76 research outputs found

    Applying Ecological Risk Assessment Methodology for Outlining Ecosystem Effects of Ocean Energy Technologies

    Get PDF
    With the increasing utilization of marine space and resources, ecosystem-based approaches to environmental assessments are requested. In this study the Ecological Risk Assessment (EcoRA) framework was used to outline risks from three ocean energy technologies; wave power, tidal current power, and ocean thermal energy conversion (OTEC). Our findings show that the potential risks from these new technologies include a multitude of ecosystem components and biological processes, which stretch over large spatiotemporal scales and motivate, the use of ecosystem-level assessment endpoints. In order to structure environmental assessments with such complex scope, assessment endpoints may preferably be associated with resilience in terms of maintaining ecosystem services. Moreover, cumulative effects from multiple stressors should be included. The systematic EcoRA methodology seems an appropriate tool for proactively assessing the risks from new technologies, such a

    Charge Localization and Ordering in A2_2Mn8_8O16_{16} Hollandite Group Oxides: Impact of Density Functional Theory Approaches

    Full text link
    The phases of A2_2Mn8_8O16_{16} hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in Density Functional Theory. Three examples (A = Ag, Li and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d3d electrons are more explicitly considered with the DFT+UU approach. Finally selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low UU and a high UU approach. In the low UU case, the materials are described as band metals with a high symmetry, tetragonal crystal structure. In the high UU case, the electrons donated by A result in formation of local Mn3+^{3+} centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. . . .Comment: 16 pages, 8 figure

    Assessing the environmental potential of collaborative consumption : Peer-to-peer product sharing in Hammarby Sjöstad, Sweden

    Get PDF
    Collaborative consumption—through sharing services—has been promoted as an important step in transforming current consumption patterns toward more sustainable practices. Whilst there are high expectations for sharing services, there are few studies on the potential environmental benefits and impacts of sharing services. This study aims to analyze the potential environmental impacts of a peer-to-peer (P2P) product sharing platform and potential integration with a package drop-off/pick-up service in the urban district of Hammarby Sjöstad, Stockholm, Sweden. A life cycle approach is adopted, taking into account product lifetime and use, the potential replacement of conventional products and services, impacts from digital infrastructure and their impacts on the environment. The results indicate that there is significant potential for these sharing services to reduce environmental impacts associated with production and consumption; primarily through avoiding production and reducing the production impacts of new product purchases. The results also illustrate potential synergies to integrate with the package drop-off/pick up service; where the impacts from shared products are further reduced by reducing transportation impacts through improved logistics. However, the results are dependent upon, and sensitive to, a number of methodological choices and assumptions; highlighting the need for greater knowledge on the use environmental assessments of sharing services

    High seasonal variability in sediment carbon stocks of cold‐temperate seagrass meadows

    Get PDF
    Seagrass meadows have a high ability to capture and store atmospheric CO2 in the plant biomass and underlying sediment and thereby function as efficient carbon sinks. The seagrass Zostera marina is a common species in the temperate Northern Hemisphere, a region with strong seasonal variations in climate. How seasonality affects carbon storage capacity in seagrass meadows is largely unknown, and therefore, in this study, we aimed to assess variations in sedimentary total organic carbon (TOC) content over a 1‐year cycle in seagrass meadows on the Swedish west coast. The TOC was measured in two Z. marina sites, one wave exposed and one sheltered, and at two depths (1.5 and 4 m) within each site, every second month from August 2015 to June 2016. We found a strong seasonal variation in carbon density, with a peak in early summer (June), and that the TOC was negatively correlated to the net community production of the meadows, presumably related to organic matter degradation. There was seasonal variation in TOC content at all sediment sections, indicating that the carbon content down to 30 cm is unstable on a seasonal scale and therefore likely not a long‐term carbon sink. The yearly mean carbon stocks were substantially higher in the sheltered meadow (3,965 and 3,465 g m−2) compared to the exposed one (2,712 and 1,054 g m−2) with similar seasonal variation. Due to the large intra‐annual variability in TOC content, seasonal variation should be considered in carbon stock assessments and management for cold‐temperate seagrass meadows.info:eu-repo/semantics/publishedVersio

    A temporal record of microplastic pollution in Mediterranean seagrass soils

    Get PDF
    © 2021 Elsevier Ltd Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in 210Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the AlmerĂ­a region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). AlmerĂ­a is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg−1), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg−1) and Santa Maria (68–362 kg−1). The highest accumulation rate was seen in the Roquetas site (8832 MPP m−2 yr−1). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in AlmerĂ­a and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution

    Global significance of seagrass fishery activity

    Get PDF
    Seagrass meadows support fisheries through provision of nursery areas and trophic subsidies to adjacent habitats. As shallow coastal habitats, they also provide key fishing grounds; however, the nature and extent of such exploitation are poorly understood. These productive meadows are being degraded globally at rapid rates. For degradation to cease, there needs to be better appreciation for the value of these habitats in supporting global fisheries. Here, we provide the first global scale study demonstrating the extent, importance and nature of fisheries exploitation of seagrass meadows. Due to a paucity of available data, the study used a global expert survey to demonstrate the widespread significance of seagrass-based fishing activity. Our study finds that seagrass-based fisheries are globally important and present virtually wherever seagrass exists, supporting subsistence, commercial and recreational activity. A wide range of fishing methods and gear is used reflecting the spatial distribution patterns of seagrass meadows, and their depth ranges from intertidal (accessible by foot) to relatively deep water (where commercial trawls can operate). Seagrass meadows are multispecies fishing grounds targeted by fishers for any fish or invertebrate species that can be eaten, sold or used as bait. In the coastal communities of developing countries, the importance of the nearshore seagrass fishery for livelihoods and well-being is irrefutable. In developed countries, the seagrass fishery is often recreational and/or more target species specific. Regardless of location, this study is the first to highlight collectively the indiscriminate nature and global scale of seagrass fisheries and the diversity of exploitative methods employed to extract seagrass-associated resources. Evidence presented emphasizes the need for targeted management to support continued viability of seagrass meadows as a global ecosystem service provider

    Sediment properties as important predictors of carbon storage in zostera marina meadows: a comparison of four European areas

    Get PDF
    Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Asko in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to similar to 35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 +/- 0.50% in the Gullmar Fjord to 0.17 +/- 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks

    Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    Get PDF
    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts

    Effects of tidal current-induced flow on reef fish behaviour and function on a subtropical rocky reef

    No full text
    Tidal currents are important features in reef environments with high tidal range Such current-influenced areas can be attractive for fish due to transport of nutrients and foo items. Biological sampling, however, is difficult in these environments and it remains poorl understood to what degree strong currents actually shape tropical and subtropical reef fish communities We used remote underwater video to investigate effects of flow velocity on fish acros the tidal cycle at a rocky reef in southern Mozambique. Fish were recorded during flow velocitie ranging from 0 to 1.44 m s-1. Current flow velocity had no significant effect on the benthic fis assemblage, while increasing flow velocity had a negative effect on pelagic fish abundance an influenced trophic group composition. Limits for tolerated flow velocity on the pelagic assemblag were species-specific, with the highest resistance for larger predatory fish using subcarangifor swimming. Flow velocity had significant positive effects on size of Caranx spp., showing tha smaller individuals had lower tolerance to flow than larger conspecifics. Planktivorous pomacentrid and monodactylids were very abundant in flows up to 0.5 m s?1, suggesting that the are functions as an important foraging ground for planktivorous fish up to this flow velocity, whil abundance of barracudas Sphyraena spp. was higher in moderate currents compared to slac water. For the benthic assemblage, benthic structures seemed to provide sufficient flow refuge fo fish throughout the tidal cycle, highlighting the importance of structural complexity for benthi fish in this environment. Fish assemblages on reefs subjected to strong tidal currents might therefor be sensitive to habitat modifications. The ecological importance of tidal currents should b considered in marine management
    • 

    corecore