362 research outputs found

    Proposing a speech to gesture translation architecture for Spanish deaf people.

    Get PDF
    This article describes an architecture for translating speech into Spanish Sign Language (SSL). The architecture proposed is made up of four modules: speech recognizer, semantic analysis, gesture sequence generation and gesture playing. For the speech recognizer and the semantic analysis modules, we use software developed by IBM and CSLR (Center for Spoken Language Research at University of Colorado), respectively. Gesture sequence generation and gesture animation are the modules on which we have focused our main effort. Gesture sequence generation uses semantic concepts (obtained from the semantic analysis) associating them with several SSL gestures. This association is carried out based on a number of generation rules. For gesture animation, we have developed an animated agent (virtual representation of a human person) and a strategy for reducing the effort in gesture animation. This strategy consists of making the system automatically generate all agent positions necessary for the gesture animation. In this process, the system uses a few main agent positions (two or three per second) and some interpolation strategies, both issues previously generated by the service developer (the person who adapts the architecture proposed in this paper to a specific domain). Related to this module, we propose a distance between agent positions and a measure of gesture complexity. This measure can be used to analyze the gesture perception versus its complexity. With the architecture proposed, we are not trying to build a domain independent translator but a system able to translate speech utterances into gesture sequences in a restricted domain: railway, flights or weather information

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction at the current fragmentation

    Full text link
    It is shown that the recent HERMES data on the transverse Λ0\Lambda^0 polarization in the inclusive quasi-real photoproduction at xF>0x_F>0 can be accommodated by the strange quark scattering model. Relations with the quark recombination approach are discussed.Comment: 5 pages, 3 figures, accepted by Eur. Phys. J.

    Local charge compensation from colour preconfinement as a key to the dynamics of hadronization

    Full text link
    If, as is commonly accepted, the colour-singlet, `preconfined', perturbative clusters are the primary units of hadronization, then the electric charge is necessarily compensated locally at the scale of the typical cluster mass. As a result, the minijet electric charge is suppressed at scales that are greater than the cluster mass. We hence argue, and demonstrate by means of Monte Carlo simulations using HERWIG, that the scale at which charge compensation is violated is close to the mass of the clusters involved in hadronization, and its measurement would provide a clue to resolving the nature of the dynamics. We repeat the calculation using PYTHIA and find that the numbers produced by the two generators are similar. The cluster mass distribution is sensitive to soft emission that is considered unresolved in the parton shower phase. We discuss how the description of the splitting of large clusters in terms of unresolved emission modifies the algorithm of HERWIG, and relate the findings to the yet unknown underlying nonperturbative mechanism. In particular, we propose a form of αS\alpha_S that follows from a power-enhanced beta function, and discuss how this αS\alpha_S that governs unresolved emission may be related to power corrections. Our findings are in agreement with experimental data.Comment: 37 pages, 20 figure

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction: quark scattering model

    Full text link
    The transverse polarization of Λ0\Lambda^0 hyperons produced in the inclusive epep reaction at the 27.6 GeV beam energy is assumed to appear mostly via scattering of the strange quark in a color field. Results of application of such an idea to the preliminary data of HERMES are presented. Contributions of Σ0\Sigma^0, Ξ\Xi, and Σ\Sigma^* resonances to the polarization are taken into account.Comment: 5 pages, 5 figures, corrected according to version accepted by Physics of Atomic Nucle

    Multiple Interactions and the Structure of Beam Remnants

    Full text link
    Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure

    Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    Get PDF
    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons and nucleons in pi, K and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consist of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    Search for Colour Reconnection Effects in e+e- -> W+W- -> hadrons through Particle-Flow Studies at LEP

    Get PDF
    A search for colour reconnection effects in hadronic decays of W pairs is performed with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The analysis is based on the study of the particle flow between jets associated to the same W boson and between two different W bosons in qqqq events. The ratio of particle yields in the different interjet regions is found to be sensitive to colour reconnection effects implemented in some hadronisation models. The data are compared to different models with and without such effects. An extreme scenario of colour reconnection is ruled out
    corecore