

and each trial conducted, as well as the results of each experiment. In these experiments,

the spectrum sensing methods are compared, and other aspects of the implementations are

explored. Finally, chapter 5 presents conclusions drawn from the results of the experiments.

3

Chapter 2

Cognitive Radio Overview

The purpose of this chapter is to present the fundamentals of cognitive radio as described

in the literature in order to contextualize the experimental implementation discussed in the

subsequent chapters. Section 2.1 introduces software defined radio, which is one of the central

components of cognitive radio. Section 2.2 formally defines cognitive radio and provides a

high-level description of its theoretical capabilities. Section 2.3 outlines various CR network

paradigms identified in the literature. Section 2.4 elaborates on cognitive radio network

functionality within the context of spectrum management. With the various features of CR

having been introduced from a theoretical perspective, section 2.5 then shifts the focus of

the discussion to practical CR use cases as well as implementation challenges that hinder

CR deployment. This chapter concludes with section 2.6, in which the key takeaways from

the previous sections are summarized.

2.1 Software Defined Radio

Before formally defining cognitive radio, it is worth briefly discussing cognitive radio’s key

enabling technology, the software defined radio. Software defined radio (SDR) is a radio

4

platform in which radio components such as filters, amplifiers, and modulators are imple-

mented in software rather than hardware. This setup gives the SDR several key advantages

over traditional radio. Whereas traditional radios can only be upgraded via hardware re-

placement, SDRs are highly reconfigurable and their software can be updated fairly easily.

Furthermore, SDRs can perform a wide range of functions through relatively simple modi-

fication of software modules whereas hardware radios are application specific. To that end,

SDRs are often said to be much more ‘future-proof’ given their ability to accommodate a

diverse range of protocols, standards, frequency ranges, access technologies, and modulation

formats within a single device [6], [7]. Thus, the SDR is an inherently flexible radio platform

that has become an increasingly attractive option for many communications applications [8].

2.2 Cognitive Radio Definition

In essence, cognitive radio is a specific type of SDR enhanced by environmental awareness

and intelligent adapting capabilities. The key features of CR most frequently cited in the

literature include learning capabilities and dynamic reconfiguration of operating parameters

[9]. The CR learns about the RF environment, the geographical environment, the SDR’s

hardware resources and operating parameters, and federal policies. The CR obtains this

knowledge through spectrum sensing and database access [1]. Based on the knowledge ob-

tained, the CR autonomously reconfigures its internal operating parameters (output power,

modulation type, center frequency, protocols) in accordance with predefined objectives such

as efficient spectrum utilization. The reconfigurable SDR that the CR is built on allows for

these internal modifications, which makes SDR an ideal platform for CR. Furthermore, un-

5

like many other modern radios, cognitive radios learn from past actions in order to improve

overall performance [9]. Thus, the integration of cognitive capabilities with SDR’s intrinsic

versatility gives cognitive radio diverse capabilities.

2.3 CR Network Architecture

Multiple CR nodes come together to form a cognitive radio network (also known as the

dynamic spectrum access network). In practice, modern wireless network environments are

heterogeneous; multiple radio access technologies (RATs) might be employed across multiple

spectrum bands within a single network [10]. Such is the case for the network environment

shown in Figure 2.1 [10], which illustrates how centralized and decentralized cognitive radio

networks (CRNs) might operate alongside primary networks.

Primary networks are composed of primary users (PUs), who have licensed access to

certain frequency bands, and primary base stations which facilitate communication between

PUs. The CR users, or secondary users (SUs), on the other hand, must operate within

unlicensed bands or access licensed spectrum opportunistically.

Interaction amongst secondary nodes varies depending on the network architecture. CR

networks can be decentralized, consisting only of distributed CR nodes, or they can be

infrastructure-based (centralized), in which case they might contain CR base stations and

spectrum brokers in addition to the CR users themselves [7]. CR base stations provide

single-hop connections from one CR user to another. They also serve as a central entity

that coordinates spectrum sensing operations at multiple CR nodes and makes spectrum

availability decisions for the network based on those local observations. Spectrum brokers, on

6

Figure 2.1: Cognitive Radio Network Architecture

the other hand, oversee the distribution of spectrum resources across multiple CR networks

based on the sensing observations within each network [11]. In the case of decentralized

CRNs, CR users communicate amongst themselves in an ad-hoc fashion, often over mixed

frequency bands. Spectrum sensing in these CRNs is synchronized in a distributed way

rather than through central infrastructure.

2.4 Spectrum Management Process

In order to enable opportunistic access to unused portions of the licensed spectrum while en-

suring that CR users do not interfere with primary users, CRNs must make use of an effective

7

Figure 2.2: Spectrum management process

spectrum management scheme that coordinates activity amongst multiple CR nodes. This

spectrum management process is categorized by four key steps: spectrum sensing, spectrum

decision, spectrum mobility, and spectrum sharing. Figure 2.2 outlines the various factors

that influence the outcome of each step. Each of these steps and their defining factors listed

in Figure 2.2 [12] are further discussed in the following subsection.

2.4.1 Spectrum Sensing

Spectrum sensing refers to the monitoring of RF activity within a target frequency band in

order to detect unused portions of the licensed spectrum, or ‘white spaces’, which a secondary

user may be able to use. CR users must continually sense the spectrum as PUs could resume

transmission over a given spectrum hole at any moment.

8

Several notable choices of spectrum sensing are identified in the literature. These meth-

ods are categorized in Figure 2.3 [13]. The spectrum sensing methods can be divided into

two main categories: narrowband sensing and wideband sensing. Narrowband sensing refers

to signal detection over a relatively small frequency interval. The narrowband sensing tech-

niques can be further categorized into blind sensing and signal-specific sensing [14]. Blind

sensing methods do not rely on any prior knowledge of the PU signal features, whereas

signal-specific sensing methods compare an incoming signal with a known signal template

which may consist of pilot symbols, preambles, and other statistical features of the target sig-

nal. Three of the most frequently used narrowband sensing techniques are energy detection,

matched filter (or pilot) detection, and cyclostationary feature detection, as listed in Figure

2.2. Energy detection is an example of a blind sensing method, while matched filter detection

and cyclostationary detection are signal-specific methods. Wideband sensing, on the other

hand, deals with sensing over a much larger frequency band. With wideband sensing, the

large band might be sensed all at once, or it may be divided into individual subchannels that

are sensed sequentially or simultaneously using one of the narrowband techniques. Nyquist-

based wideband sensing samples signals at the Nyquist rate, whereas compressive wideband

sensing samples signals below the Nyquist rate in order to achieve lower power consumption.

In general, wideband sensing is a more effective method of detecting spectral holes across a

wide frequency range, which enables CR nodes to choose from a greater selection of available

channels. However, imperfect knowledge of PU sparsity levels, high-performance hardware

requirements, long processing time, and high computational complexity often complicate the

use of wideband sensing [13].

The objective of spectrum sensing is always to determine whether a given frequency

9

Figure 2.3: Spectrum sensing methods

channel is occupied by a primary user or not. This decision-making process is often modeled

by a binary hypothesis test comprised of H0 and H1, in which H0 indicates that the channel

is empty and H1 indicates that the PU is present;

H0 : y(t) = η(t). (2.1)

H1 : y(t) = h(t)s(t) + η(t). (2.2)

where y(t) refers to the CR’s received signal, η(t) denotes an additive white Gaussian noise

channel, s(t) is the PU’s transmitted signal, and h(t) represents the amplitude variation

10

due to channel fading [15]. N samples of y(t) are taken and used to select either H0 or H1

as the outcome of the hypothesis test. The way in which these samples are manipulated

depends on the particular sensing method. The reliability of narrowband sensing techniques

are frequently assessed using probability of detection and probability of false alarm. Pd refers

to the probability that a primary signal was correctly detected, given that it was present.

The probability of false alarm, Pf , is the probability of incorrectly detecting a primary user

over a given frequency band while there is actually none in that band. These probabilities

are defined as follows [16]:

Pd = Pr(Decide H1|H1). (2.3)

Pf = Pr(Decide H1|H0). (2.4)

The probability of missed detection, which is the complement of Pd, given by P
md

= 1− Pd,

is also frequently used for evaluating the reliability of a given sensing method. A reliable

sensing scheme should have a high probability of detection and low probability of false alarm

in order to avoid interference with the primary user while still taking advantage of any

empty channels available. An ideal sensing method would necessarily have Pd = 1 and

Pf = 0. However, a sensing method with such high fidelity does not exist in practice, and

those that approximate it often come at the price of very high computational complexity.

Many of these direct measurement techniques, which are known collectively as in-band

sensing, have other major disadvantages, including the hidden terminal issue [1]. The hidden

terminal issue refers to the situation wherein a CR node may be able to detect a primary

transmitter, but not necessarily a primary receiver, and may therefore still interfere with the

11

incumbent network despite the fact that no primary signal was detected. This issue may also

arise when a CR node is unable to detect the PU due to shadowing and fading effects over

the wireless channel. Several alternatives to traditional in-band sensing have been proposed

as potential remedies to these issues, including out-of-band sensing, which typically involves

a dedicated control channel for PU beacon signals, and cooperative sensing, which takes

advantage of the spatial diversity of CR nodes by feeding local observations to a common

decision-making receiver [1], [17].

2.4.2 Spectrum Decision

Spectrum decision involves accessing the most appropriate spectrum band from a set of

multiple white spaces that have been identified. The selection depends on many different

criteria, including potential interference with PUs and other CR users, channel holding time,

transmit power, channel data rate, signal attenuation at certain high frequencies, and other

QoS requirements [1]. Furthermore, spectrum decision-making can either be centralized,

distributed, or cluster based, depending on the network architecture. Centralized spectrum

decision-making refers to central controllers that make decisions on behalf of the network.

Meanwhile, with distributed decision-making, the individual CR nodes make their own spec-

trum access decisions independent of any centralized network entity. Finally, cluster based

decision-making involves a single CR user that makes decisions on behalf of other CR nodes

within a local cluster.

12

2.4.3 Spectrum Mobility

Spectrum mobility, or spectrum handoff, occurs when a CR user must vacate its current

channel and resume its transmission elsewhere. Several conditions may render a channel

unsuitable, including reappearance of the PU, excess interference, or change in data de-

mand [1]. Upon switching channels, CR nodes must adjust their internal parameters to the

protocol suite required in the new operating frequency band, in order to ensure seamless

communication throughout the transition [10].

2.4.4 Spectrum Sharing

Spectrum sharing coordinates CR user activity by allocating portions of the spectrum fairly

amongst multiple CR devices. This is done in order to prevent users from interfering with

each other in overlapping portions of the spectrum. The different methods of spectrum

sharing are classified based on network architecture, spectrum allocation techniques, and

spectrum access paradigms, as outlined in Figure 2.2. With centralized spectrum sharing, the

network’s central base station performs the spectrum allocations, whereas with distributed

spectrum sharing, the individual CR nodes (typically operating in a decentralized network)

access the spectrum according to local policy [12]. Spectrum allocation can be cooperative,

wherein CR nodes use clustering techniques to send their interference measurements to a

centralized entity to be analyzed. Non-cooperative spectrum allocation, on the other hand,

does not require this information exchange between neighboring nodes as each CR user

operates independently [18].

Finally, the three primary paradigms for spectrum access are interweave (not shown

13

in Figure 2.2), underlay, and overlay. Interweave access refers to the classic technique of

completely avoiding interference with PUs by only transmitting over unoccupied bands and

ceasing transmission when PUs reappear. Underlay spectrum access is an interference control

approach in which PUs and SUs can transmit simultaneously, provided that the SUs keep

their transmit power below a certain threshold [10]. Overlay spectrum access similarly

involves simultaneous transmission over a single band, but in this case the SUs cooperate

with PUs by relaying PU data alongside their own messages in order to offset the effects of

interference [18]. The power cost of relaying PU data is therefore exchanged for bandwidth.

CR users must also have prior knowledge of the PUs’ data encoding methods in order to

properly employ this access method [1].

2.5 State of the Art

The concept of cognitive radio was first introduced in 1999 by Dr. Joseph Mitola at the

Royal Institute of Technology in Stockholm. He envisioned cognitive radio as a “goal-driven

framework in which the radio autonomously observes the radio environment, infers context,

assesses alternatives, generates plans, supervises multimedia services, and learns from its

mistakes” [19]. His vision was initially “a mere baby step in a potentially interesting re-

search direction” [20], but the initiative quickly began to gain momentum in academics and

regulatory agencies, especially with the rising urgency of the spectral scarcity dilemma. Since

that time, cognitive radio has become one of the most heavily researched areas in commu-

nications [13], [21]. Over the course of the past two decades, several notable standards and

use cases that apply CR principles have been realized. As is discussed in this section, these

14

milestones have played a pivotal role in shaping the ongoing evolution of CR and could be

strong indicators of what the future may hold for CR.

2.5.1 TVWS and Related Standards

One of the most important CR milestones came in 2008, when the FCC approved the un-

licensed access to white spaces in the 54-72 MHz, 76-88 MHz, 174-216 MHz and 470-806

MHz television bands [10]. This ruling was the culmination of the long standing initiative

to promote more efficient use of the spectrum. The decision also came in light of many

television stations switching from analog to digital transmission systems, which freed up

significant amounts of spectrum in the licensed television bands. The favorable propaga-

tion characteristics of these bands made them an especially attractive option for wireless

service providers. Therefore, the FCC believed that the new rules would “allow wireless

broadband providers that use unlicensed devices to reach new customers and to extend and

improve their services in rural areas...without disrupting the incumbent television and other

authorized services that operate in the TV bands” [22]. The ruling led to the emergence of

several standardization initiatives and amendments, including IEEE 802.22, 802.11af, and

802.15.4m [23].

IEEE 802.22, often known as “Wi-Far”, is a standard that defines CR-based TV white

space access techniques for wireless regional area networks (WRANs). This proposed radio

interface, which could cover ranges of up to 100 km, intends to bring broadband services to

remote areas while avoiding interference with TV band incumbents. Since its publication

in 2011, 802.22 has further developed standards such as 802.22.1 (“Enhanced Interference

15

Protection of the Licensed Devices”), 802.22.2 (“Recommended Practice for Installation and

Deployment of IEEE 802.22 Systems”), and 802.22.3 (“Standard for Spectrum Characteriza-

tion and Occupancy Sensing”) [23]. There have also been amendments to the baseline IEEE

Std 802.22-2011, including 802.22a (“Management and Control Plane Interfaces and Proce-

dures and enhancement to the Management Information Base (MIB)”) and 802.22b (“En-

hancement for Broadband Services and Monitoring Applications”). Overall, IEEE 802.22 is

highly significant in that it is the first completed IEEE standard that specifies a standardized

CR interface for white space access.

Another significant standard, 802.11af, was published in 2013 as an amendment to the

IEEE 802.11 wireless local area networking (WLAN) standard. This amendment extends

WLAN operability to TVWS, much in the same way that 802.22 does for WRANs [23].

Similarly, IEEE 802.15.4m builds on IEEE 802.15.4’s specifications for low-rate wireless

personal area networks (LR-WPANs) with guidelines for operation in TV white spaces. IEEE

standards like these are an important aspect of the ongoing CR evolution in that they provide

the mechanisms for practical implementations, in this case with respect to TVWS access.

Significant contributions to the CR model for TVWS have also come from researchers outside

of IEEE working groups. For example, [24] proposed a generalized enhanced detection

algorithm (GEDA) that seeks to improve probability of detection and address the hidden

node issue. Other researchers have proposed optimized sensing techniques and test statistics

as well [13]. There have also been a variety of CR paradigms proposed for the use of TVWS

in Neighborhood Area Networks (NANs) [13]. Research contributions of this sort will likely

play a key role in the gradual adoption of CR use cases for the TV band.

While the recommendations for CR implementations for TVWS are laid out by these

16

standards and research contributions, it is worth noting that there are little to no concrete

examples to date of real-world CR deployment in the TV band [25], [26]. The authors of [24]

explain that “the main obstacles to TVWS adoption are reliable detection of primary users

i.e., TV operators and consumers, allied with specifically, the hidden node problem,” and

the authors of [26] add that since “radio regulations, such as spectrum mask and maximum

transmission power, are different depending on countries, it is not so simple to implement

the standard.” Therefore, further investigation into the performance capacity of potential

CR use cases for TVWS is necessary. This trend of performance uncertainty stalling CR

deployment is not unique to the TV band; indeed, virtually all CR deployment initiatives

are met with this challenge, which will be discussed further in section 2.5.3.

2.5.2 Practical Applications of CR Techniques

Mobile communication networks have historically experienced exponential growth in demand

for wireless services since the deployment of the 2G GSM standard [21]. In light of this

trend, mobile network operators (MNOs) have had to come up with innovative ways to

use spectrum resources more efficiently in order to increase network capacity, including, for

example, higher bit transmission and small cell densification. While these physical layer

solutions are aimed towards maximizing the use of existing spectrum resources, there is a

theoretical upper bound to how efficiently this finite pool of resources can be used. For

this reason, the prospect of accessing unused spectrum resources, made possible by cognitive

radio technology, has emerged as another way in which mobile network operators might

optimize their networks [21].

17

There are several instances to date of CR principles being applied to mobile communica-

tion networks [21]. One notable example includes the spectrum access system (SAS). Initially

approved by the FCC in 2015, SAS is a cloud-based service that coordinates shared access to

the Citizen’s Broadband Radio Service (CBRS) band (3.55 GHz to 3.7 GHz) amongst three

tiers of users [27]. The first tier is populated by incumbents, including military radar, fixed

satellite systems, radio location services, and terrestrial wireless systems operating primarily

near coastal areas. Members of this tier transmit freely and are protected from interference

by lower tier users. The second tier consists of Priority Access (PA) users. Prospective PA

users bid for Priority Access Licenses (PALs), which give them access to a 10 MHz por-

tion of the CBRS band. PALs are 10 year renewable and are issued on a county-by-county

basis [28]. PA users frequently consist of mobile network operators, utility companies, and

hospitals; some of the winning bidders of the latest auction (finalized as of October 2020)

include Alabama Power Company, Aeronet Wireless Broadband LLC, and Hawaiian Electric

Company, inc [28]. Tier 2 users must vacate a given channel should an incumbent need to

transmit there, for which reason their reserved 10MHz portion may span the CBRS band

dynamically rather than existing at a fixed frequency. The third tier is composed of General

Authorized Access (GAA) users. These users are guaranteed opportunistic access to at least

80 MHz of CBRS spectrum, but they receive no protection from tier 1 and tier 2 transmis-

sion. GAA users do not require a license for operation, but they must be registered with the

SAS.

Figure 2.4 shows a high-level layout of the CBRS network architecture. Coordination

between the three classes of users is facilitated by central SAS entities. Tier 2 and 3 users

are often referred to collectively as CBRS Service Devices (CBSDs). The central SAS entities

18

Figure 2.4: Spectrum Access System Network Architecture

are responsible for dynamically assigning frequency channels and maximum transmit power

to the different CBSDs in the network in order to protect incumbents and license holders

while ensuring seamless transmission for all users. The SAS makes these assignments based

on information coming from various databases and sensing networks, as seen in Figure 2.4

[29]. In this sense, the CBSDs act as cognitive nodes in a centralized, infrastructure based

network. Registered CBSDs must provide certain information, such as geographical location

and tier status, to the SAS database. The SAS may interact with a CBSD directly or through

a domain proxy (such as in the case of interfacing with legacy radio equipment or networks

of CBSDs). In any case, it is the CBSD that initiates communication with the SAS. In order

to begin transmission, CBSDs must submit a formal request to the SAS for spectrum access

in a certain geographic area. In response, the SAS will grant this request with an assignment

19

to an unused channel. When the transmission is complete, that channel will be added back

to the SAS’ list of unoccupied frequency bands available for other users.

Unlike other statically managed frequency bands, SAS’ hybrid licensing scheme strikes an

important balance between interference mitigation and efficient use of spectrum resources.

For this reason, the deployment of SAS in the CBRS band opens the door for many innovative

use cases, particularly in regards to new business models for 4G and 5G service delivery [29].

This serves as a testament to the extensive benefits to be reaped through the application of

CR principles.

Additional applications of CR principles in the realm of mobile communications can be

found in the LTE Unlicensed (LTE-U) initiative, licensed assisted access (LAA), MuLTEfire,

cognitive femtocells, device-to-device (D2D) communications, and narrowband Internet of

Things (NB-IoT) [21]. In general, the incorporation of CR techniques enhances existing

systems with more efficient spectrum access solutions and interference mitigation [30].

There are instances of CR features being explored for other wireless communication sys-

tems as well. For example, CR has been considered for military communications, in which

case the system could intelligently locate vacant spectrum bands even if communication is

obstructed by an enemy [21]. CR based solutions for public safety networks have also re-

ceived significant attention [4], [3], [31]. CR techniques could allow emergency responders

to communicate on an ad-hoc basis in the event of a natural disaster that damages network

infrastructure [3], [32], [21]. CR technology could also play an important role in bridging the

gap between incompatible radio standards in heterogenous networks, encouraging interop-

erability [4], [31]. Overall, these initiatives are a reflection of the wide range of possibilities

that cognitive radio has to offer.

20

2.5.3 Ongoing Challenges

Despite the fact that cognitive radio is such a heavily researched topic, its commercial use

remains rather limited. It is worth reiterating that many of the CR features and network

paradigms discussed in sections 2.2 through 2.4.4 have been proposed and examined exten-

sively by researchers but have not necessarily been adopted in real-world applications. To

that end, there are several challenges to be overcome before CR can be employed to its full

potential.

At its core, CR is a means for opportunistic spectrum access amongst various users. For

this reason, the prospect of practical CR realization ultimately begins with a regulatory

model that promotes dynamic use of the spectrum. However, that is far from the case

for the static, auction-based spectrum assignment policies that are currently in place [25],

[1]. Before government bodies will be willing to modify existing regulatory policy, CR must

present a viable business case, otherwise entrepreneurs will not be compelled to invest in the

new technology [25]. This situation is further complicated by the fact that modern cellular

networks already offer stupendous data rates at low costs in areas with modest populations;

CR will likely have to offer a highly sought-after service that cellular networks do not already

provide in order to present a compelling business case. It is possible that CR’s potential lies

primarily in bringing connectivity to rural areas, a goal which was notably part of the FCC’s

rationale for opening up the TV band for CR use [22].

CR’s potential as a viable business case also depends on its performance capacity, namely

its ability to guarantee high QoS to secondary users without imposing on primary users.

It follows that at the root of many of the dilemmas that account for CR’s relatively slow

21

Figure 2.5: Uncertainties of cognitive radio systems

deployment is a shortage of models that can accurately predict CRN performance in practical

settings. Due to the inherent uncertainty associated with wireless systems, these models are

notoriously difficult to construct and decipher. Some notable instances of uncertainties in

the context of CR system modeling are listed in Figure 2.5 [5]. While there are ample

models for CR proposed in the literature, many of these models are academically oriented

and tend to omit these uncertainties for the sake of analytical readability. As a result, the

conclusions drawn from models of this nature may not necessarily be applicable to real world

CR implementations. This trend has contributed significantly to the uncertainty surrounding

CRN performance and in turn to the limited practical use of CR.

CR’s future as a commercially applicable technology will very likely depend on a better

22

understanding of its performance capacity [5]. The lack of commercial use cases for TVWS

is compelling proof of this conjecture; even with a relatively flexible regulatory model and

several established standards in place, performance uncertainty has hindered deployment

[24]. CRN performance is jointly characterized by interference mitigation and secondary

throughput. There are a number of factors that may affect either one of these performance

aspects, including hardware specifications, network architecture organization, and, most

importantly, the methods for CR knowledge acquisition and primary user detection.

The various approaches to spectrum sensing and CR learning in general account for

significant ongoing research challenges in the CR community. While each sensing technique

comes with inherent advantages and disadvantages, there tends to be a recurring trade-off

between reliability and computational complexity [13]. In general, CR system designers must

strike a crucial balance between a detection method that is both accurate and suitable for real

time hardware applications. More sophisticated sensing methods such as cooperative sensing,

out-of-band sensing, and the use of geolocation databases have been proposed to remedy some

of the unreliability issues that arise with in-band spectrum sensing, as mentioned in section

2.4.1 [1]. While these methods allow for more accurate primary user detection, they tend to

introduce additional delay, overhead, energy consumption, and security risks that must be

taken into account [1], [9], [33]. Furthermore, PUs must actively agree to work with CR users

in order to realize setups such as out-of-band sensing, database access, and overlay spectrum

access, which is something frequency band incumbents will not be inclined to opt for so

long as the presence of CR users in their licensed band could cause harmful interference.

This attitude is readily exemplified by the TV broadcasters’ opposition to the FCC’s TVWS

decision, as well as by the controversy surrounding LTE-U’s potential impact on Wifi devices

23

in the unlicensed 5GHz band [22], [21]. In this regard, the mindsets of researchers, regulatory

overseers, frequency band incumbents, and entrepreneurs must come together in order for

the deployment of CR to be logistically feasible [25]. This collaboration will necessarily

entail further investigations into CR performance from a deployment perspective as well as

additional research initiatives aimed towards improving primary user detection methods.

2.6 Conclusions

In this chapter, an overview of the theoretical capabilities and practical implementation

challenges of cognitive radio as outlined by the literature has been presented. From this

discussion it can be concluded that while CR has many powerful features in theory, in practice

its performance in real-world settings is not well known and commercial deployment has been

scarce as a result. Ongoing research challenges for CR frequently relate to improving the

ways in which the CR obtains knowledge, namely through spectrum sensing and possible

database access. Overall, CR has a ways to go before it can be implemented on a large scale,

but the wealth of research and existing standards are a promising sign for this technology.

24

Chapter 3

Experimental Background

Given the importance of reliable PU detection to the performance of the CR system and

feasibility of CR deployment, there is a great deal of research dedicated to perfecting the

various CR sensing methods [13]. In keeping with this theme, our experimental CR imple-

mentation will also focus on the relationship between spectrum sensing technique and system

performance. Our goal is to provide a simple implementation of a pair of secondary users

who can use spectrum sensing to avoid interference with a primary user. Presented in this

chapter are the different aspects of our experimental setup. These include equipment used,

flowgraphs and blocks created, and physical setup of the USRP systems.

3.1 Equipment

The following subsections will provide additional information about the components of our

experimental CR setup as a preface to our implementation method.

25

3.1.1 Computer Systems

For our experimental setup, three laptop PCs were used: a Dell XPS 9500, a Lenovo Yoga

720, and a Toshiba Satellite. Each PC ran a copy of Ubuntu 16.04 LTS and were equipped

with at least one USB 3.0 port to which the USRPs were connected. As the CR systems

would require more computational power then the PU system, the Lenovo and the Dell were

chosen to run the CR systems since each are equipped with a quad-core Intel i7 processor.

3.1.2 Ettus B210 USRP

For the SDR component of our CR, the Ettus B210 Universal Software Radio Peripheral

(USRP) was used. Each B210 device features a fully integrated, dual-channel RF front end,

capable of transmitting and receiving signals with carrier frequencies ranging from 70 MHz

to 6 GHz, along with a fully reprogrammable Spartan6 XC6SLX150 FPGA that can send

and receive samples from the ADCs and DACs at up to 61.44 megasamples per second. The

RF front end features the AD9361 chip, which is capable of streaming data with 200kHz - 56

MHz of analog bandwidth. The Spartan6 FPGA is responsible for controlling the AD9361,

and the USRP connects to a host PC via USB 3.0. The USB 3.0 power bus is sufficient to

power the B210, which makes for a convenient setup. The USRP Hardware Driver (UHD)

provides the communication interface between the USRP and host PC, as shown in Figure

3.1 [34]. The FPGA code is written in Verilog, whereas the UHD is written in C and C++.

The UHD allows the user to transmit and analyze RF data, as well as control various features

of the USRP, including sampling rate, power, and frequency, through software on the host

PC. The user can either build their own signal processing applications on top of the UHD

26

API, or use software platforms like GNU Radio or LabVIEW that interface with UHD and

provide existing tools for signal processing.

Figure 3.1: Interface between USRP and a host computer

3.1.3 GNU Radio

For the software backend of our SDR hardware platform, GNU Radio was used. GNU Radio

is a free and open source software framework that provides a library of signal processing

27

tools to facilitate the development and analysis of radio systems. GNU Radio’s graphical

tool, GNU Radio Companion (GRC), uses a flowgraph-oriented user interface in which signal

processing functionality takes the form of interconnected software blocks, as shown in Figure

3.2 [35]. The blocks are interconnected with arrows that represent the flow of data, with

different colors signifying different data types.

Figure 3.2: Example of a GNU Radio flowgraph and its generated Python code

The execution of a GRC flowgraph is accompanied by the creation of a Python script that

contains the various flowgraph elements, integrated together in code. While the unification

of flowgraph components is implemented using Python, the block routines themselves are

typically written in C or C++. For this reason, SWIG is needed to give the Python scripts

access to the C++ routines [36]. Overall, the GRC greatly simplifies the use of GNU Radio

28

Figure 3.3: Organization of GNU Radio software

by providing a graphical interface through which to generate this integrated Python script

as opposed to the user writing it from scratch.

In addition to an extensive collection of signal processing tools, GNU Radio comes with

an array of example codes and tutorials to help beginners get started. For more advanced

users, GNU Radio also provides mechanisms for personalization outside of the realm of built-

in tools. For example, users that want to add certain features to existing blocks or design

entirely new functionality can create a custom embedded Python block. These flexible

features are due in large part to the collaborative nature of GNU Radio as an open source

project. Each new user has the potential to make a contribution to the GNU Radio project

as a whole.

Figure 3.3 [35] further illustrates the extent to which user contributions extend GNU

Radio’s capabilities. In addition to the signal processing building blocks that GNU Radio

provides, there are also built-in tools, like PyBOMBS and gr modtool, that assist in the de-

velopment and organization of custom modules. It is readily apparent, then, that community

29

involvement is a crucial component of the GNU Radio project. Because of this, GNU Radio

is constantly improving, which is one of the major advantages to working with open source

software. These benefits, combined with the fact that GNU Radio is the leading software

platform supporting USRP drivers, made it the obvious choice for our experiment.

3.2 Flowgraphs, Blocks, and External Python Code

The following section discusses the GNU Radio flowgraphs and blocks that were used, but do

not provide spectrum sensing capabilities. The spectrum sensing flowgraphs are discussed in

section 3.3. The components explained this section were responsible for providing network

capabilities, controlling channel switching, and simulating primary users during the exper-

iments. In addition, some external Python code was used to accumulate results from large

quantities of tests and form UDP connections between the secondary users.

3.2.1 GR-MAC

As a basis to develop our CR system, the GNU Radio MAC (GR-MAC) program was used.

GR-MAC is a simple, open-source program developed in GNU Radio that acts as a MAC

layer, the lower layer 2 sub-layer of the internet protocol stack, which is shown in Figure 3.4,

for use with USRPs [37].

The GR-MAC program creates a TUN/TAP interface within the Linux operating system

that acts as a virtual network interface device which can be assigned an IP address. The GR-

MAC program, which is synonymous with simple trx.py in the further sections, encapsulates

incoming IP datagrams from the network layer into Ethernet frames, modulates the bits of

30

Figure 3.4: Internet Protocol stack

Figure 3.5: GR-MAC Flowgraph in GNU Radio

the frames via a GMSK modem, and sends them to the physical layer which is the USRP.

Incoming frames are demodulated, sent to the TUN/TAP interface (layer 2), decapsulated,

and continue to be sent up the protocol stack, as shown in Figure 3.5.

IP datagrams and link-layer Ethernet frames are passed in GNU Radio via messages,

which are represented by the dashed lines. The bits of these messages are modulated and

demodulated via the GMSK signal processing block shown in the middle of the flowgraph. In

the case of an IP datagram being transmitted by the program, the datagram is first received

by the TUN/TAP interface block as an Ethernet frame. The bits of the Ethernet frame are

31

then converted to GNU Radio messages and sent to the GMSK signal processing block and

are modulated into a complex valued stream. This stream is then passed to the UHD sink

block. The UHD then sends the data stream to the USRP, which acts as the physical layer

(layer 1). The USRP transmits the signal at a center frequency specified within the UHD

sink block. This process is performed in reverse order in the case of the program receiving

IP datagrams. GMSK modulated signals are received by the USRP at a center frequency

specified by the UHD source block and are passed to the UHD. The UHD then passes this

signal through the UHD source block in the form of a complex valued stream, which is then

demodulated by the GMSK signal processing block. The GMSK signal processing block then

outputs a GNU Radio message carrying the bits of the transmitted Ethernet frame to the

TUN/TAP interface. At this point, the TUN/TAP interface then passes the Ethernet frame

up to the network layer (layer 3) as an IP datagram.

3.2.2 Channel Switching Block

Before a description of the channel switching block is given, its parameters and terminology

are defined. In summary, the purpose of the channel switching block is to control the channel

switching features in a secondary user. The channel switching block is designed to be easily

implemented in any secondary user, without requiring that user to be aware of what channel

sensing method is being used. The channel switching block makes a decision once every cycle,

and tells the USRP source and sink blocks to change frequencies using message passing.

A cycle is defined as the completion of the set of the three steps in our cognitive radio.

The first step is the channel sensing, during which TX/RX is impossible. The second step

32

is channel switching. The third step is TX/RX. In general, the third step is the longest of

the three.

The time interval during which a cycle is completed is called the cycle interval, Ic. Since

there are three steps in a cycle, Ic is the sum of the time intervals of each of the steps.

The time interval during which channel sensing occurs is called the channel sensing

interval, Is. Is is the product of the time interval it takes to sense one channel Is0 , and

the number of channels being checked, N. This relationship is shown in (3.1);

Is = Is0N. (3.1)

The time interval during which channel switching occurs is extremely small. The decision

is made within one single execution of the Python code described later in this section and,

for the purposes of the experiment, may be approximated to be 0.

The time interval that is allowed for TX/RX, called the TX/RX interval, Irt, is the

remaining amount of time in the cycle. Since the cycle interval Ic is the sum of each of the

intervals of the steps, the duration of the TX/RX interval can be found using (3.2);

Irt = Ic − Is = Ic − Is0N. (3.2)

It should be noted that the value of Is is usually very small compared to the value of Irt,

because the TX/RX time interval is typically much larger than the channel sensing interval.

By simple algebraic manipulation, the entire cycling interval is given by (3.3);

Ic = Is + Irt = Is0N + Irt. (3.3)

33

The time at which the first step in the cycle begins must be determined and understood

by both secondary users. This is because, if one of the users is in the TX/RX step while the

other user is in the channel sensing step, no data can be traded. Therefore, the secondary

users must be synchronized to minimize data loss. Synchronization is achieved by using

Python’s time library and a float modulus operator. Since the time library uses the system

time, the system times of the secondary users must be synchronized using the Internet before

the session begins. The current time is represented as Tt. Its units are seconds since Unix

epoch. When (3.4) is true, the first step in the cycle begins;

Tt mod Ic ≈ 0. (3.4)

Therefore, the time at which both primary users will enter their first step is synchronized.

An example for a possible session is given in Table 3.1. In this example, Ic = 5 seconds

and Is0 = 0.2 seconds. The secondary users begin their transmission in a vacant channel,

and at 12:00:07, a primary user starts transmitting, making the channel occupied. Table 3.1

explains how the secondary users would react under the given conditions.

The channel switching block was implemented using an embedded Python block in the

GNU Radio flowgraphs, as shown in Figure 3.6.

The Python block is used in both the matched filter detector and the energy detector.

The inputs to the block are the moving average and two message strobe blocks. The moving

average provides the block with a number between 0.0 and 1.0, which it uses to determine

whether or not a primary user is present. The message strobe blocks send messages regularly

every 500 ms. In the top message strobe, the value sent is a custom frequency value, which

34

Table 3.1: Example scheduling timeline for secondary users with a cycle interval of 5 seconds and a sensing
interval of 0.2 seconds

Time Action taken by CR Resulting
Frequency
(MHz)

Resulting
Step

11:59:59.00 Channel switching for the SU is turned on
by the user. A new iteration of the cycle
will occur at 12:00:00, because 12:00:00 (in
seconds since Unix epoch) mod 5 = 0. The
CR starts in the TX/RX step.

2481 TX/RX

12:00:00.00 The channel sensing step begins. 2481 Sensing
12:00:00.20 The current channel has been checked, and

a decision is made based upon the average
maintained throughout this step. The chan-
nel is determined to be unoccupied, and,
since the channel switching decision step
takes approximately no time, the TX/RX
step begins almost immediately.

2481 TX/RX

12:00:05.00 The TX/RX step concludes, and the channel
sensing step begins.

2481 TX/RX

12:00:07.00 A primary user enters the channel. Once this
occurs, the secondary users will experience
high packet loss.

2481 Sensing

12:00:10.00 TX/RX stops, channel sensing begins in the
occupied channel.

2481 Sensing

12:00:10.20 The previous channel (2.481 GHz) is found to
be occupied, so the secondary users check the
next channel (2.482 GHz). This new channel
must be checked for primary users before it
can be used.

2482 Sensing

12:00:10.40 The new channel (2.482 GHz) is found to be
suitable, so TX/RX begins. Notice that the
time that it took to do the channel analysis
is Is = Is0N = 0.2 seconds * 2 = 0.4, because
two channels were checked.

2482 TX/RX

35

Figure 3.6: Embedded Python block and neighboring blocks from the energy detector flowgraph

is used by the USRPs when the channel switching function is turned off. In the bottom

message strobe, the value is a boolean, which GNU Radio interprets as a float. If the float is

set to one, then channel switching is turned on. If it is set to zero, then channel switching is

turned off. Both of the values provided by the message strobes are configurable by the user

at runtime, using the QT GUI.

The outputs from the Python block are three pad sinks, which are fed to the parent

block. The first pad sink is a debug, which allows relevant information to be output to the

terminal. The second pad sink is a message output system for the transmitter, which is

linked to the USRP sink block in the parent graph. This allows the Python block to tell the

USRP sink to change its center frequency and gain. The last pad sink is a message output

system for the receiver, which is linked to the USRP source block in the parent graph. This

allows the Python block to tell the USRP source to change frequencies.

While the full content of the Python code is given in the appendices, a discussion of the

code is given below, and Figure 3.7 is included to describe the main work function.

This first part of the code is simply the declaration of the variables. Because of the

nature of GNU Radio, global variables are used. Otherwise, the values for the variables

36

Figure 3.7: A logical flowchart of the embedded Python block

37

would be lost every time the Python code is executed on a new set of data in the data

flow. The CHANNELS array is the list of possible frequencies that may be used by the

secondary users. These are separated by 1 MHz each, and all exist in the unused 14th Wifi

channel, to avoid possible contamination of the experiment by unpredictable users. The

purpose of the increment channel method is to make sure that the variable tracking the

current channel would always stay within in the range of the CHANNELS array. In the

initialization function for the block, the parameters, input signals, and message ports are all

defined. For this block, there is only one parameter: cycle time, which is used to determine

how long the CR will transmit for before it performs channel sensing. The input signal is the

output from the moving average block, from which the determination on channel occupancy

is made. The result of the moving average block is discussed in subsection 3.3.1. Message

handler methods are used to update the switching and custom frequency variables. These

messages are discussed at the beginning of this subsection.

The logic for the main work function of the Python block is shown in Figure 3.7. The

work function is split into two parts, depending on the channel switching mode. If channel

switching is turned off, the code uses messaging to tell the USRP source and sink blocks to set

their frequency to the frequency given by the input message. If channel switching is turned

on, the functionality is slightly more complicated. A continuous, rolling average for the input

threshold is maintained. The operation of the rest of the block is determined by the checking

variable. The checking variable represents the two steps of channel switching operation. The

first step is channel sensing. The second step is data transmission and reception. These steps

are time-sensitive and dependent upon the scheduling of the cognitive radio.

In the first step, the spectrum sensing commences. While a channel is being checked, the

38

code simply maintains the threshold average. At the end of this time, the average threshold,

which is the average of the input signals, is checked against the value 0.5. A value above 0.5

means that the channel is occupied. If the channel is deemed suitable, then the spectrum

detection stops, and data trading begins. Otherwise, the process is repeated on the next

channel, and so on, until a suitable channel is found. In principle, the cognitive radio remains

in the sensing step forever if an acceptable channel is never found.

In the second step, packet transmitting and receiving occurs. At the beginning of this

stage, the transmitter gain is turned to an appropriate value via message passing, and at

the end of this stage, the gain is turned to zero, so that it doesn’t cause interference to the

other secondary user. During this stage, the CR is allowed to send and receive data, while

the Python code waits until it is time for spectrum sensing to occur.

These two modes occur in a cycle, so that the CR could run indefinitely, checking the

spectrum at regular intervals. For example, if the interval were set to 5 seconds, the spectrum

detection would occur at the times 12:00:00, 12:00:05, 12:00:10, 12:00:15, Determining

the best interval is the focus of one of our experiments, discussed in section 4.2.

3.2.3 Rapid Testing Block and Drivers

Some of our experiments required thousands of channel detections and decisions to occur

rapidly. While the channel switching block works well for the functional cognitive radio

implementations, it does not suit the purpose for high-volume testing. Therefore, it needed

to be modified and augmented by another block and some external Python code. The code

for these blocks is provided in the appendix of this thesis, but they are described in this

39

section.

In order to execute the rapid tests, the secondary users need to check one channel many

times in a row. Even if the channel is occupied, the secondary users need stay in the channel

so that checking can continue. Therefore, some of the functionality of the channel switching

block needed to be removed. The averaging and comparison to a threshold value is still

the same, but, in the modified block, the channel switching does not occur. No message is

sent to the USRP sink and source blocks, so that they stay in the same channel. Instead, a

new message is sent to another, new block, called the rapid testing block, telling it that the

channel is either occupied or vacant. After the message is sent, execution continues normally,

and, since the channel was not switched, the secondary user can detect the same channel

again.

The function of the rapid testing block is extremely simple. It takes the message received

from the simplified channel block and writes it to a text file, numbering each of the messages.

The name of the text file is passed to the flowgraph as a parameter, and is supplied by the

rapid test driver. The rapid testing block and the simplified channel block are shown in

Figure 3.8.

The final feature that needs to be added in order to execute rapid testing is provided by

the rapid test driver Python code. This code sends the desired filename and number of desired

tests to the rapid testing flowgraphs as parameters. Once the flowgraph has completed the

desired number of tests, the number of times a channel was decidedly occupied is counted

by reading the log file and a summary is added at the beginning of the log.

Together, these features allowed channel detections to be executed in a short amount of

time so that we could obtain large amounts of data in a reasonable time.

40

Figure 3.8: The rapid testing block and simplified channel block

3.2.4 Primary User

To simulate the scenario of a channel being occupied by a primary user, the flowgraph in

Figure 3.9 was used to transmit a prescribed signal in a given channel.

Figure 3.9: Flowgraph of primary user

The signal being sent by the PU was the arbitrarily chosen vector (1, 1, 2, 2, 3, 3, 4, 4,

5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10) modulated by GMSK.

3.2.5 Python UDP Sockets

In order to analyze the quality of the network connection between two secondary users, one-

way communication was established using the UDP transport protocol. For the experiments

41

in which this communication was used, discussed in section 4.2, one secondary user would

transmit a number of packets of fixed length at random intervals, and the other secondary

user would receive the data and count how many packets were received. This allowed the

bit error rate of a one-way UDP connection to be calculated from the observed packet loss.

To do this, two Python programs were created, called udp transmit.py and udp receive.py.

The entirety of these programs are in the appendix, but their main functions are described

here. In both programs, a UDP socket is created with the IP address of the network interface

made by the GR-MAC flowgraph and an arbitrarily chosen port number. In udp receive.py,

after the socket is opened, the program waits for data on the socket and prints out the total

number of packets as they are received.

In udp transmit.py, UDP packets whose data field is 1,000 bytes long are sent to the

socket. The interval between sent packets is generated by the random function in Python’s

random library, whose bounds are 0.05 and 0.5 seconds. The same packet length was used

throughout all of the experiments to maintain consistency, but the total number of packets

sent was varied based on the needs of the experiment.

Together, these programs allowed bit error rate to be calculated as a metric for the quality

of the network connection. This measurement was important to our experiments, because

we wanted to see if bit error rate would increase when more time was spent sensing the

channels, compared to the amount of time spent transmitting and receiving data.

42

3.3 Spectrum Sensing Flowgraphs and Theory

In this section, the spectrum sensing methods of energy detection and matched filter de-

tection are discussed. The theory behind each method is explained and the GNU Radio

flowgraph implementations of each are shown.

3.3.1 Energy Detector

The energy detection method of spectrum sensing computes the energy of the received signal

and compares that value with some prescribed threshold value. If the detected energy exceeds

the threshold, a primary user is considered present. If not, the primary user is considered

absent, and that given frequency band is determined to be a white space. The formula for

calculating the energy is given by (3.5);

Ex =
N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2 . (3.5)

Here, x(n) is the nth sample of the received time signal, N is the number of samples, and

X(k) is the N point DFT defined as
∑N−1

n=0 x(n)e−jkn2π/N .

The energy detection method is by far the simplest to implement, and the fact that it

does not need any prior knowledge of the primary signal characteristic makes it an attractive

choice for many CR applications. However, one major disadvantage is its inability to detect

primary signals with low SNRs.

In order to construct a working implementation of an energy detector, a flowgraph was

designed to use energy detection to make a channel switching decision. This flowgraph,

43

Figure 3.10: Energy detector child block

shown in Figure 3.10, was built as a hierarchical block so that it could act as a child block

to the GR-MAC flowgraph from Figure 3.5. This relationship is shown in Figure 3.11.

Figure 3.11 shows a flowgraph which is very similar to the GR-MAC flowgraph. The

notable difference is the presence of a new block entitled “QT GUI Energy Detector Channel

Switching.” The purpose of this block is to provide channel switching functionality, based

on an energy detection. The signal from the USRP source block is sent straight into the

energy detector hierarchical block, in which all of the necessary signal processing and message

creation occurs. Messages are passed from outside of this block to the USRP source, USRP

sink, and message debug blocks.

The messages which are passed to the source and sink blocks are of two types. The first

type is a frequency command, which tells the blocks to switch to a target frequency. The

44

Figure 3.11: Energy detector hierarchical block in the parent GR-MAC flowgraph

second type is a gain command, which turns the transmitter off when spectrum detection is

occurring, and back on after spectrum detection is complete. Additionally, some messages

are sent to the message debug block in order to view information about the status of the

system in the terminal.

While Figure 3.11 shows how the energy detector hierarchical block interacts with the

components of the GR-MAC flowgraph, Figure 3.10 shows the flowgraph that is “inside” of

the energy detector hierarchical block. The pad source with the blue square on the upper-

left corner of the graph is the block which passes the USRP signal from the parent block

to the child block. Similarly, there are three pad sinks on the bottom-right corner of the

graph which correspond to the output messages seen in Figure 3.11. The data flow of the

energy detector block has three main phases, which are described in the following list. Each

of the members of this list describe the function of a singular block in the flowgraph shown

in Figure 3.10.

45

1. Conversion from time signal to energy

• The Pad Source block passes raw, complex data from the USRP Source Block,

converted to baseband from the frequency known to the source and sink blocks.

• A vector is filled with 1024 consecutive samples.

• The vector is sent to an FFT block. The width of the FFT is 1 MHz, shown by the

samp rate variable in the flowgraph. The frequency resolution can be determined

by dividing the sampling rate by the size of the FFT. The size of the FFT is

shown in the QT GUI chooser block in the graph, and is 1024. Therefore, the

frequency resolution for each block is (1× 106)/(1.024× 103) = 967.5625 Hz.

• After the FFT block, the complex values in the resulting vector are squared.

Therefore, the vector of complex values becomes a vector of floats.

• The log of each of these values is taken. At this point, the data stream is a vector

of floats whose values represent the energy of each frequency bin in decibels. As

previously stated, in our graph, the signal from the USRP was converted from the

frequency of interest to baseband. Therefore, knowing the width of the FFT was

1 MHz, the vector at this point in our graph contains the energy in the frequencies

from F − 1/2 to F + 1/2 MHz, where F is the frequency of interest. Therefore,

the frequency of interest is in the middle of the vector. This will be important

information in the next phase of the energy detector.

2. Energy detection

• The vector is converted back into a stream. The data is the same, but now they

46

are in the form of a stream instead of a vector in order to allow the operation of

the threshold detection with the subsequent blocks.

• The “Keep M in N” block counts 1024 (the size of the FFT and the vector before

it is converted into a stream) data points (floats), and keeps 10 of them, with

an offset. As stated earlier, the values in the middle of the vector are the ones

of interest, and the offset guarantees that those values are the ones which are

observed. So, the stream of data that is sent out of the Keep M in N block is

simply the energy of the 10 middle bins of the FFT.

• These values are compared to a threshold value, which can be changed at execution

via a slider in the QT GUI.

• In order to prevent anomalies from triggering false positives or negatives, a moving

average is maintained over 1000 stream values.

3. Channel Switching Decision

• The embedded Python block makes the final decision on if the channel is occupied

or not, and what frequency the SU should switch to if it is. The decision of the

Python block is powered by messages, and they were sent to the sink and source

Blocks in the parent graph. This block is discussed in more detail in subsection

3.2.2.

3.3.2 Matched Filter Detector

Matched filter detection (MFD) is a method of signal detection in which a received signal of

interest is compared to a template of a known signal (e.g., a signal from a PU) and “matched”

47

based on a calculated correlation value representing the “likeness” of the two signals [38].

The higher the correlation value, the more alike the signals are. The MFD technique is a

common method for sensing PU signals in a frequency channel of interest, since one of its

appealing features is that is works quite well in low SNR environments. However, due to

the necessity of having prior knowledge of the primary user’s signal, it is not always the

most practical method of detection. In our GNU Radio flowgraph implementation of MFD,

the sampled signal of the spectrum channel of interest and the known PU signal are cross-

correlated with each other to produce a correlation value, ρ. The value of ρ will be compared

to a prescribed threshold value, λ to determine whether or not a PU’s signal is present at

a particular time. If ρ < λ, it is concluded that the PU signal is not present, otherwise it

is concluded that the PU signal is present. The equation used to compute the correlation

value is given in (3.6);

ρ = max

{∣∣∣∣∣ 1

N

N−1∑
k=0

[X1(k)X2(k)∗] ejkn2π/N

∣∣∣∣∣
}
. (3.6)

Here, X1(k) and X2(k) are the N point DFT vectors of the incoming USRP signal x1 and

the reference PU signal x2, respectively. X1(k) is multiplied by the conjugate of X2(k), and

an inverse DFT (IDFT), defined as 1
N

∑N−1
k=0 X(k)ejkn2π/N , is performed. The magnitude of

each complex element is computed, and the maximum value is used as the correlation value.

The flowgraph implementation of the matched filter detector is organized as two hi-

erarchical blocks: one to compute the correlation value, and the other to provide channel

switching functionality. The second of these is then incorporated into the GR-MAC program

and given a reference PU signal.

48

Figure 3.12 shows the flowgraph responsible for computing the correlation value of the

two signals of interest. The following list describes the flow of data in the MFD correlation

flowgraph.

Figure 3.12: Matched filter detector correlation flowgraph

1. Correlation Calculation

• Pad sources produce streams of complex valued baseband signals. The topmost

source acquires the signal stream from the USRP and, and the lower source ac-

quires a reference PU signal stream.

• These streams are then sent to a stream-to-vector block where they populate

vectors of length 1024.

• An FFT is then performed on each vector. The length of the FFT is equal to the

length of the source vectors, 1024.

• The vector results of the FFT blocks are then sent to a multiply conjugate block.

49

Here, the vector from the topmost FFT block is multiplied by the conjugate of

the lower FFT block.

• The resulting vector is then sent to a reverse FFT block, which performs an IDFT

and brings the values back into the time domain.

• The complex valued vector is sent to a complex-to-mag block where the magnitude

of each element is computed. Now, the data is organized as a vector of float values

of length 1024.

• Here, the flowgraph branches. In the topmost branch, the vector is converted into

a stream and sent to a time sink, which displays the correlation value in the time

domain. In the lower branch, the vector of correlation values is sent into a max

block which outputs the maximum value of the vector.

• Continuing in the lower branch, the maximum correlation value of each vector

is sent to a threshold block. The threshold block compares the incoming max-

imum correlation value to a prescribed threshold value and outputs a one or a

zero depending on whether the maximum correlation value is above or below the

threshold. The output of the threshold block is then sent to a moving average

block in order to eliminate anomalies from triggering false positives. This average

threshold value is then sent to a QT number sink and a pad sink.

• The maximum correlation value is also sent to a moving average block that takes

the average over 1024 samples and outputs that to a QT number sink.

50

Figure 3.13: Matched filter detector flowgraph with channel switching block

The MFD correlation flowgraph is encapsulated into a hierarchical block, which is then

used in a second hierarchical block that adds channel switching functionality. The flowgraph

of this second hierarchical block is shown in Figure 3.13. As shown, the MFD correlation

block is labeled as “QT GUI Matched Filter Detector,” and the resulting threshold value is

sent to an embedded Python block that is responsible for channel decision and switching.

Figure 3.14: Matched filter detector hierarchical block in the parent GR-MAC flowgraph

51

Figure 3.14 shows the GR-MAC flowgraph with the added matched filter detector and

channel switching block, labeled “QT GUI Mfd Channel Switching”. As shown, the first of

the two signals comes directly from the UHD: USRP source block, and the second is a copy

of the PU signal discussed in subsection 3.2.4.

3.4 Physical Setup

The physical setup of the experiment can be seen in Figure 3.15. Each USRP was attached

to a laptop PC via USB 3.0, with the PC running experiment-specific programs. In order to

cause desired interference to the secondary users when that was the goal of the experiment,

USRPs 1 and 3 were used as secondary users, and USRP 2 was used as the primary user.

Figure 3.15: Physical setup of USRP systems

3.5 Summary of Experimental Background

In this chapter, an overview of the various aspects of our cognitive radio implementations

was given. This overview included the equipment used, both hardware and software, as well

as theoretical background information on the two methods of spectrum sensing used: energy

detection and matched filter detection. A brief description of the physical setup of our CR

systems was also provided. In the following chapter, we will explain the various experiments

52

that were conducted in order to test performance of the CR systems, as well as discuss the

results of the experiments.

53

Chapter 4

Experimental Execution and Results

Using the flowgraphs and the USRPs as previously described, four experiments were per-

formed to test different individual aspects of our cognitive radio, with the final experiment

being a series of tests to display the total functionality of the cognitive radios as a whole. The

experiments were designed to determine the performance of our CR implementations using

metrics of probability of successful detections, pd, and bit error rate (BER). The experiments

were designed to to complete the following objectives.

1. Find the method of spectrum sensing with the higher value of pd,

i.e., arg max
pd

{pd,MFD, pd,ED}.

2. Determine the minimum sensing interval such that pd is maximum,

i.e., Is0 = min
Is0
{arg max{pd(Is0)}}.

3. Determine the minimum cycle interval such that BER is minimum,

i.e., Ic = arg min
Ic

{BER(IC)}.

54

4. Determine the performance of our CR implementations in terms of BER in the presence

of a PU signal as varying SNRs.

4.1 Discussion of Units, Measurements, and Thresh-

olds

This section discusses some important considerations about the units and measurements that

were used during the tests. These details are considered before the experiments are discussed

because understanding the results of the experiments relies upon them. In the first part of

this section, the process of acquiring units of decibels is discussed. In the second part, a

short description of the threshold values and how they were determined is given.

4.1.1 Units and Measurements

This section discusses the units that were used throughout the test. In an ideal cognitive

radio experimental setup, the measurements would be recorded and displayed in units of

power, namely decibel-milliwatts. By default however, GNU Radio provides relative power

in units of decibels. Though decibels are not a measurement of absolute power, they allow

relevant calculations for signal-to-noise ratios to be made. During our testing, we attempted

to acquire absolute units of decibel-milliwatts through manual calibration of the USRPs,

however, we eventually decided to use relative units of decibels. This section discusses the

process that led up to that decision.

Within the UHD USRP block provided in GNU Radio, the transmitter and receiver gains

55

are settable by the user. While the values for transmitter gain are in units of decibels, the

absolute power emitted from a USRP can be determined by using a power meter. In our

testing attempt to aquire absolute units of power, the transmitter port on the USRP was

connected to an Agilent P-Seriers power meter via an SMA cable. The GNU Radio flowgraph

which simulated a primary user, as shown in subsection 3.2.4, was run with the transmitter

gain first set to the minimum value of 0dB. The reading on the power meter was recorded.

Then, the transmitter gain was increased by 1 dB increments, up to its maximum of 86 dB,

and the power meter reading was recorded at every increment.

Our calibration method required using a loopback cable to create a direct connection

between a USRP’s transmitter port and another USRP’s receiver port. However, since the

maximum transmitter power is much higher than the maximum recommended input power, a

30 dB attenuator must be used on the loopback cable. Because of the need for an attenuator

in our USRP calibration tests, the previous process of connecting the USRP transmitter to

the Agilent power meter and recording the transmitter power at increasing gain values was

replicated with the 30dB attenuator attached. This was done to verify that the attenuator

would indeed decrease our recorded power values by 30 dB.

This process gave us the expected value for absolute output power of the transmitter

for every value of its gain. The next step in the calibration required using two USRPs, one

to transmit and the other to measure the power. On one of the USRPs, the primary user

flowgraph was run. A very simple flowgraph was created to act as a GNU Radio power

meter, and it is shown in Figure 4.1. The purpose of this flowgraph is to act similarly to the

Agilent power meter, but using the USRP. The operation of this flowgraph is similar to the

energy detector flowgraph, which is described block-by-block in section 3.3.1. This flowgraph

56

Figure 4.1: Power meter flowgraph

contains a number sink which outputs the power observed in the middle frequency bin. This

number shown by the number sink is analogous to the reading shown on the display of the

Agilent power meter. An offset block is added before the number sink, which is configurable

by the user during runtime. The offset block is used to match the value of the number sink

with the expected value observed by the power meter at a certain transmitter gain. This

flowgraph was run on the second USRP, and the two USRPs were attached with a loopback

cable, buffered by a 30dB attenuator.

This setup allowed us to obtain an offset value based on the differences between the

readings of the Agilent power meter and the power meter flowgraph, at any given transmitter

gain. For example, the power which was recorded from the Agilent power meter when the

transmitter gain was set to 70 dB was -4.0 dBm. Attaching the transmitter to the USRP

receiver and running the power meter flowgraph would result in a power reading of 15.9 dBm.

This is 19.9 dBm higher than the expected -4.0 dBm value, so the offset in the flowgraph

was set to -19.9 dBm. This offset was confirmed by checking several different values above

the noise floor.

57

Eventually, several issues were discovered regarding this method of power measurement.

The default receiver gain for the GR-MAC flowgraph that was described in section 3.2.1 is

45 dB. However, when the power meter was run with its gain set to 45 dB and our offset of

-19.9 dBm was used, the power readings would gradually hit a ceiling at high values of the

transmitter gain. We would expect that, in power values that were above the noise floor,

the readings from the power meter flowgraph would follow a 1:1 ratio with the transmitter

gain. That is, for every 1 dB increase in gain, we would expect a 1 dBm increase in absolute

power, as was found by the readings taken from the Agilent power meter. However, when

the receiver gain on the power meter flowgraph was set to 45 dB, the 1:1 ratio would not

hold true at high values for the transmitter gain. As the transmitter gain was increased by

1 dB, the increase in power from the flowgraph readings would diminish to below 1 dB.

Therefore, the receiver gain was set to 0 dB, and we attempted to find the correct offset

value again. The result was the elimination of the power ceiling, and the expected results

from the power meter received. However, it was found that the operation of the GR-MAC

flowgraph required a gain of 45 dB in order to provide data communication. This made it

impossible to obtain correct power readings on the same flowgraphs that would allow for

GR-MAC functionality.

Additionally, when the power meter flowgraph was run with 0 dB receiver gain with an

antenna instead of with a loopback cable, the power readings were only slightly above the

noise floor, even at the high transmitter gain values. This fact, in addition to the nonlinear

power readings at high gains, led us to abandon the effort of finding absolute power in units

of dBm. Instead, as is seen in the results section of this paper, the units used are dB rather

than dBm.

58

4.1.2 Thresholds

In both the matched filter detector and energy detector, the final decision of whether a

channel is occupied or not is made by the channel switcher embedded Python block. As

discussed in subsection 3.2.2, the input to the Python block is a one if a threshold from

the previous block is met, or a zero if it is not. The decision made by the Python block is

based on an average of these boolean values, and the meaning behind the threshold is now

discussed.

In the matched filter detector, the maximum correlation value is compared to a threshold,

and in the energy detector, the energy at a specified frequency is compared to a threshold.

After having used our cognitive radio system in different physical spaces, and at different

times, we noticed that the radio’s sensing decisions were highly sensitive to the threshold

settings. Therefore the thresholds were chosen to be static, meaning they would not change

during the course of a trial. Before each trial, the threshold values were adjusted such that

the average threshold value would not exceed the arbitrarily chosen value of 0.1 when the

primary user was not present, but would exceed that value when it was.

4.2 Experiments

Using the flowgraphs and USRPs as described in the previous chapter, four experiments

were performed. These experiments serve to display the performance and functionality of

our simple cognitive radio systems. The goal of these experiments was to determine the

probability of successful detection of both sensing methods, and what the ideal values used

for our adjustable parameters should be to create a cognitive radio system which provides

59

the most robustness.

The probability of successful detection for both sensing methods is the subject of the

first experiment. In the second and third experiments, the ideal sensing interval and cycle

intervals are determined using the metric of bit error rate derived from packet error rate.

The fourth and final experiment serves as a high-level view of our cognitive radio system

performance using bit error rate at varying PU SNRs.

4.2.1 Experiment One: Sensing Method Comparison

The goal of the first experiment was to determine which of the spectrum sensing methods

would provide a higher probability of successful PU detection at lower SNRs. In this exper-

iment, one USRP acted as the primary user, and the other two USRPs acted as secondary

users and used the two channel sensing methods to detect the presence of primary user.

In order to subject both of the channel sensing methods to the same conditions, the two

secondary user USRPs were placed close to each other at the same distance away from the

primary user. In order to rapidly record the outcomes of large quantities of detections in a

reasonable amount of time, we used the modified energy detector and matched filter detector

flowgraphs and implemented a Python driver for the tests. These are described in subsection

3.2.3.

The SNR of the primary user was recorded by using the power meter flowgraph on the

same USRP which would later run one of the two sensing methods. First, the average power

of the noise was recorded for several seconds. Then, the primary user was turned on and

the power of the signal was recorded. The power value of the noise was subtracted from the

60

power value of the signal to obtain the SNR. As discussed in section 4.1, the units of these

readings are dB.

Once the SNR of the primary user was recorded, the modified flowgraphs were run by the

Python test driver. In the modified flowgraphs, Python code is used to output the results

of a channel detection to a file. After a trial is over, this file is automatically read by the

test driver that started the trial, and the number of times that the channel was decidedly

occupied is counted. For both detection methods, 10,000 channel detections were attempted

in every trial. The number of trials was chosen arbitrarily.

It is important to emphasize that the independent variable in this experiment is the SNR

of the primary user, not the transmitter gain. The dependent variable, then, is the number

of times an occupied channel was successfully detected. Because the outcome can only be

one of two possibilities, either the PU signal was detected or not, the event of successful

detection can be defined as a Bernoulli random variable P detect with probability p. Let ns

be the number of successful Bernoulli trials and n be the total number of Bernoulli trials.

Then, p can be calculated as shown in (4.1). As n goes to infinity, the true value of p is

obtained. Therefore, a sufficiently large value of 10,000 trials was conducted.

p =
ns
n
. (4.1)

The transmitter gain of the PU was first set to its maximum value for which the SNR at

the power meter was observed to be 0 dB and no detections could occur. This was found to

be 42 dB. Thus, at a transmitter gain of 41 dB or lower, the signal was found to be under

the noise floor. Then, the transmitter gain was increased and the SNR was recorded by the

61

power meter. After the SNR was acquired, the modified matched filter and energy detector

flowgraphs were executed to collect the results of 10,000 detection attempts. The tests were

repeated and the transmitter gain was increased until both the energy detector and the

matched filter detector were deemed to be consistently successful. As shown by the results

section, at suitably high SNRs, both channel sensing methods achieved 100% detection in

some trials.

4.2.2 Experiment Two: Finding Ideal Sensing Interval

The goal of this experiment was to acquire the minimum sensing interval for which both

spectrum sensing methods would work reliably. Ideally, this interval should be as short as

possible so that more time can be allocated for the TX/RX phase of the cycle. However, it

still needs to be long enough so each method of spectrum sensing will maintain the previously

determined probability of successful detection.

During the sensing interval, an average is maintained within the flowgraphs. This average

is the result of boolean inputs, whose value determines if a user was detected in the observed

channel or not. A value of one means that a user was detected, and a value of zero means

that the observed channel was absent, thus, the average value lies between zero and one. If

the average is above 0.5, this means that a user has been detected in the target channel. This

process and its significance is discussed in more depth in subsection 3.2.2. If the channel

checking is executed with no averaging function in the flowgraph, the results are highly

vulnerable to anomalies. So, the averaging function is necessary to acquire reliable data.

The sensing interval is the interval over which the average is maintained. Initially, one

62

would assume the ideal sensing interval would be as large as possible, because this would

allow a long average value to be maintained, allowing the CR to provide a very accurate

decision on whether the channel is occupied or not. However, TX/RX is impossible during the

sensing interval. To maximize the allotted time for TX/RX, the ideal sensing interval should

actually be the smallest interval possible. Since very low sensing intervals are vulnerable

to anomalies, this test was designed to find the minimum sensing interval which would

maintain the probability of successful detection for each sensing method found in the previous

experiment.

In this experiment, one USRP was used as the primary user and the other two were

used as the secondary users. The primary user was set to its maximum gain value. The

expected behavior, then, was for the channel sensors to detect an occupied channel 100% of

the time. However, anomalies and insufficient values for successful averaging would cause

the channel sensors to mistakenly determine a vacant channel. The first sensing interval was

chosen to be an arbitrarily low number, so that the large amount of mistakes in averaging

and anomalies would cause the number of successful detections to be very low for both of

the channel sensing methods. Then, the sensing intervals were incrementally increased until

both detectors could detect with high accuracy.

The same Python test driver used in the first experiment was used for this experiment,

and, as in the first experiment, both detection methods were run over 10,000 trials to correctly

identify whether the channel was occupied or not. Again, the probability of detection p was

calculated using (4.1) and was used as a performance metric to compare the outcome to the

sensing interval.

63

4.2.3 Experiment Three: Finding Ideal Cycle Interval

The objective of the third experiment was to determine the minimum cycle interval in which

the bit error rate between two secondary users would be sufficiently low. In the previous

experiment, the minimum sensing interval was found, and, as discussed in section 3.2.2, the

sensing interval should be considered as a portion of the cycle interval. The mathematical

difference between the cycle interval and the sensing interval is the TX/RX interval, during

which data is allowed to be traded. Therefore, the ideal cycle interval can be determined by

measuring the packet error rate at varying cycle times, and calculating bit error rate from

packet error rate.

The cycle interval also determines the period between consecutive channel sensing steps.

In a system whose sole purpose is to avoid an occupied channel and does not have to trade

any data, the optimal cycle interval would be as small as possible. This is because, at a low

cycle interval, the channel sensing step could occur as frequently as possible, thus decreasing

time spent in a channel once it becomes occupied. Conversely, in a system whose sole purpose

is to trade data and is indifferent to the occupancy of a channel, the ideal cycling interval

would be as large as possible. This is because data would be traded during the entire interval.

Therefore, a balance must be found where data loss from the channel sensing interval is not

too high, but the CR system is still able to sense the spectrum frequently enough to avoid

the presence of a primary user in the channel.

By design, the channel switching functionality in the flowgraphs is independent of the

channel sensing method. The Python block that allows channel switching to occur in the

energy detector also does so in the matched filter detector. Additionally, the detection of a

64

primary user is irrelevant for this test because a primary user is detected during the sensing

interval, which is not a focus of this experiment. Thus, no primary user was simulated during

this experiment, and only the energy detector was used.

Two secondary users were configured with the energy detector flowgraphs. One of the

secondary users acted as a transmitter while the other acted as a receiver. They both used

the Python programs discussed in section 3.2.5 to generate and send a one-way data stream

of packets. For each of the following trials, the Python programs allowed one secondary user,

called SU-A to send 10,000 packets of total length 1,042 to the other secondary user, called

SU-B. The packets were counted by the receiver, and the result of this count was recorded

and used to find bit error rate for a one-way data stream between the two secondary users.

To calculate bit error rate, each bit in a packet was assumed to be an error with probability

pe independent of all other bits in the packet. Thus, the process of packet error can be

described as a Bernoulli process, since each of the 1042 bits in a packet has a probability

of error pe. The probability of packet error pp can be calculated using (4.2), where N is the

number of bits in the packet;

pp = 1− (1− pe)N . (4.2)

Each packet was sent using UDP as the transport layer protocol, and UDP will drop

a packet if it is corrupt, i.e., a bit is in error. Therefore, we can assume any packet not

correctly received had at least one bit in error. In this experiment, we observed the number

of packets not received out of 10,000 to calculate pp. Solving (4.2) for pe results in (4.3),

65

which was used to calculate bit error rate;

pe = 1− N
√

1− pp . (4.3)

In order to execute this experiment, we first needed to acquire an ideal bit error rate.

This would be the bit error rate during a trial in which channel switching never takes place

so that TX/RX is possible all of the time. The two secondary users were initialized by first

running the energy detector flowgraph which incorporated the MAC-layer interface, discussed

in section 3.2.1. Then, they were assigned IP addresses using the ifconfig command.

sudo ifconfig tap0 192.168.200.1

To ensure that the secondary users were connected correctly and were able to communicate,

we used the ping command before continuing on to the test.

ping 192.168.200.2

After the two secondary users were initialized, the Python transmitter program was run on

PU-A, and the receiver program was run on PU-B. The number of packets received by PU-B

was recorded and used to calculate the number of packets not received. The result of the first

trial served as an ideal scenario for the remainder of the experiment. Because no channel

switching occurred, the first trial contained the smallest packet loss.

Subsequent trials were executed similarly, but with channel switching enabled with vary-

ing cycle intervals. The sensing interval used for these experiments was the ideal sensing

interval found during the second experiment. This is discussed in subsection 4.3.2 in more

depth, but, in summary, 60 ms was found to be a sufficient detection interval for both chan-

nel sensing methods. The first cycle interval tested was set just above the sensing interval,

66

and resulted in a sort of zero-point for this experiment, for which the TX/RX interval was

so small that no data could be traded. The experiment was run for every cycle interval from

0.09 seconds to 0.39 seconds, in 0.03-second increments.

4.2.4 Experiment Four: Display of Cognitive Radio Functionality

Using the data we had acquired from the previous experiments and the experience we had

gained from setting them up, our final experiment was designed to demonstrate each aspect

of our CR system working together. These tests were not meant to be as rigorous or specific

as the previous ones. Instead, they were meant to display a summary of how our cognitive

radio implementations work. The most significant and important feature of our cognitive

radio system is that the secondary users are able to detect when a primary user arrives in

their current channel and simultaneously switch to an unoccupied channel while maintaining

minimal bit error rate. This experiment aims to demonstrate this functionality in action.

For these tests, one primary user and two secondary users were set up in the much the

same way as in previous experiments. The two secondary users were first initialized, using

either the matched filter detector implementation or the energy detector implementation.

Then, the ifconfig function was used to assign the secondary users network IP addresses, as

had been done for the second experiment. After using the ping function to ensure that each

secondary user could communicate with the other, the channel switching feature on each was

enabled, and the Python program which counts the number of received packets was started.

The primary user began transmitting to cause interference at the same time that the Python

transmitter program was started. The result of this was that the secondary users began their

67

one-way communication in an occupied channel. During their channel sensing intervals, the

secondary users checked for the presence of the primary user, and if the PU’s signal had

a large enough SNR to where the it could be detected, then the secondary users switched

channels and maintained the one-way data stream.

Tests in this experiment were run for the energy detector and the matched filter detector

at varying PU SNRs.

4.3 Results

Our main interest in this thesis was to provide a comparison between the energy detection

and matched filter detection methods, and use them to design a basic cognitive radio system

which can detect whether a primary user is present in its desired channel for communication

or not. We were able to achieve this goal by executing the experiments in the previous

section. Additionally, we were able to begin to investigate the processes involved in channel

switching and secondary user synchronization. This section discusses the results of our

experiments and begins to address their shortcomings.

4.3.1 Experiment One: Sensing Method Comparison

The first experiment was the most significant focus of our project. This experiment inves-

tigated the sensitivity of the energy detector and matched filter models to a primary user

at a low SNR, using the probability of successful detection as a performance metric. As the

SNR of the primary user was increased from 0 dB, the number of successful detections for

both of the detectors was recorded, out of 10,000, for each trial. Figure 4.2 shows a graph

68

Figure 4.2: Comparison of matched filter detector and energy detector performance based on the number of
successful detections out of 10,000 detection attempts for varying primary user signal-to-noise ratios

comparing the performances of these methods.

As shown, the matched filter detector begins detecting the presence of the primary user

reliably at an SNR roughly 6.4 dB lower than the energy detector. Both detection methods

jump from virtually 0 detections to nearly the perfect 10,000 detections relatively quickly as

primary user SNR is increased. For example, at 1 dB SNR, the matched filter failed to detect

the signal in all trials, but it had nearly 10,000 successful detections when the primary user’s

SNR was increased to 2.6 dB, a mere 1.6 dB increase. The window in which the detectors

perform imperfectly, but above 0, may seem insignificant, but its implications are important.

To remain synchronized, our cognitive radio system relies on two secondary users making the

same decision at the same time, but both performing individual analyses. If one secondary

user finds the channel to be occupied, but the other does not, one secondary user will switch

69

channels while the other does not. Obviously, this is detrimental to our system performance.

However, the window where this may occur is small, and, as SNR is increased, far more

consistent performance is observed.

The matched filter detector performed with an obvious and vast superiority to the energy

detector. The lowest SNR for which the matched filter’s probability of successful detection

was 1 was 3.1 dB, while the lowest SNR for consistently successful detections for the energy

detector was 9.7 dB. This means that the matched filter detector was more reliable than the

energy detector by a margin of 8.6 dB SNR for the primary user signal.

Therefore, the matched filter detector provided a much higher sensitivity to a low-SNR

primary user in our experiments. This is consistent with our findings in the literature,

where we found the main advantage of matched filter detection to be its higher sensitivity

to primary user signals in low SNR environements.

4.3.2 Experiment Two: Finding Ideal Sensing Interval

In the second experiment, we attempted to find the minimum sensing interval which would

maintain the performance of the channel sensing implementation. For this test, a primary

user at maximum gain was sensed by a secondary user 10,000 times, at varying sensing inter-

vals, beginning at 0.01 seconds. Both detection methods performed poorly, and the interval

was incremented for the subsequent tests until both methods were consistently successful.

Figure 4.3 displays the results of this experiment by comparing the energy detector and

matched filter detector at different sensing intervals.

The result of this experiment reveals a strange characteristic of the detection methods.

70

Figure 4.3: Successful detections out of 10,000 detection attempts for matched filter detector and energy
detector for varying spectrum sensing intervals

Before running this experiment, we expected that the energy detector and the matched

filter detector to behave similarly despite the sensing interval. However, the energy detector

was able to accurately make a detection 10,000 times as a sensing interval of 0.04 seconds,

whereas the matched filter did not achieve a probability of successful detections of one until

the sensing interval was set to 60 ms.

Though we did not provide a further experimental investigation in this thesis, which

would have been beyond the scope of this study, the result of this experiment allows us to

form a conjecture about the cause of the disparity. It is known from the literature that the

matched filter detector is a far more computationally complex method of signal detection

than the energy detector. While the energy detector only requires one FFT and a few more

relatively simple mathematical functions to be performed on each set of data, the matched

71

filter detector requires several FFTs, as well as the generation of a sample signal. The

difference in computational complexity and its effect on the flowgraphs should be investigated

in great depth in order to draw any real conclusions. However, a basic understanding can be

achieved by running the top command on the computer while it is executing each flowgraph.

The results of top while the energy detector and matched filter are executing can be seen in

Figure 4.4.

In the first line under the white bar in the output of top, details about the resource

usage of the currently running flowgraph, (denoted as “python”), can be seen. One obvious

difference between performance breakdown of the two flowgraphs is that, for the energy

detector, 295.3% of the available processing power is being used, while for the matched filter

detector, 533.6% is being used. Since the Lenovo Yoga laptop that this top had been run on

has 8 virtual cores, these values should be read as parts of 800%.

Though the higher resource usage of the matched filter detector is not a definitive reason

for the higher required sensing interval, the GNU Radio flowgraphs do require a certain level

of performance. It became obvious to us early on in our experience using GNU Radio that

seemingly insignificant things, such as a difference in computational intensity, can drastically

change the results of the simulations.

Despite the difference between the two flowgraphs, the 60 ms sensing interval that both

of the methods were able to use was far smaller than we had originally expected it would be

based on previous experimentation. For the third experiment, 60 ms was used as the sensing

interval because both of the methods could operate with this interval, and we wanted to

maintain consistency.

72

Figure 4.4: The results of top for the energy detector (top) and matched filter detector (bottom)

73

4.3.3 Experiment Three: Finding Ideal Cycle Interval

While we found the minimum sensing interval in the previous experiment, the operation

of the secondary users requires a balance between channel sensing and TX/RX. The goal

of the third experiment was to find the cycle interval which would provide an acceptable

balance, such that channel sensing could occur, while maintaining an acceptable bit error

rate. For these tests, bit error rate was calculated by first estimating the packet error rate

by subtracting the number of packets received from the number of packets sent in a one-way

communication and then using (4.3). Because the intervals in the cycle are independent

of the channel sensing method, only the energy detector was used for this test. However,

this is later discussed as a shortcoming in chapter 5. Table 4.1 quantifies the results of this

experiment, and they are graphed in Figure 4.5.

74

Table 4.1: Bit error rate for energy detector with network functionality for increasing cycle intervals

Cycle Interval (s) Calculated BER

0.09 1

0.12 3.22e-4

0.15 1.68e-4

0.18 2.41e-4

0.21 1.65e-4

0.24 1.12e-4

0.27 6.01e-5

0.30 8.15e-5

0.33 8.38e-5

0.36 8.57e-5

0.39 5.75e-5

∞ (ideal) 5.01e-5

75

Figure 4.5: Bit error rate for energy detector with network functionality for increasing cycle intervals

At a cycle interval of 90 ms, the bit error rate was 1. This cycle interval, then, was the

greatest cycle interval where a ”worst-case scenario” was observed. A drastic improvement

in bit error rate was made by increasing the cycle interval only slightly, and it continued to

improve gradually as the cycle interval continued to increase. In Figure 4.5, the bit error

rate can be seen approaching the ideal bit error rate as the cycle interval increases, where

the ideal bit error rate was calculated by counting the number of packets received when no

channel sensing step occurred.

The increase of the cycle interval allows the TX/RX interval to be increased, so less time

is spent losing data. At a cycle interval of 390 ms, the bit error rate was found to be suitably

close to the ideal bit error rate.

76

4.3.4 Experiment Four: Display of Cognitive Radio Functionality

The goal of the final suite of tests was to display the total functionality of our cognitive

radio system. For these tests, the primary user was activated so that the secondary users

would switch channels during their data communication. The execution of the fourth ex-

periment contained the most shortcomings of the four because of mistakes in programming

and misunderstanding the data. This subsection introduces those shortcomings, which are

elaborated in the conclusion.

Initially, this test was attempted using the ideal sensing and cycle intervals determined

by the second and third experiments. Though these values were decided experimentally and

individually, they were found to be insufficiently small when applied in the context of the

rest of the cognitive radio system. To the best of our abilities, we had synchronized the

clocks of our PC systems so that the secondary users would not encounter interference from

one user transmitting while the other was in their channel sensing step. For example, if the

sensing interval for the secondary users was 60 ms, it is imperative that the system clocks

for the secondary users must be synchronized to a level of certainty such that the two clocks

would not contain an offset close to 60 ms.

The reason for this can be realized by studying Table 3.1, which gives an example for

a possible channel switching scenario. In this scenario, the sensing interval is 0.2 seconds.

It can be seen that, during this interval, TX/RX stops so that the secondary users won’t

transmit any data. However, if there is an offset in the clocks of the two systems, one

secondary user will continue to transmit data during this period. This could cause the other

secondary user to falsely conclude that the channel is occupied by a primary user, and switch

77

channels. In our system, this would put the secondary users helplessly on different channels

with no way of achieving synchronicity.

In practice, it was found that this problem could be eliminated by simply increasing the

sensing and cycle intervals because a large sensing interval can act as a buffer in which no

interference from the opposite secondary user would be received. Therefore, in the fourth

experiment, we set the sensing interval for the secondary users to 200 ms instead of the ideal

60 ms, and we set the cycle interval to 1 second instead of the ideal 390 ms. Though the

values that were used were not ideal, they allowed us to display a functioning implementation

of a cognitive radio system who was sensitive to the presence of a primary user.

In this experiment, the bit error rate was calculated in the same way as in the previous

experiments. At the beginning of each trial, a primary user was activated so that the

secondary users would have to switch channels during the experiment. The SNR of the

primary user was recorded and the bit error rate on the one-way data stream between the

secondary users was calculated from the number of packets received out of 1,000. The results

of the experiment are provided by Table 4.2.

Because so few tests were run in this experiment, the results are slightly skewed and

inconsistent. However, there are still important findings that can be derived from the results.

The first thing to notice is that the interference from the primary user did not increase the

bit error rate of the secondary users, except for in the final trial. Both channel sensing

methods were able to detect the primary user at a low enough SNR that would not cause

interference.

We had expected there to be a large bit error rate for the trials in which the primary

user SNR was barely above the threshold for detection, such as in the trials for which the

78

Table 4.2: Bit error rate for different primary user signal-to-noise ratios for the energy detector and matched
filter detector

PU SNR (dB) Control BER ED BER ED
Switched

MFD BER MFD
Switched

1.0 1.04e-4 1.07e-4 N 9.52e-5 N
1.8 8.85e-5 1.00e-4 N 8.68e-5 N
2.2 8.85e-5 9.26e-5 N 1.05e-4 N
2.6 8.01e-5 9.79e-5 N 1.23e-4 N
3.8 8.63e-5 9.34e-5 N 1.16e-4 N
5.4 7.50e-5 9.69e-5 N 1.24e-4 Y
6.4 8.98e-5 9.58e-4 N 8.48e-5 Y
8.0 8.90e-5 1.01e-4 N 8.31e-5 Y
9.7 9.16e-5 8.36e-5 Y 8.80e-5 Y
11.5 1.08e-4 1.20e-4 Y 9.29e-5 Y

29.0 1 1.33e-4 Y 1.28e-4 Y

SNR was 8.0, 9.7, or 11.5 dB for the energy detector or 3.8, 5.4, or 6.4 dB for the matched

filter detector. We expected this because it seemed likely that one of the secondary users

would detect the primary user and switch channels, while the other would not, completely

disrupting communications. However, the secondary users made the same switching decisions

in the same trials, allowing for communication to continue in an unoccupied channel.

Finally, the most significant part of the results lies in the last trial. At an SNR of

29 dB, the BER for the control test was 1, meaning that no packets were received and

communication between secondary users was impossible. However, when channel sensing

and switching functionality was enabled, both the energy detector and the matched filter

detector detected the presence of the primary user and switched channels, allowing them

to continue communication in an unoccupied channel. This trial demonstrated the core

functionality of the cognitive radio system designed and implemented in this thesis, and

thus, its basic functionality had proven to be a success.

79

Chapter 5

Conclusions

In this thesis, cognitive radio was introduced and discussed in the context of existing litera-

ture. Two of our own implementations of cognitive radio systems were then presented along

with the tools and equipment used to create them. Central to our experimental implemen-

tations were the methods of primary user detection. One system featured energy detection,

while the other featured matched filter detection. The cycle interval was defined as the inter-

val of time spent in two sub-intervals of the cognitive radio’s operation: the sensing interval

and the TX/RX interval. Then, four experiments were discussed and performed in order

to determine the probability of successful detection of each method of spectrum sensing at

varying primary user SNRs, to determine the minimum sensing interval value that maintains

the probability of successful detection, to determine the minimum cycle interval that results

in minimum BER, and to observe the total functionality of our CR systems in the presence

of a PU.

In Experiment 1, the probability of the successful detection of each method of spectrum

sensing was determined by running both the ED and the MFD in the presence of a PU. The

amount of trials that each method successfully detected the PU’s presence was recorded out

of 10,000. Assuming each trial was a Bernoulli trial, the probability of successful detection

80

was calculated. The results of this experiment show that the MFD provided a much higher

probability of detection than the ED at lower PU SNRs. The ED was able to achieve a high

probability once the SNR exceeded 9.1 dB.

In Experiment 2, the minimum sensing interval which would maintain the probability

of detection found in Experiment 1 was determined. This was done using each spectrum

sensing method and varying the length of the sensing interval from 10 ms to 60 ms. Again,

this experiment was run over 10,000 Bernoulli trials at each sensing interval to achieve a

confident value of probability. It was found that each method performed poorly at intervals

lower than 30 ms, and both were able to achieve a probability consistent with the previous

experiment at an interval of 60 ms.

In Experiment 3, the objective was to determine the value of the cycle interval that

would minimize the BER between the two secondary users. Using an infinite cycle interval

as our control, i.e., channel switching functionality was disabled, each secondary user’s cycle

interval was varied from 90 ms to 390 ms, increasing in increments of 30 ms. It was found

that, as expected, the BER decreased with increased cycle intervals. At a cycle interval of

390 ms, the BER became close to the ideal, and the decision was made that the trade-off

between cycle time and BER was acceptable.

Finally, in Experiment 4, we displayed the functionality of our CR systems as a whole

with spectrum sensing, channel switching, and data transmission enabled. The execution

and results of this experiment revealed some problems with our previous conclusions and the

implementations from which they were derived. For example, the sensing interval and cycle

interval parameters were found to be insufficiently small in practice, and led to unsatisfactory

performance. Increasing these parameters to larger values led to greatly improved perfor-

81

mance. We measured the performance of our CR systems in terms of BER at varying PU

SNRs. In each trial, we started the CRs in an unoccupied channel, began data transmission,

and then turned on the PU in the same channel. The results of this experiment are shown

in Table 4.2. The most significant result from this experiment comes from our final trial,

when the PU was transmitting at such a high energy level that the BER when the radios

stayed in the occupied channel was 1. However, when channel switching was enabled, both

the ED based CR and the MFD based CR successfully switched into an unoccupied channel

and were able to communicate with a much better BER.

From the results of Experiment 1, it was concluded that the CR implementation that

utilizes MFD is the more robust of the two presented in this thesis in terms of probability

of PU signal detection. This is primarily due to the MFD method’s ability to more reliably

detect the presence of a PU signal at lower SNRs than the ED method. From Experiment

3, it is also important to note that we were able to obtain a BER between the CR systems

that came close to that of a regular radio system in an unoccupied channel by finding an

ideal cycle interval. This shows that CR systems are able to transmit data with minimal

penalty. Finally, the results of the final trial of Experiment 4 show that both of our CR

implementations were able to perform well by switching out of an occupied channel where

they would not have been able to communicate at all with each other, and into an unoccupied

channel where they could communicate at a much lower BER.

Our experimental design produced several shortcomings. Now that they have been con-

ducted, we are able to reflect on these shortcomings and what we could have done to provide

better tests for our system. All of the experiments could have benefited from more trials and

being executed multiple times. Many of the results show inconsistencies and anomalies in

82

the data. This is because either not enough experiments were run, or not enough values were

tested. For example, the curves in Figure 4.2 would likely give us a much better understand-

ing of the behavior of the detection methods had more trials been executed. Additionally,

our experiments did not investigate more traditional metrics of cognitive radio performance,

such as probability of false detection. Ultimately, this was due to time constraints, and

the probability of successful detection was deemed a more valuable metric to spend time

investigating and measuring.

In the third experiment, only the energy detector was used to find the ideal cycle interval.

One of our greatest takeaways from this project is that systems very rarely work the way you

intend them to. Perhaps repeating the cycle interval tests with the matched filter detector

would have revealed some previously unknown characteristic about the detection method or

the experiment itself.

The largest and most disappointing shortcoming was that, after spending weeks forming

and executing experiments to find the ideal values for sensing and cycle intervals, we were

not able to use them for the final demonstration in the fourth experiment. This was most

likely due to a number of details being overlooked in the setup and the programming for the

channel switcher blocks. From the results of the first three experiments, we believe that a

functional implementation can be achieved with low sensing and cycle intervals by decreasing

the offset in the system clocks and providing more robust checks of the system time in the

channel switcher block code. Further work would be needed to test this belief.

Our experiments contained at most only one primary user and two secondary users. In

a real-world application, this arrangement would be rare. Most wireless networks consist

of far more users, and the consideration of many users in a cognitive radio network was a

83

common theme in our literature review. Because of our focused effort on the investigation

of spectrum sensing techniques, our networks lacked variety, and we are unable to make a

conjecture as to the scalability of our system. Further work may also include increasing

the number of primary and secondary users to determine whether or not the results of our

experimentation could be extended to a network of N secondary users and M primary users.

Thus, practical values of N and M may be obtained.

Cognitive radio has undoubtedly come a long way since Mitola first introduced the idea

to the communications community. However, despite seeing several significant milestones

such as TVWS and incorporation of SAS into the CBRS Band, cognitive radio technology

still has a ways to go before its implementation will be commonplace [5], [25]. The reason

behind CR’s relatively slow commercial deployment can be largely traced back to uncer-

tainty surrounding CR’s performance in practical settings, as well as its inability to provide

a pressing use case that current cellular networks do not already offer. Developing a better

understanding of CR performance will be a crucial step forward in expanding CR use cases.

Much of the uncertainty surrounding performance analysis of practical CR implementations

relates to unreliability of primary user detection techniques. As the most important metric

for CRN performance, the CR nodes’ ability to effectively detect primary users’ signals and

mitigate harmful interference to them is of central importance to CR’s applicability in com-

mercial settings. However, as we have seen with our experiments, meeting these performance

requirements is often a challenging task, and there are often significant limitations imposed

by the sensing method itself.

In general, there exists a trade off between detection sensitivity and computational com-

plexity, which complicates the CR system design process. As a result, future work in the

84

implementation of CR systems will necessarily involve complexity reduction of the more so-

phisticated sensing techniques that tend to be more reliable, such as cyclostationary feature

detection and other wideband sensing techniques. Nevertheless, the diverse, flexible features

that CR paradigm has to offer along with its existing success in several applications bode

well for the future of this technology.

85

BIBLIOGRAPHY

86

Bibliography

[1] C. Tellambura and S. Kusaladharma, An Overview of Cognitive Radio Networks. Wiley

Encyclopedia of Electronics and Electrical Engineering, Mar. 2017, ch. Networking.

[2] D. Das and S. Das, “A Survey on Spectrum Occupancy Measurement for Cognitive

Radio,” Wireless Personal Communications, vol. 85, p. 2581–2598, Jul. 2015.

[3] “Cognitive Radio for Public Safety,” https://www.fcc.gov/general/cognitive-radio-

public-safety, accessed: 2020-10-28.

[4] D. Scaperoth, “Configurable SDR Operation for Cognitive Radio Applications using

GNU Radio and the Universal Software Radio Peripheral,” Master’s thesis, Virginia

Tech, 2007.

[5] A. Kaushik, S. K. Sharma, S. Chatzinotas, B. Ottersten, and F. K. Jondral,

Modeling and Performance Analysis of Cognitive Radio Systems from a Deployment

Perspective. Singapore: Springer Singapore, 2019, pp. 87–128. [Online]. Available:

https://doi.org/10.1007/978-981-10-1394-2 4

[6] A. Rehan and G. Y. Arfat, “Detection of Vacant Frequency Bands in Cognitive Radio,”

Master’s thesis, Blekinge Institute of Technology, School of Engineering, 2010.

87

https://doi.org/10.1007/978-981-10-1394-2_4

[7] K. Ghosh and A. Nath, “Cognitive Radio Networks: a Comprehensive Study on Scope

and Applications,” International Journal of Innovative Research in Advanced Engineer-

ing, vol. 2, pp. 44–56, Jan. 2016.

[8] S. Mehta, S. Sharma, and R. Khanna, “SMT-8036 Based Implementation of Secured

Software Defined Radio System for Adaptive Modulation Technique,” in Advances in

Computing and Communications, A. Abraham, J. L. Mauri, J. F. Buford, J. Suzuki,

and S. M. Thampi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.

205–212.

[9] V. T. Nguyen, F. Villain, and Y. L. Guillou, “Cognitive Radio RF: Overview

and Challenges,” VLSI Design, vol. 2012, 2012. [Online]. Available: https:

//doi.org/10.1155/2012/716476

[10] T. Mukherjee and A. Nath, “Issues and Challenges in Spectrum management in Cogni-

tive Radio Networks,” Current Trends in Technology and Science, vol. 4, pp. 545–554,

Jul. 2015.

[11] S. Li, T. H. Luan, and X. Shen, “Channel Allocation for Smooth Video Delivery

over Cognitive Radio Networks,” in 2010 IEEE Global Telecommunications Conference

GLOBECOM 2010, 2010, pp. 1–5.

[12] M. Zareei, I. A. K. M. Muzahidul, S. Baharun, C. Rosales, L. Azpilicueta, and N. Man-

soor, “Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A

Survey,” Sensors (Basel, Switzerland), vol. 17, 2017.

88

https://doi.org/10.1155/2012/716476
https://doi.org/10.1155/2012/716476

[13] Y. Arjounne and N. Kaabouch, “A Comprehensive Survey on Spectrum Sensing

in Cognitive Radio Networks: Recent Advances, New Challenges, and Future

Research Directions,” Sensors (Basel), vol. 19(1), no. 126, 2019. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339174/

[14] B. Ahsant and R. Viswanathan, A Review of Cooperative Spectrum Sensing in Cognitive

Radios. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 69–80. [Online].

Available: https://doi.org/10.1007/978-3-642-32180-1 4

[15] A. Ranjan, Anurag, and B. Singh, “Design and analysis of spectrum sensing in cogni-

tive radio based on energy detection,” in 2016 International Conference on Signal and

Information Processing (IConSIP), 2016, pp. 1–5.

[16] C. Tellambura, Spectrum Sensing Methods and Their Performance. Singapore:

Springer Singapore, 2018, pp. 1–22. [Online]. Available: https://doi.org/10.

1007/978-981-10-1389-8 6-1

[17] K. B. Letaief and W. Zhang, “Cooperative Communications for Cognitive Radio Net-

works,” Proceedings of the IEEE, vol. 97, no. 5, pp. 878–893, 2009.

[18] A. Sharmila and P. Dananjayan, “Spectrum Sharing Techniques in Cognitive Radio

Networks–A Survey,” in 2019 IEEE International Conference on System, Computation,

Automation and Networking (ICSCAN), 2019, pp. 1–4.

[19] J. Mitola, “Cognitive Radio: An Integrated Agent Architecture for Software Defined

Radio,” 2000.

89

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339174/
https://doi.org/10.1007/978-3-642-32180-1_4
https://doi.org/10.1007/978-981-10-1389-8_6-1
https://doi.org/10.1007/978-981-10-1389-8_6-1

[20] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,”

IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.

[21] M. López-Beńıtez, Overview of Recent Applications of Cognitive Radio in Wireless

Communication Systems. Singapore: Springer Singapore, 2018, pp. 1–32. [Online].

Available: https://doi.org/10.1007/978-981-10-1389-8 59-1

[22] F. C. Commission, “In the Matter of Unlicensed Operation in the TV Broad-

cast Bands, Additional Spectrum for Unlicensed Devices Below 900 MHz and in

the 3 GHz Band,” https://www.fcc.gov/document/matter-unlicensed-operation-tv-

broadcast-bands-additional, 11 2008.

[23] O. Holland, Spectrum Policy and Cognitive Radio Standards. Singapore: Springer

Singapore, 2018, pp. 1–24. [Online]. Available: https://doi.org/10.1007/

978-981-10-1389-8 46-1

[24] J. H. Martin, L. S. Dooley, and K. C. P. Wong, Cognitive Radio and TV White Space

(TVWS) Applications. Singapore: Springer Singapore, 2019, pp. 1935–1970. [Online].

Available: https://doi.org/10.1007/978-981-10-1394-2 62

[25] P. Anker, Cognitive Radio: The Need to Align Regulations with Technology. Singapore:

Springer Singapore, 2019, pp. 1537–1557. [Online]. Available: https://doi.org/10.1007/

978-981-10-1394-2 45

[26] K. Ishizu, K. Mizutani, T. Matsumura, Z. Lan, and H. Harada, IEEE 802.11af Wi-Fi

in TV White Space. Singapore: Springer Singapore, 2019, pp. 1509–1535. [Online].

Available: https://doi.org/10.1007/978-981-10-1394-2 53

90

https://doi.org/10.1007/978-981-10-1389-8_59-1
https://doi.org/10.1007/978-981-10-1389-8_46-1
https://doi.org/10.1007/978-981-10-1389-8_46-1
https://doi.org/10.1007/978-981-10-1394-2_62
https://doi.org/10.1007/978-981-10-1394-2_45
https://doi.org/10.1007/978-981-10-1394-2_45
https://doi.org/10.1007/978-981-10-1394-2_53

[27] M. D. Mueck, S. Srikanteswara, and B. Badic, “Spectrum Sharing: Licensed Shared

Access (LSA) and Spectrum Access System (SAS),” Intel, Whitepaper, 2015.

[28] “3.5 GHz Band Overview,” https://www.fcc.gov/wireless/bureau-divisions/mobility-

division/35-ghz-band/35-ghz-band-overview, accessed: 2021-03-03.

[29] “CBRS, SAS and Spectrum Sharing: The Complete Guide,”

https://blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/, accessed: 2021-03-03.

[30] A. H. Sakr, H. Tabassum, E. Hossain, and D. I. Kim, “Cognitive spectrum access in

device-to-device-enabled cellular networks,” IEEE Communications Magazine, vol. 53,

no. 7, pp. 126–133, 2015.

[31] A. Abu Alkheir and H. T. Mouftah, “Cognitive Radio for Public Safety

Communications,” in Wireless Public Safety Networks 2, D. Câmara and N. Nikaein,

Eds. Elsevier, 2016, pp. 295 – 316. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/B9781785480522500104

[32] N. Uchida, G. Sato, K. Takahata, and Y. Shibata, “Optimal Route Selection Method

with Satellite System for Cognitive Wireless Network in Disaster Information Network,”

in 2011 IEEE International Conference on Advanced Information Networking and Ap-

plications, 2011, pp. 23–29.

[33] E. C. Y. Peh, Y. Liang, Y. L. Guan, and Y. Pei, “Energy-Efficient Cooperative Spec-

trum Sensing in Cognitive Radio Networks,” in 2011 IEEE Global Telecommunications

Conference - GLOBECOM 2011, 2011, pp. 1–5.

[34] “UHD,” https://kb.ettus.com/UHD, accessed: 2021-03-15.

91

http://www.sciencedirect.com/science/article/pii/B9781785480522500104
http://www.sciencedirect.com/science/article/pii/B9781785480522500104
https://kb.ettus.com/UHD

[35] J. A. Gilbert, “Accessing the RF Spectrum with GNU Radio.” Mar. 2019. [Online].

Available: https://www.osti.gov/biblio/1639511

[36] M. A. Sarijari, A. Marwanto, N. Fisal, S. K. S. Yusof, R. A. Rashid, and M. H. Satria,

“Energy detection sensing based on GNU radio and USRP: An analysis study,” in 2009

IEEE 9th Malaysia International Conference on Communications (MICC), 2009, pp.

338–342.

[37] J. Malsbury, B. Seeber, and M. Dickens, “GR-MAC,”

https://github.com/jmalsbury/gr-mac, Sept. 2014.

[38] R. Baraniuk, Signals and Systems, 15th ed. OpenStax CNX, Oct. 2015. [Online].

Available: http://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4.

92

https://www.osti.gov/biblio/1639511
http://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4.

Appendix A

Channel Switching Block

All of the Python code used for the channel switching block, the rapid testing block, the UDP
transmitter and receiver, and the testing drivers are included in this appendix. Descriptions
for these codes are given in section 3.2.

”””
Embedded Python Blocks :

Each t h i s f i l e i s saved , GRC w i l l i n s t a n t i a t e the f i r s t c l a s s i t f i n d s to get
por t s and parameters o f your block . The arguments to i n i t w i l l be the
parameters . A l l o f them are r equ i r ed to have d e f a u l t va lue s !
”””
import numpy as np
from gnuradio import gr
import pmt
import time
import math

D e f i n i t i o n o f Global Var i ab l e s
CHANNELS[x] w i l l be the w i f i channel x+1.
#CHANNELS = [2412 e6 , 2417 e6 , 2422 e6 , 2427 e6 , 2432 e6 , 2437 e6 , 2442 e6 , 2447 e6 ,

2452 e6 , 2457 e6 , 2462 e6 , 2467 e6 , 2472 e6 , 2484 e6]
#CHANNELS = [2484 e6 , 2486 e6 , 2488 e6 , 2490 e6 , 2492 e6 , 2494 e6]
CHANNELS = [2481 e6 , 2482 e6 , 2483 e6 , 2484 e6 , 2485 e6 , 2486 e6 , 2487 e6 , 2488 e6 ,

2489 e6 , 2490 e6 , 2491 e6 , 2492 e6 , 2493 e6 , 2494 e6 , 2495 e6]

DETECT CHANNEL TIME = 0.2 # time i n t e r v a l in seconds f o r spectrum ana ly s i s ,
per channel

check ing = 1 # Three modes f o r check ing . 1 = TXRX, 2 = Finding a s u i t a b l e
channel , 3 = found a s u i t a b l e channel , wa i t ing f o r check ing per iod to
exp i r e

t s c s = 0 .0 # Time s i n c e check s t a r t e d
channe l s checked = 0 # Number o f channe l s checked in a c y c l e
th r e sho ld avg = 0 .0
prev ious channe l de te rmined = False

cu r r en t channe l = 0
Using l a s t c h a n n e l to ensure that messages are only passed when the channel

changes (l a s t c h a n n e l != cur rent channel)

93

This i s to avoid performance i s s u e s when t ry ing to pass messages at a high
ra t e

l a s t c h a n n e l = cur r en t channe l
t e s t f r e q = 1000
swi tch ing = 0
custom freq = CHANNELS[cur r en t channe l]

tx amp = 0 .0

####### Helper Functions ######

def increment channe l () :
g l o b a l cu r r en t channe l
cu r r en t channe l += 1
i f cu r r en t channe l > l en (CHANNELS) −1:

cu r r en t channe l = 0

Main Block Class

c l a s s blk (gr . sync b lock) :
Block I n i t i a t i o n
de f i n i t (s e l f , c y c l e t i m e =5) : # only d e f a u l t arguments here

gr . sync b lock . i n i t (
s e l f ,
name= 'Embedded Python Block ' ,
i n s i g = [np . f l o a t 3 2] ,
o u t s i g=None ,

)

Create the input message por t s f o r sw i t ch ing and custom frequency ,
when

swi tch ing i s turned o f f .
s e l f . m e s s a g e p o r t r e g i s t e r i n (pmt . i n t e r n (' sw i t ch ing '))
s e l f . m e s s a g e p o r t r e g i s t e r i n (pmt . i n t e r n (' custom freq '))
s e l f . s e t msg hand le r (pmt . i n t e r n (' sw i t ch ing ') , s e l f . s e t s w i t c h i n g)
s e l f . s e t msg hand le r (pmt . i n t e r n (' custom freq ') , s e l f . s e t c u s t o m f r e q)

Create the output message por t s f o r channel sw i t ch ing and debugging
s e l f . m e s s a g e p o r t r e g i s t e r o u t (pmt . i n t e r n (' msg out rx '))
s e l f . m e s s a g e p o r t r e g i s t e r o u t (pmt . i n t e r n (' msg out tx '))
s e l f . m e s s a g e p o r t r e g i s t e r o u t (pmt . i n t e r n (' debug '))
s e l f . c y c l e t i m e = c y c l e t i m e

####### Helper Functions f o r Message Reception ######
def s e t s w i t c h i n g (s e l f , msg) :

' ' '
Incoming message handler to determine i f channel sw i t ch ing i s on or

o f f
' ' '
g l o b a l sw i t ch ing
For some reason , python r e q u i r e s c a s t i n g to f l o a t , then to i n t
sw i t ch ing = i n t (f l o a t (pmt . to python (msg)))

94

de f s e t c u s t o m f r e q (s e l f , msg) :
' ' '
Incoming message handler to determine the t a r g e t f requency to use
i f channel sw i t ch ing i s o f f .
' ' '
g l o b a l custom freq
custom freq = f l o a t (pmt . to python (msg))

Main Work Function f o r Block
def work (s e l f , input i tems , output i tems) :

Set g l o b a l v a r i a b l e s f o r cont inuous p r o c e s s i n g
g l o b a l cu r r en t channe l
g l o b a l l a s t c h a n n e l
g l o b a l sw i t ch ing
g l o b a l custom freq
g l o b a l check ing
g l o b a l t s c s
g l o b a l channe l s checked
g l o b a l th r e sho ld avg
g l o b a l prev ious channe l de te rmined
g l o b a l tx amp

Set th r e sho ld to the most r e c ent th r e sho ld value
th r e sho ld = input i t ems [0] [−1]
th r e sho ld avg = thre sho ld avg ∗ 0 .9 + thre sho ld ∗ 0 .1 #Do Ro l l i ng

average f o r th r e sho ld
i f sw i t ch ing == 1 . 0 : # I f channel sw i t ch ing i s turned on

i f check ing == 2 : # I f check ing i s s e t to check−channel mode
cur r ent t ime = time . time ()
i f cu r r en t t ime >= t s c s+DETECT CHANNEL TIME∗(channe l s checked

+1) :

i f not prev ious channe l de te rmined :
I f the prev ious channel has not yet been deemed

unsu i tab le , make a determinat ion be f o r e
moving on
i f th r e sho ld avg > 0 . 5 :

p r i n t (CHANNELS[cur r en t channe l] , ” unsu i tab le ,
check ing next channel ”)

increment channe l ()
s e l f . message port pub (pmt . i n t e r n (' msg out rx ') ,

pmt . cons (pmt . to pmt (' f r e q ') , pmt . to pmt (
CHANNELS[cur r en t channe l])))

s e l f . message port pub (pmt . i n t e r n (' msg out tx ') ,
pmt . cons (pmt . to pmt (' f r e q ') , pmt . to pmt (
CHANNELS[cur r en t channe l])))

channe l s checked += 1
thre sho ld avg = 0 .0

e l s e :

95

pr in t (CHANNELS[cur r en t channe l] , ”no primary user
detec ted . . . s t ay ing here , avg=” , th re sho ld avg
)

check ing = 1

e l s e :
I f the prev ious channel has been deemed unsu i tab le ,

accumulate average f o r th r e sho ld avg
S u i t a b i l i t y w i l l be determined a f t e r the channel i s

switched !
pass

e l s e :
I f check ing == 1 , the CR i s in the TXRX step , and i s not

check ing .
I f not checking , r epea t ed ly check i f i t i s time f o r check ing
i f math . fmod (time . time () , s e l f . c y c l e t i m e) <= 0 . 0 2 :

p r i n t (” S ta r t i ng check ing ”)
Change check ing mode to check ing
check ing = 2
Switch to a channel in CHANNELS l i s t
s e l f . message port pub (pmt . i n t e r n (' msg out rx ') , pmt . cons (

pmt . to pmt (' f r e q ') , pmt . to pmt (CHANNELS[
cu r r en t channe l])))

s e l f . message port pub (pmt . i n t e r n (' msg out tx ') , pmt . cons (
pmt . to pmt (' f r e q ') , pmt . to pmt (CHANNELS[
cu r r en t channe l])))

Set the t r an smi t t e r gain to 0 , to ensure no i n t e r f e r e n c e
with channel sw i t ch ing

tx amp = 0.0
s e l f . message port pub (pmt . i n t e r n (' msg out tx ') , pmt . cons (

pmt . to pmt (' gain ') , pmt . to pmt (tx amp)))
Star t the timer , used in the channel sw i t ch ing

f u n c t i o n a l i t y
t s c s = time . time ()

e l i f (tx amp == 0 . 0) :
Set the t r an smi t t e r gain to 62 . 5 , to a l low f o r

t ransmi s s i on / r e c e p t i o n o f data
Check the tx amp value so that messages are not

con t inous l y sent , which would g r e a t l y h inder
performance .

tx amp = 62 .5
s e l f . message port pub (pmt . i n t e r n (' msg out tx ') , pmt . cons (

pmt . to pmt (' gain ') , pmt . to pmt (tx amp)))

e l s e :
I f sw i t ch ing i s o f f , t ransmit at the d e s i r e d custom frequency
s e l f . message port pub (pmt . i n t e r n (' msg out rx ') , pmt . cons (pmt .

to pmt (' f r e q ') , pmt . to pmt (custom freq)))
cu r r en t channe l = 0

return l en (input i t ems [0])

96

Appendix B

Simplified Channel Switching Block

”””
Embedded Python Blocks :

Each t h i s f i l e i s saved , GRC w i l l i n s t a n t i a t e the f i r s t c l a s s i t f i n d s to get
por t s and parameters o f your block . The arguments to i n i t w i l l be the
parameters . A l l o f them are r equ i r ed to have d e f a u l t va lue s !
”””
import numpy as np
from gnuradio import gr
import pmt
import time
import math

D e f i n i t i o n o f Global Var i ab l e s
t s c s = 0 .0 # Time s i n c e check s t a r t e d
thre sho ld avg = 0 .0
sw i t ch ing = 0

Main Block Class

c l a s s blk (gr . sync b lock) :
de f i n i t (s e l f , c y c l e i n t e r v a l =5, s e n s i n g i n t e r v a l =0.2) : # only

d e f a u l t arguments here
gr . sync b lock . i n i t (

s e l f ,
name= 'Embedded Python Block ' ,
i n s i g = [np . f l o a t 3 2] ,
o u t s i g = None

)

Create the input message por t s f o r sw i t ch ing and custom frequency ,
when

swi tch ing i s turned o f f .
s e l f . m e s s a g e p o r t r e g i s t e r i n (pmt . i n t e r n (' sw i t ch ing '))
s e l f . s e t msg hand le r (pmt . i n t e r n (' sw i t ch ing ') , s e l f . s e t s w i t c h i n g)

Create the output message por t s f o r channel sw i t ch ing and debugging

97

s e l f . m e s s a g e p o r t r e g i s t e r o u t (pmt . i n t e r n (' out '))
s e l f . c y c l e i n t e r v a l = c y c l e i n t e r v a l
s e l f . s e n s i n g i n t e r v a l = s e n s i n g i n t e r v a l

####### Helper Functions f o r Message Reception ######
def s e t s w i t c h i n g (s e l f , msg) :

' ' '
Incoming message handler to determine i f channel sw i t ch ing i s on or

o f f
' ' '
g l o b a l sw i t ch ing
For some reason , python r e q u i r e s c a s t i n g to f l o a t , then to i n t
sw i t ch ing = i n t (f l o a t (pmt . to python (msg)))

Main Work Function f o r Block
def work (s e l f , input i tems , output i tems) :

Set g l o b a l v a r i a b l e s f o r cont inuous p r o c e s s i n g
g l o b a l sw i t ch ing
g l o b a l t s c s
g l o b a l th r e sho ld avg

Set th r e sho ld to the most r e c ent th r e sho ld value
th r e sho ld = input i t ems [0] [−1]
th r e sho ld avg = thre sho ld avg ∗ 0 .9 + thre sho ld ∗ 0 .1 #Do Ro l l i ng

average f o r th r e sho ld

i f sw i t ch ing == 1 . 0 : # I f channel sw i t ch ing i s turned on

cur r ent t ime = time . time ()
i f cu r r en t t ime >= t s c s+s e l f . s e n s i n g i n t e r v a l :

i f th r e sho ld avg > 0 . 5 :
s e l f . message port pub (pmt . i n t e r n (' out ') , pmt . i n t e r n (s t r (”

occupied ”)))

e l s e :
s e l f . message port pub (pmt . i n t e r n (' out ') , pmt . i n t e r n (s t r (”

vacant ”)))

th r e sho ld avg = 0 .0
t s c s = time . time ()

e l s e :
I f the prev ious channel has been deemed unsu i tab le ,

accumulate average f o r th r e sho ld avg
S u i t a b i l i t y w i l l be determined a f t e r the channel i s switched

!
pass

re turn l en (input i t ems [0])

98

Appendix C

Rapid Testing Block

”””
Embedded Python Blocks :

Each t h i s f i l e i s saved , GRC w i l l i n s t a n t i a t e the f i r s t c l a s s i t f i n d s to get
por t s and parameters o f your block . The arguments to i n i t w i l l be the
parameters . A l l o f them are r equ i r ed to have d e f a u l t va lue s !
”””
import numpy as np
from gnuradio import gr
from datet ime import datet ime
import pmt
import os
import s i g n a l

g l o b a l i

c l a s s blk (gr . sync b lock) :
#de f i n i t (s e l f) :
de f i n i t (s e l f , f i l ename=”/home/ w i l l /Desktop/ r a p i d t e s t v 2 / t r i a l 0 0 . txt

” , max runs=5) : # only d e f a u l t arguments here
gr . sync b lock . i n i t (

s e l f ,
name= 'Embedded Python Block ' ,
i n s i g = None ,
o u t s i g = None

)
g l o b a l i
s e l f . m e s s a g e p o r t r e g i s t e r i n (pmt . i n t e r n (' monitor '))
s e l f . s e t msg hand le r (pmt . i n t e r n (' monitor ') , s e l f . hand le input)
s e l f . max runs = max runs
s e l f . fname = f i l ename
i = 0

de f hand le input (s e l f , msg) :
g l o b a l i
i += 1
f = open (s e l f . fname , mode= ' a ')

99

f . wr i t e (s t r (i) + ” ” + pmt . to python (msg) + ”\n”)
f . c l o s e ()

i f i == s e l f . max runs :
p r i n t (s e l f . fname)
p r in t (s t r (i) + ” t e s t s completed . Stopping . ”)
os . e x i t (0)

de f work (s e l f , input i tems , output i tems) :
r e turn l en (output i tems [0])

100

Appendix D

UDP Transmitter

import socke t
import s t r i n g
import random
import time
import datet ime

UDP IP = ” 1 9 2 . 1 6 8 . 2 0 0 . 2 ”
UDP PORT = 5005

MAX WAIT = 0.1 # Max time to wait between sending messages (ac tua l time
i s random)

MIN WAIT = 0.090

PACKET LENGTH = 1000
TOTAL PACKETS = 1000

I n i t i a l i z e Socket
sock = socket . socke t (socket . AF INET , socket .SOCK DGRAM)

p = 0
whi le p < TOTAL PACKETS:

msg = ' ' . j o i n (random . cho i c e (s t r i n g . a s c i i l o w e r c a s e + s t r i n g .
a s c i i u p p e r c a s e) f o r in range (PACKET LENGTH))

Send the message to the socket
sock . sendto (msg . encode () , (UDP IP , UDP PORT))

Sleep f o r a random amount o f time
time . s l e e p (random . uniform (MIN WAIT, MAX WAIT))
p r i n t (p)
p += 1

pr in t (”Experiment Concluded . Number o f packets t ransmit ted : ” , p)

101

Appendix E

UDP Receiver

import socke t
import s t r i n g
import random
import time
import datet ime

UDP IP = ” 1 9 2 . 1 6 8 . 2 0 0 . 2 ”
UDP PORT = 5005
DURATION = 5
MAX LENGTH = 1000 # Maximum length o f message
MAX WAIT = 1 # Max time to wait between sending messages (ac tua l time i s

random)
MIN WAIT = 0.05
I n i t i a l i z e Socket
sock = socket . socke t (socket . AF INET , socket .SOCK DGRAM)
sock . s e t sockopt (socke t .SOL SOCKET, socket .SO REUSEADDR, 1)
sock . bind ((UDP IP , UDP PORT))
sock . s e t t imeout (0 . 5)
s t a r t t i m e = time . time ()
c h a n n e l i n t e r v a l = input (”What i s the channel i n t e r v a l f o r t h i s t e s t ?”)
f i l ename = datet ime . datet ime . now () . s t r f t i m e (”%Y−%m−%d %H−%M−%S c l i e n t ”) + s t r

(c h a n n e l i n t e r v a l) + ” . txt ”
p=0
try :

whi l e True :
t ry :

data = ””
data = sock . recv (1024)
i f data :

p+=1
pr in t (p)

except socke t . t imeout :
pass

except KeyboardInterrupt :
p r i n t (p)

p r i n t (p)

102

Appendix F

Rapid Test Driver

import os
LOGPATH = ”/home/ w i l l /Desktop/ l o g s /”
t e s t s = i n t (input (”How many t e s t s would you l i k e to execute ?\n”))
ga in = i n t (input (”What gain value i s the PU at ?\n”))
snr = f l o a t (input (”What SNR i s the power meter observ ing ?\n”))

f i l ename = s t r (LOGPATH + ” t r i a l ” + s t r (gain) + ”dB . txt ”)
os . system (s t r (”python . / ed/ ed rap id . py −−fname ' ” + f i l ename + ” ' −−runs ” +

s t r (t e s t s)))
#os . system (s t r (” python . / mfd/mfd . py −−fname '” + f i l ename + ” ' −−runs ” + s t r (

t e s t s)))

occupied = 0
l = open (f i l ename , ” r ”)
l i n e s = l . r e a d l i n e s ()
l . c l o s e ()
f o r l in l i n e s :

i f l . f i n d (” occupied ”) != −1:
occupied += 1

s = ”TOTAL: ” + s t r (occupied) + ”/” + s t r (t e s t s) + ”\nSNR: ” + s t r (snr) + ”\n”
dummy = f i l ename+” . temp”
with open (f i l ename , ' r ') as read obj , open (dummy, 'w ') as w r i t e o b j :

w r i t e o b j . wr i t e (s + ”\n”)
f o r l i n e in r ead ob j :

w r i t e o b j . wr i t e (l i n e)

os . remove (f i l ename)
os . rename (dummy, f i l ename)

103

	An Investigation into Cognitive Radio System Performance
	Recommended Citation

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Summary of Thesis Content

	Cognitive Radio Overview
	Software Defined Radio
	Cognitive Radio Definition
	CR Network Architecture
	Spectrum Management Process
	Spectrum Sensing
	Spectrum Decision
	Spectrum Mobility
	Spectrum Sharing

	State of the Art
	TVWS and Related Standards
	Practical Applications of CR Techniques
	Ongoing Challenges

	Conclusions

	Experimental Background
	Equipment
	Computer Systems
	Ettus B210 USRP
	GNU Radio

	Flowgraphs, Blocks, and External Python Code
	GR-MAC
	Channel Switching Block
	Rapid Testing Block and Drivers
	Primary User
	Python UDP Sockets

	Spectrum Sensing Flowgraphs and Theory
	Energy Detector
	Matched Filter Detector

	Physical Setup
	Summary of Experimental Background

	Experimental Execution and Results
	Discussion of Units, Measurements, and Thresholds
	Units and Measurements
	Thresholds

	Experiments
	Experiment One: Sensing Method Comparison
	Experiment Two: Finding Ideal Sensing Interval
	Experiment Three: Finding Ideal Cycle Interval
	Experiment Four: Display of Cognitive Radio Functionality

	Results
	Experiment One: Sensing Method Comparison
	Experiment Two: Finding Ideal Sensing Interval
	Experiment Three: Finding Ideal Cycle Interval
	Experiment Four: Display of Cognitive Radio Functionality

	Conclusions
	Bibliography
	Appendices
	Channel Switching Block
	Simplified Channel Switching Block
	Rapid Testing Block
	UDP Transmitter
	UDP Receiver
	Rapid Test Driver

