1,853 research outputs found
Shear Viscosity in the O(N) Model
We compute the shear viscosity in the O(N) model at first nontrivial order in
the large N expansion. The calculation is organized using the 1/N expansion of
the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which
leads to an integral equation summing ladder and bubble diagrams. We also
consider the weakly coupled theory for arbitrary N, using the three-loop
expansion of the 2PI effective action. In the limit of weak coupling and
vanishing mass, we find an approximate analytical solution of the integral
equation. For general coupling and mass, the integral equation is solved
numerically using a variational approach. The shear viscosity turns out to be
close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE
THE EFFECT OF UPANAHA SWEDA AND VATARI GUGGULU IN THE MANAGEMENT OF JANUSANDHIGATA VATA (KNEE OSTEOARTHRITIS): A COMPARATIVE STUDY
Every man derives the happiness and benefit of his life through locomotion i.e., using his joints. For the minute if he loses this power of locomotion he not only feels himself a miserable creature but also becomes a burden both of his family and society. The loss or reduction in his locomotive power is due to dysfunction of the joints causing an impediment to his movements. If not treated in time, the disease makes man disable. Sandhigata Vata is most common articular disorder. It is a type of Vata Vyadhi which mainly occurs in Vriddhavastha, due to Dhatukshaya. Sandhigata Vata can be correlated with osteoarthritis (OA) which is one such chronic, degenerative, inflammatory disease and has a great impact on the quality of the life of an individual. Different modalities of treatment have been explained in the classics to tackle the condition effectively. The present study was aimed to assess clinically the effect of Upanaha Sweda and Vatari Guggulu in the management of Janusandhigata Vata. In this study total 42 patients were divided in 2 groups. In Group A, patients were treated with only Upanaha Sweda and other group patients were treated with Upanaha Sweda and Vatari Guggulu. Results obtained were analyzed for statistical significance which shows group B in which Vatari Guggulu and Upanaha Sweda were given, was more effective in bringing relief in signs and symptoms of Janusandhigata Vata
Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence
The perturbative three-loop result for the thermodynamic potential of QCD at
finite temperature and chemical potential as obtained in the framework of
dimensional reduction is compared with the exact result in the limit of large
flavor number. The apparent convergence of the former as well as possibilities
for optimization are investigated. Corresponding optimized results for full QCD
are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also
lattice data for two-flavor QCD at nonzero chemical potentia
Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State
Within an isospin-dependent transport model for nuclear reactions involving
neutron-rich nuclei, we study the first-order direct transverse flow of protons
and their second-order differential elliptic flow as a function of transverse
momentum. It is found that the differential elliptic flow of mid-rapidity
protons, especially at high transverse momenta, is much more sensitive to the
isospin dependence of the nuclear equation of state than the direct flow.
Origins of these different sensitivities and their implications to the
experimental determination of the isospin dependence of the nuclear equation of
state by using neutron-rich heavy-ion collisions at intermediate energies are
discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres
Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective
Transport properties of a thermal medium determine how its conserved charge
densities (for instance the electric charge, energy or momentum) evolve as a
function of time and eventually relax back to their equilibrium values. Here
the transport properties of the quark-gluon plasma are reviewed from a
theoretical perspective. The latter play a key role in the description of
heavy-ion collisions, and are an important ingredient in constraining particle
production processes in the early universe. We place particular emphasis on
lattice QCD calculations of conserved current correlators. These Euclidean
correlators are related by an integral transform to spectral functions, whose
small-frequency form determines the transport properties via Kubo formulae. The
universal hydrodynamic predictions for the small-frequency pole structure of
spectral functions are summarized. The viability of a quasiparticle description
implies the presence of additional characteristic features in the spectral
functions. These features are in stark contrast with the functional form that
is found in strongly coupled plasmas via the gauge/gravity duality. A central
goal is therefore to determine which of these dynamical regimes the quark-gluon
plasma is qualitatively closer to as a function of temperature. We review the
analysis of lattice correlators in relation to transport properties, and
tentatively estimate what computational effort is required to make decisive
progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag.
added end of section 3.4, and one at the end of section 3.2.2; some Refs.
added, and some other minor change
The pressure of QCD at finite temperatures and chemical potentials
The perturbative expansion of the pressure of hot QCD is computed here to
order g^6ln(g) in the presence of finite quark chemical potentials. In this
process all two- and three-loop one-particle irreducible vacuum diagrams of the
theory are evaluated at arbitrary T and mu, and these results are then used to
analytically verify the outcome of an old order g^4 calculation of Freedman and
McLerran for the zero-temperature pressure. The results for the pressure and
the different quark number susceptibilities at high T are compared with recent
lattice simulations showing excellent agreement especially for the chemical
potential dependent part of the pressure.Comment: 35 pages, 6 figures; text revised, one figure replace
Coherent Phonons in Carbon Nanotubes and Graphene
We review recent studies of coherent phonons (CPs) corresponding to the
radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs)
and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause
bandgap oscillations in SWCNTs, modulating interband transitions at terahertz
frequencies. Interband resonances enhance CP signals, allowing for chirality
determination. Using pulse shaping, one can selectively excite
speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit
temperature-dependent dephasing via interaction with RBM phonons. Our
microscopic theory derives a driven oscillator equation with a
density-dependent driving term, which correctly predicts CP trends within and
between (2n+m) families. We also find that the diameter can initially increase
or decrease. Finally, we theoretically study the radial breathing like mode in
graphene nanoribbons. For excitation near the absorption edge, the driving term
is much larger for zigzag nanoribbons. We also explain how the armchair
nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
- …
