1,853 research outputs found

    Shear Viscosity in the O(N) Model

    Full text link
    We compute the shear viscosity in the O(N) model at first nontrivial order in the large N expansion. The calculation is organized using the 1/N expansion of the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which leads to an integral equation summing ladder and bubble diagrams. We also consider the weakly coupled theory for arbitrary N, using the three-loop expansion of the 2PI effective action. In the limit of weak coupling and vanishing mass, we find an approximate analytical solution of the integral equation. For general coupling and mass, the integral equation is solved numerically using a variational approach. The shear viscosity turns out to be close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE

    THE EFFECT OF UPANAHA SWEDA AND VATARI GUGGULU IN THE MANAGEMENT OF JANUSANDHIGATA VATA (KNEE OSTEOARTHRITIS): A COMPARATIVE STUDY

    Get PDF
    Every man derives the happiness and benefit of his life through locomotion i.e., using his joints. For the minute if he loses this power of locomotion he not only feels himself a miserable creature but also becomes a burden both of his family and society. The loss or reduction in his locomotive power is due to dysfunction of the joints causing an impediment to his movements. If not treated in time, the disease makes man disable. Sandhigata Vata is most common articular disorder. It is a type of Vata Vyadhi which mainly occurs in Vriddhavastha, due to Dhatukshaya. Sandhigata Vata can be correlated with osteoarthritis (OA) which is one such chronic, degenerative, inflammatory disease and has a great impact on the quality of the life of an individual. Different modalities of treatment have been explained in the classics to tackle the condition effectively. The present study was aimed to assess clinically the effect of Upanaha Sweda and Vatari Guggulu in the management of Janusandhigata Vata. In this study total 42 patients were divided in 2 groups. In Group A, patients were treated with only Upanaha Sweda and other group patients were treated with Upanaha Sweda and Vatari Guggulu. Results obtained were analyzed for statistical significance which shows group B in which Vatari Guggulu and Upanaha Sweda were given, was more effective in bringing relief in signs and symptoms of Janusandhigata Vata

    Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence

    Full text link
    The perturbative three-loop result for the thermodynamic potential of QCD at finite temperature and chemical potential as obtained in the framework of dimensional reduction is compared with the exact result in the limit of large flavor number. The apparent convergence of the former as well as possibilities for optimization are investigated. Corresponding optimized results for full QCD are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also lattice data for two-flavor QCD at nonzero chemical potentia

    Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State

    Get PDF
    Within an isospin-dependent transport model for nuclear reactions involving neutron-rich nuclei, we study the first-order direct transverse flow of protons and their second-order differential elliptic flow as a function of transverse momentum. It is found that the differential elliptic flow of mid-rapidity protons, especially at high transverse momenta, is much more sensitive to the isospin dependence of the nuclear equation of state than the direct flow. Origins of these different sensitivities and their implications to the experimental determination of the isospin dependence of the nuclear equation of state by using neutron-rich heavy-ion collisions at intermediate energies are discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    The pressure of QCD at finite temperatures and chemical potentials

    Full text link
    The perturbative expansion of the pressure of hot QCD is computed here to order g^6ln(g) in the presence of finite quark chemical potentials. In this process all two- and three-loop one-particle irreducible vacuum diagrams of the theory are evaluated at arbitrary T and mu, and these results are then used to analytically verify the outcome of an old order g^4 calculation of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different quark number susceptibilities at high T are compared with recent lattice simulations showing excellent agreement especially for the chemical potential dependent part of the pressure.Comment: 35 pages, 6 figures; text revised, one figure replace

    Coherent Phonons in Carbon Nanotubes and Graphene

    Full text link
    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
    corecore