95 research outputs found

    POMC and TP53 genetic variability and risk of basal cell carcinoma of skin: Interaction between host and genetic factors.

    Get PDF
    Background: Basal cell carcinoma (BCC) of the skin is the most common neoplasm among the Caucasian population of the western world. Ultraviolet (UV) radiation-induced p53 activation promotes cutaneous pigmentation by increasing transcriptional activity of pro-opiomelanocortin (POMC) in the skin. Induction of POMC/-melanocyte-stimulating hormone (α-MSH) activates the melanocortin 1 receptor (MC1R), resulting in skin pigmentation. The tumor suppressor p53 is a key player in stress responses that preserve genomic stability, responding to a variety of insults including DNA damage, hypoxia, metabolic stress and oncogene activation. Malfunction of the p53 pathway is an almost universal hallmark of human tumors. Polymorphisms in the gene encoding p53 (TP53) alter its transcriptional activity, which in turn may influence the UV radiation-induced tanning response. Objective: The aim of the present work is to test association between POMC and TP53 genetic variability, the possible interplay with host factors and the risk of basal cell carcinoma of skin. Methods: We covered the variability of the two genes we used 17 tagging polymorphisms in 529 BCC cases and 532 healthy controls. We have also tested the possible interactions between the genetic variants and three known risk factors for BCC: skin complexion, sun effect and skin response to sun exposure. Results: We did not observe any statistically significant association between SNPs in these two genes and BCC risk overall, nor interactions of SNPs with known BCC risk factors. However we found that, in the group of subjects with lower sun exposure, carriers of one copy of the C allele of the TP53 SNP rs12951053 had a decreased risk of BCC (OR = 0.28, 95% CI 0.12-0.62, P= 0.002). Conclusions: We have observed that the interplay of an environmental risk factor and one polymorphism in TP53 gene could modulate the risk of BCC

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries

    Get PDF
    The toxicity of methylmercury (MeHg) in humans is well established and the main source of exposure is via the consumption of large marine fish and mammals. Of particular concern are the potential neurodevelopmental effects of early life exposure to low-levels of MeHg. Therefore, it is important that pregnant women, children and women of childbearing age are, as far as possible, protected from MeHg exposure.Within the European project DEMOCOPHES, we have analyzed mercury (Hg) in hair in 1799 mother–child pairs from 17 European countries using a strictly harmonized protocol for mercury analysis. Parallel, harmonized questionnaires on dietary habits provided information on consumption patterns of fish and marine products. After hierarchical cluster analysis of consumption habits of the mother–child pairs, the DEMOCOPHES cohort can be classified into two branches of approximately similar size: one with high fish consumption (H) and another with low consumption (L). All countries have representatives in both branches, but Belgium, Denmark, Spain, Portugal and Sweden have twice as many or more mother–child pairs in H than in L. For Switzerland, Czech Republic, Hungary, Poland, Romania, Slovenia and Slovakia the situation is the opposite, with more representatives in L than H.There is a strong correlation (r=0.72) in hair mercury concentration between the mother and child in the same family, which indicates that they have a similar exposure situation. The clustering of mother–child pairs on basis of their fish consumption revealed some interesting patterns. One is that for the same sea fish consumption, other food items of marine origin, like seafood products or shellfish, contribute significantly to the mercury levels in hair. We conclude that additional studies are needed to assess and quantify exposure to mercury from seafood products, in particular. The cluster analysis also showed that 95% of mothers who consume once per week fish only, and no other marine products, have mercury levels 0.55 ”g/g. Thus, the 95th percentile of the distribution in this group is only around half the US-EPA recommended threshold of 1 ”g/g mercury in hair. Consumption of freshwater fish played a minor role in contributing to mercury exposure in the studied cohort.The DEMOCOPHES data shows that there are significant differences in MeHg exposure across the EU and that exposure is highly correlated with consumption of fish and marine products. Fish and marine products are key components of a healthy human diet and are important both traditionally and culturally in many parts of Europe. Therefore, the communication of the potential risks of mercury exposure needs to be carefully balanced to take into account traditional and cultural values as well as the potential health benefits from fish consumption. European harmonized human biomonitoring programs provide an additional dimension to national HMB programs and can assist national authorities to tailor mitigation and adaptation strategies (dietary advice, risk communication, etc.) to their country’s specific requirements

    First steps toward harmonized human biomonitoring in Europe : demonstration project to perform human biomonitoring on a European scale

    Get PDF
    'Reproduced with permission from Environmental Health Perspectives'Background: For Europe as a whole, data on internal exposure to environmental chemicals do not yet exist. Characterization of the internal individual chemical environment is expected to enhance understanding of the environmental threats to health. Objectives: We developed and applied a harmonized protocol to collect comparable human biomonitoring data all over Europe. Methods: In 17 European countries, we measured mercury in hair and cotinine, phthalate metabolites, and cadmium in urine of 1,844 children (5–11 years of age) and their mothers. Specimens were collected over a 5-month period in 2011–2012. We obtained information on personal characteristics, environment, and lifestyle. We used the resulting database to compare concentrations of exposure biomarkers within Europe, to identify determinants of exposure, and to compare exposure biomarkers with healthbased guidelines. Results: Biomarker concentrations showed a wide variability in the European population. However, levels in children and mothers were highly correlated. Most biomarker concentrations were below the health-based guidance values. Conclusions: We have taken the first steps to assess personal chemical exposures in Europe as a whole. Key success factors were the harmonized protocol development, intensive training and capacity building for field work, chemical analysis and communication, as well as stringent quality control programs for chemical and data analysis. Our project demonstrates the feasibility of a Europe-wide human biomonitoring framework to support the decision-making process of environmental measures to protect public health.The research leading to these results received funding for the COPHES project (COnsortium to Perform Human biomonitoring on a European Scale) from the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement 244237. DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was co-funded (50%:50%) by the European Commission LIFE+ Programme (LIFE09/ENV/BE/000410) and the partners. For information on both projects as well as on the national co-funding institutions, see http://www.eu-hbm.info/. The sponsors had no role in the study design, data collection, data analysis, data interpretation or writing of the report

    Human Health Risk Assessment For Arsenic: A Critical Review

    Get PDF
    Millions of people are exposed to arsenic resulting in a range of health implications.This paper provides an up-to-date review of the different sources of arsenic (water, soil and food), indicators of human exposure (biomarker assessment of hair, nail, urine and blood), epidemiological and toxicological studies on carcinogenic and non-carcinogenic health outcomes, and risk assessment approaches. The review demonstrates a need for more work evaluating the risks of different arsenic species such as; arsenate, arsenite monomethylarsonic acid, monomethylarsonous acid, dimethylarsinic acid and dimethylarsinous acid as well as a need to better integrate the different exposure sources in risk assessments
    • 

    corecore