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Abstract 17 

Ecological interactions between aquatic plants and sediment communities can shape the 18 

structure and function of natural systems. Currently, we do not fully understand how seagrass 19 

habitat degradation impacts the biodiversity of belowground sediment communities. Here, we 20 

evaluated indirect effects of disturbance of seagrass meadows on meiobenthic community 21 

composition, with a five-month in situ experiment in a tropical seagrass meadow. Disturbance 22 

was created by reducing light availability (two levels of shading), and by mimicking grazing 23 

events (two levels) to assess impacts on meiobenthic diversity using high-throughput 24 

sequencing of 18S rRNA amplicons. Both shading and simulated grazing had an effect on 25 

meiobenthic community structure, mediated by seagrass-associated biotic drivers and 26 

sediment abiotic variables. Additionally, shading substantially altered the trophic structure of 27 

the nematode community. Our findings show that degradation of seagrass meadows can alter 28 

benthic community structure in coastal areas with potential impacts to ecosystem functions 29 

mediated by meiobenthos in marine sediments. 30 

 31 

Introduction 32 

Feedback between above- and below-surface components of soil and sediment 33 

ecosystems are a vital mechanism controlling biodiversity and ecosystem processes 1. 34 

Anthropogenic pressure can directly affect above-surface communities, by changing 35 

community composition, resource distribution patterns, or habitat structure, which in turn can 36 

have strong effects on below-surface biota 2,3. On the other hand, below surface communities 37 

have an important function in organic matter mineralization and can create feedbacks that 38 

benefit above surface communities 1,4. Although linkages between above and below-surface 39 

habitats in driving ecosystem structure and function in terrestrial ecosystems has received 40 
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considerable attention 1,2, much remains unknown about such interrelationships in marine 41 

coastal systems.   42 

Similar to terrestrial ecosystems, plants in marine habitats provide a highly 43 

complex spatial environment with several niches for different species 5. Seagrasses are an 44 

example of such plant communities that  encompass some of the most productive habitats in 45 

marine ecosystems 6, providing a number of high-value ecosystem services 7. Marine plant 46 

species are recognized to be autogenic ecosystem engineers shaping the shallow coastal 47 

environment through multiple and complex pathways 8. The physical structures of seagrasses 48 

can modify local hydrodynamics and sedimentary habitats, thereby having a large controlling 49 

effect on subsurface environments by altering sediment granulometry, stabilizing sediments, 50 

storing atmospheric CO2, trapping detritus and providing a wide range of food sources that 51 

support a high diversity of consumers 9.  52 

The abundance and diversity of below-surface metazoan consumers in marine 53 

sediments is dominated by meiobenthos (microscopic benthic invertebrates between 0.04 and 54 

1 mm in size) 10. Meiobenthic communities play an important role in benthic ecosystem 55 

processes 11–13. In seagrass beds, meiobenthos are often characterized by high densities and 56 

biomass, possessing short life cycles and high turnover rates 14 that often translate into high 57 

secondary production 15. Although the importance of seagrasses for epiphytic invertebrate 58 

biodiversity (invertebrates associated with seagrass blades and leaves) has been well 59 

documented 16, their effects on the meiobenthos in the sediment are not as well understood 17–60 

19, in part due to the practical difficulties in large scale studies focusing on a taxonomically 61 

hyperdiverse groups such as meiobenthos 20. The application of high-throughput sequencing 62 

(HTS) approaches to the study of meiobenthos can considerably improve our understanding 63 

of the ecological patterns and environmental drivers of biodiversity in marine sediments 21,22, 64 
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including in seagrass beds, by allowing biodiversity assessments of microscopic metazoans at 65 

a scale and with coverage previously unfeasible 20. Nevertheless, to our knowledge no study 66 

has looked at meiobenthic diversity in seagrass beds using HTS.  67 

Seagrass habitats and their productive below-ground communities are highly 68 

vulnerable to anthropogenic stress as they are often located in areas contiguous to intense 69 

human activities 23. As a result, seagrass habitats have been declining worldwide due to 70 

anthropogenic activity 24. Increased eutrophication, and sedimentation, resulting in light 71 

reduction and decreased photosynthesis, are among the principal anthropogenic disturbances 72 

to seagrass ecosystems 25. Light reduction has multiple negative effects on seagrass plants, 73 

spanning from reduced growth and loss of biomass 26 to lower carbohydrate storage in plant 74 

rhizomes 27,28. An additional important source of disturbance in seagrass beds comes from 75 

increased fishing pressure. The removal of predatory fishes such as wrasses (Labridae), 76 

snappers (Lutjanidae) and emperors (Lethrinidae) 29 can disturb the balance between 77 

herbivory and seagrass production and potentially induce cascading effects 30 in these 78 

ecosystems. Although, grazing is a vital process for controlling fast-growing epiphytic algae 79 

in eutrophic systems 31, release of grazers like sea urchins from predation can provoke intense 80 

grazing events that consume considerable amounts of seagrass above-surface biomass 32,33. 81 

High densities of sea urchins and consequent overgrazing of seagrasses have been more 82 

frequently reported  in the last few decades 32,33 and can have enduring impacts on above-83 

ground seagrass biomass 32, with potential important knock-on effects for sediment properties 84 

34 and the structure and function of benthic fauna communities. Studies on the impacts of 85 

human-induced disturbances on above surface communities and linkages to below-surface 86 

diversity in marine systems are scarce. As meiobenthos mediate important benthic ecosystem 87 

processes, it is crucial to understand how indirect effects of eutrophication and overfishing-88 
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induced changes on plant above and below ground biomass affect meiobenthic communities. 89 

Such an understanding is crucial to predict future impacts on marine ecosystem structure and 90 

function 35.   91 

Here, we address this important knowledge gap with a 5-month field experiment where we 92 

manipulated seagrass plots in a Thalassia hemprichii meadow and used HTS to assess 93 

impacts of shading and simulated grazing on meiofauna species richness and evenness metrics 94 

(alpha-diversity); variations in meiofauna community composition (beta-diversity) following 95 

the framework described by Anderson et al 36, and lastly nematode and polychaete trophic 96 

structure. The seagrass plot manipulations included two independent variables (shading and 97 

clipping) each with two levels (high and low). We used shading to mimic the effects of 98 

reduced light availability to seagrasses due to eutrophication and/or sedimentation, and 99 

simulated a high intensity grazing event due to herbivores being released from predation. 100 

Herbivory was simulated by clipping of shoots to mimic two different levels of grazing 101 

pressure. The design was used to test the following two hypotheses: shading causes a reduced 102 

seagrass root- and rhizome biomass with potential feedback effects on meiobenthic diversity, 103 

community, and trophic structure; and secondly, continued grazing causes a decrease of 104 

seagrass above-ground biomass that leads to a reduction in sediment stability and intensified 105 

erosion of the sediment surface, also with indirect effects on meiobenthic diversity, 106 

community and trophic structure. Our findings indicates that disturbance of T. hemprichii 107 

meadows can substantially change meiobenthic community composition and trophic structure 108 

of nematodes and polychaetes in coastal ecosystems. 109 

 110 

 111 

Results 112 
 113 
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HTS data output 114 

The Illumina Miseq dataset of eukaryotic 18S rRNA amplicons generated a total 115 

of 10,320,000 raw paired-end reads from 24 samples, resulting in a total of 6,180,945 quality-116 

filtered reads after read merging and primer trimming, which led to an average of 257,539 117 

sequences per sample (minimum- 83,262; maximum- 360,378). Clustering at 96% OTU 118 

similarity produced 14106 different OTUs (minimum cluster size >2 reads), of which 9034 119 

OTUs were from metazoan taxonomic groups. Accumulation plots of number of OTUs vs 120 

number of reads for each sample are presented in Supplementary Information (Supplementary 121 

Figure 1).  122 

Taxonomic composition 123 

The percentage of OTUs belonging to metazoan groups was high for all seagrass 124 

treatments (on average 86%, 80%, 87%,87% and 86% in Control (CTRL), High clipping 125 

(HC), High shading (HS), Low clipping (LC), Low shading (LS), respectively), and highest in 126 

the unvegetated treatment with 96% (Supplementary Figure 2), confirming that sieving and 127 

density extraction is an effective way to isolate metazoan organisms as found in previous 128 

works 37. The OTUs assigned to non-Metazoan Eukaryotes were excluded from the remaining 129 

analysis. Nematodes and copepods were the most abundant metazoan taxa in all treatments 130 

comprising approximately 40-70% of all relative abundance, followed by polychaetes, 131 

gastrotrichs and platyhelminths (Fig. 1-A). Supplementary Data 1 presents a list of all OTUs, 132 

its taxonomic classifications and sequence counts. 133 

At a meiobenthos group level there was an effect of treatment in the relative 134 

abundances of OTUs belonging to Nematoda (PERMANOVA, pseudo- F5,18 =13.9, p=0.001) 135 

and Copepoda (PERMANOVA, pseudo- F5,18 =4.9, p=0.004). Relative abundance of 136 

nematode OTUs where significantly higher in the Unvegetated treatment than in the CTRL 137 
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(PERMANOVA, pseudo- F5,18 =13.9, p= 0.028), while the opposite was found for copepods 138 

(PERMANOVA, pseudo- F5,18 =4.9, p= 0.03). Within the nematodes, there were differences 139 

among treatments in relative abundances of its taxa (Fig. 1-B and 1-C). CTRL presented a 140 

significantly higher relative abundance of nematodes belonging to the order Monhysterida 141 

than in unvegetated plots (PERMANOVA, pseudo- F5,18 =8.6, p= 0.029) and Chromadorida 142 

(PERMANOVA, pseudo- F5,18 =4.8, p= 0.027). On the other hand relative abundances of  143 

Desmodorida nematodes were significantly lower in the CTRL when compared to the 144 

unvegetated treatment (PERMANOVA, pseudo- F5,18 =31, p= 0.029- Fig. 1-B). At the 145 

nematode genus level there was a conspicuous difference in dominance between the seagrass 146 

plots (CTRL, HS, LS, HC and LC) and the Unvegetated treatments. While the former were 147 

dominated by Molgolaimus and Monhysterids nematodes (PERMANOVA, pseudo- F5,18 148 

=6.1, p= 0.002, pseudo- F5,18 =29, p= 0.001, respectively) the latter treatment was dominated 149 

by nematodes of the genus Catanema (PERMANOVA, pseudo- F5,18 =64.3, p< 0.001- Fig. 1-150 

C)  151 

Differences among treatments in alpha diversity  152 

Alpha diversity metrics showed the same general trend for all three metrics we 153 

analysed: Observed number of unique OTUs and the ACE and Shannon index (Fig. 2). There 154 

was a significant effect of treatment on observed unique OTUs (PERMANOVA, pseudo- F5,18 155 

=3.9 ; p=0.01) which was lower in Unvegetated than in any other treatments, except HC. No 156 

additional significant differences in observed unique OTUs were found between the 157 

manipulated seagrass treatments (HC, HS, LC and LS) and the CTRL. The same pattern and 158 

effect of treatment was seen for ACE (PERMANOVA, pseudo- F5,18 =4.8; p=0.003) and 159 

Shannon indexes (PERMANOVA, pseudo- F5,18 =4.6; p=0.01). Again, both these metrics 160 

were significantly lower in the Unvegetated treatment but not in any of the pairwise 161 
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comparisons between CTRL, HC, HS, LC and LS. 162 

 163 

Meiofauna beta-diversity differences among treatments 164 

Figure 3 shows an NMDS ordination of samples based on meiobenthic 165 

community structure across all treatments. The PERMANOVA (adonis, pseudo-F5,18= 2.0, 166 

p=0.001) analysis revealed a significant effect of treatment in meiobenthic community 167 

composition. A pairwise comparison performed with the pairwise.perm.manova showed 168 

significant differences in meiobenthic community composition between CTRL and all other 169 

treatments (PERMANOVA, p =0.02 for CTRL vs HS, p=0.05 for CTRL vs LS, p =0.04 for 170 

CTRL vs LC) except HC (PERMANOVA, p =0.09 for CTRL vs HC). A Principal 171 

Coordinates Analysis (PCoA) with UniFrac distance was also performed showing a similar 172 

pattern (adonis, Pseudo-F5,18= 4.6, p=0.001, Supplementary Figure 3). Differences in 173 

community composition between the CTRL and all other treatments (HC, HS, LC, LS and 174 

Unvegetated) were mostly driven by turnover, and this pattern was constant for all 175 

comparisons (Supplementary Figure 4). There was also a difference among treatments in 176 

community beta-diversity as measured by average distance to centroid using the altGower 177 

distance (betadisp, PERMDISP, pseudo-F5,18= 2.4, p=0.039) (Fig.4). Average distance to 178 

centroid in the CTRL treatment was significantly higher from all other treatments with the 179 

exception of HC indicating that the disturbances simulated in our experiment had a 180 

demonstrable effect on meiobenthic community beta-diversity (betadisp, PERMDISP, p<0.02 181 

for all pairwise comparisons between CTRL and HS, LS and LC). A significant difference in 182 

average distance to centroid was also observed when comparing the LS and LC treatments 183 

(Fig.4, betadisp, PERMDISP, p=0.0007).  184 

Regarding the relationship between meiofaunal community structure and 185 
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environmental variables, the BIOENV analysis showed that the environmental variables that 186 

best explained differences in meiobenthic community composition included both abiotic 187 

sediment variables (sediment C:N ratio, sediment %C content) and seagrass related biotic 188 

variables (rhizome biomass, community metabolism and N in plants) (Table 1, Fig. 5). How 189 

each of these variables varied among treatments is presented in supplementary information 190 

(Supplementary Figure 5). The CCA analysis showed that 43% of the total constrained inertia 191 

of the final selected model was explained, with the three retained environmental variables, 192 

sediment C:N ratio, N content in plant and C in rhizome, showing significant associations 193 

with community composition in the seagrass treatments (R2=0.79 p=0.001, R2=0.67 p=0.004  194 

and R2=0.76 p=0.001, respectively). 195 

 196 

Trophic composition of nematodes and polychaetes  197 

The abundance of trophic groups of nematodes and polychaetes were different 198 

among treatments. With regards to the nematodes, there was a significant effect of shading on 199 

the abundance of OTUs with taxonomic assignments corresponding to selective deposit 200 

feeder nematodes. The abundances of these OTUs were significantly higher in both the HS 201 

and in the LS treatment than in the CTRL (Fig. 6-B and 6-D, p(DESeq2) = 0.0008 and p(DESeq2) = 202 

0.001, for LS vs CTR and HS vs CTRL, respectively).  Conversely, the abundance of OTUs 203 

of epistrate feeder nematodes were lower in the two shading treatments than in the controls, 204 

but this difference was only significant for the HS treatment (Fig. 6-B and 6-D, p(DESeq2) = 205 

0.055 and p(DESeq2) = 0.001 LS vs CTR and HS vs CTRL, respectively ). Significant effects of 206 

clipping on nematode trophic structure were also observed. The abundance of epistrate feeder 207 

nematode OTUs were significantly less abundant in both clipping treatments (LC and HC) 208 

than in the CTRL ( Fig. 6-A and 6-C, p(DESeq2) = 0.021 and p(DESeq2) = 0.044 for LC vs CTR 209 
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and HC vs CTRL, respectively). In addition, the abundance of non-selective deposit feeders 210 

was on average higher in the LC and HC treatments than in the CTRL, but this difference was 211 

only significant for LC (Fig. 6-A and 6-C , p(DESeq2)=0.06 and p(DESeq2)=0.02 for HC vs CTRL 212 

and LC vs CTRL, respectively). All trophic groups were significantly different between the 213 

Unvegetated treatment and the CTRL, with the predator/omnivore and nonselective nematode 214 

feeders showing an increase in abundance of OTUs in the Unvegetated treatment, whereas 215 

epistrate and selective feeding nematodes showed a decreased number of OTUs compared to 216 

the Unvegetated treatment (Fig. 6-E, all p(DESeq2) < 0.0001) 217 

Significant differences among treatments were also seen in the assessment of the 218 

polychaete feeding guilds. As found for nematode feeding groups, shading significantly 219 

increased the abundance of OTUs of deposit feeders polychaete when compared to the CTRL, 220 

but this difference was only significant for LS, (Fig. 7-A, p(DESeq2)= 0.038). In addition, 221 

significantly fewer OTUs of carnivore polychaetes were found in LS compared to the CTRL 222 

(Fig. 7-A, p(DESeq2) =0.028).  No other significant differences were found between the CTRL 223 

and the remaining manipulated seagrass treatments (HS, HC and LC). Conversely, all 224 

polychaete feeding guilds analyzed here, with the exception of suspension feeders were 225 

significantly different in the unvegetated treatment when compared to the CTRL (Fig. 7-B). 226 

The Unvegetated  plots had less OTUs of subsurface deposit feeders (p(DESeq2)= 0.007) and 227 

higher abundances of OTUs in the carnivore (p(DESeq2)= 0.014) and omnivorous p(DESeq2)= 228 

0.043) feeding guilds when compared to the CTRL.   229 

 230 

Discussion 231 

 232 
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 While shading and corresponding reduced light availability did not affect 233 

meiobenthic community alpha diversity in our study, it had a significant effect on 234 

meiobenthic community structure. Reduced light availability to seagrasses is often coupled to 235 

eutrophication and/or increased sedimentation in seagrass beds 25. Decreased light availability 236 

as a result of increased phytoplankton and epiphytic algae production is one of the principal 237 

mechanisms through which eutrophication impacts seagrass meadows 24,28. Seagrasses can 238 

acclimate to reduced light regimes by decreasing above and below-ground biomass and 239 

photosynthetic activity28,34,38, which in turn potentially shape sediment abiotic conditions for 240 

meiobenthic communities 17. In particular, T. hemprichii has a comparatively well-developed 241 

root and rhizome network 39 that can confer stability to the sediment and increase its 242 

microscale complexity that favors microbial growth and diversity 40. As such, a decrease in 243 

below-ground biomass of T. hemprichii could potentially impact such microscale habitat 244 

complexity and sediment characteristics for the meiobenthos.  245 

Lower biomass and photosynthetic activity as a result of reduced light availability will cause 246 

a lower transport of oxygen from the shoots to the roots, decreasing “radial oxygen loss 247 

(ROL)” from the root-tips and thereby reduce the oxygenation of the sediment 41. Reduction 248 

in photosynthetic rates can also lead to higher H2S levels in the sediments of disturbed 249 

seagrass meadows 41,42. Both lower oxygen conditions and increased H2S concentrations in 250 

sediments have the potential to change meiofauna diversity and community composition 43,44. 251 

In addition, photosynthetically derived dissolved organic carbon (DOC) has been shown to 252 

greatly stimulate the activity of microorganisms around T. hemprichii roots when it is 253 

transported to belowground tissue and excreted from the root system 45. Both disturbances 254 

here tested shading and clipping probably reduced the amount of DOC extruded from the 255 

roots to the sediment. As bacteria and some nematodes can utilize DOC as an energy source 256 
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these direct and indirect changes in resource availability are likely to have effects of 257 

meiobenthic community structure. Similar in situ studies have shown that shading resulted in 258 

a significant decrease in root biomass and photosynthetic activity in the HS treatments 28, and 259 

the BIOENV analysis in our study identified rhizome biomass as one of the variables that 260 

correlated with meiobenthic beta-diversity. These results suggest that a reduced microhabitat 261 

complexity could be related to the changes in meiobenthic community beta-diversity in the 262 

shading treatments. 263 

In addition to an effect on meiobenthic community beta-diversity, we found that 264 

the relative abundances of OTUs assigned to nematodes of different feeding types differed 265 

significantly between the control and the shading treatments, the latter showing a lower 266 

proportion of epistrate feeders that seemed to be replaced by selective deposit feeders. 267 

Nematodes are generally one of the most abundant metazoans in seagrass systems and 268 

associated trophic structures are determined by abiotic factors such as grain size, sediment 269 

porosity, temperature, salinity and food availability 10. In our study, both temperature and 270 

salinity varied in the same way among treatments and differences in sediment porosity 271 

and compactness did not explain changes in the trophic structure of nematodes (BIOENV, 272 

Table 1). As such, our results suggest that the reduction in OTUs of epistrate feeder and 273 

increase in OTUs of selective deposit feeders is related to changes in the food resources of 274 

these two feeding types of nematodes. Changes in food quantity and quality have been 275 

coupled to nematode trophic structure in seagrass Posidonia oceanica meadows 15,46 and 276 

in other coastal ecosystems 47. We propose that shading reduced important phytoplankton 277 

food sources to epistrate feeder nematodes as well as sedimentation in these plots, thereby 278 

decreasing the relative abundance of epistrate feeders. We expected such effects would be 279 

noticeable in the sediment Chla content and net community production (NCP). A study that 280 
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used the same experimental system as ours found community metabolism to be significantly 281 

lower in the HS treatment than in the CTRL plots34. While Chla sediment content was on 282 

average higher in the controls than in the shading treatments, this difference was not 283 

statistically significant 34. On the other hand, nematodes classified as selective deposit 284 

feeders are generally considered to depend on different food sources than epistrate feeders, 285 

as they preferentially feed on bacteria, small particulate food or dissolved organic matter. 286 

As such, selective deposit feeders would therefore not be affected by the changes 287 

microphytobenthic production and phytoplankton sedimentation. The reduced competition 288 

with other nematodes could explain the increase in selective deposit feeders. Changes in 289 

nematode trophic structure should be interpreted cautiously as recent work suggests that 290 

most nematodes in their natural environment might exhibit a certain level of generalist 291 

and opportunistic feeding behavior 48. Nevertheless, the classification of Wieser (1953) 292 

still provides valuable information about the feeding guilds of nematode community. 293 

 The increase in deposit feeders in the shading treatments observed in the 294 

nematode community was also seen in polychaetes (Fig.7). Unlike what was seen with 295 

nematode feeding types, the abundance of predator polychaetes was reduced in one our 296 

shading treatments. This is in accordance with previous studies that have found an 297 

increase in dominance of polychaete deposit feeders and a decrease proportion of 298 

carnivores as an observed response to anthropogenic disturbance in benthic ecosystems 299 

49,50. Taken together our results clearly show an indirect effect of shading on meiobenthic 300 

community composition and trophic structure that is mediated by seagrass response to 301 

eutrophication/and or increased sedimentation. Our results suggest that the impacts of 302 

eutrophication on seagrass meiofauna community and nematode and polychaete trophic 303 

structure can at least in part be due to indirect effects mediated by the response of seagrasses 304 
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to reduced light availability, and that above-below ground interactions can play an 305 

important role in mediating sediment community structure in marine ecosystems.  306 

 Clipping also produced seagrass mediated effects on meiobenthic beta-diversity, 307 

but these were less clear than what could be observed in the shading treatments. The largest 308 

impact of these manipulations on the seagrass was the continuous removal above-ground 309 

photosynthetic shoot from the replicate plots, an effect that simulates the impact of intense 310 

grazing events 51. This loss of biomass is known to disrupt the carbon sequestration and the 311 

trapping of allochthonous organic matter, an important component of organic carbon in 312 

seagrass beds 52. Therefore, it was expected that a loss of above�ground biomass would 313 

result in a lower accumulation of allochthonous organic matter in the clipping treatments. 314 

Indeed, Dahl et. al 34 found a lower organic carbon content in the first 2.5 cm layer of 315 

sediment of the clipping treatments in the same experimental system here reported. Organic 316 

carbon content has been shown to be one of the most important factors structuring 317 

meiobenthic communities 46 and it is likely that seagrass mediated effects on sediment carbon 318 

dynamics affected the meiofauna community structure in the clipping treatments. Indeed, 319 

BIOENV analysis found both sediment carbon content and sediment C:N ratio correlated with 320 

changes in meiofauna community structure. An additional notable consequence of continuous 321 

shoot biomass removal is an increased sediment erosion due to reduced capacity of shoots to 322 

decrease wave action 34. A decreased root and rhizome biomass (significant only in the HC 323 

treatment) would also reduce sediment stability and allow for a higher degree of erosion 53, 324 

which is particularly relevant in our experimental area characterized by large tides and strong 325 

wave action 54. This increase in tidal disturbance and sediment erosion as a result of seagrass 326 

biomass removal has been seen as a response to large grazing effects by sea urchins 55. As 327 

such, both reduction of allochthonous organic matter trapping and increased erosion are 328 
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expected to impact sediment abiotic conditions important for the structuring of meiobenthic 329 

communities. Additionally, loss of canopy can also reduce protection from predation. 330 

Macrophytes provide shelter from predation for both macro- 5 and meiobenthos 17. It is 331 

possible that increased predation pressure contributed to the differences in meiobenthic 332 

community structure. However, we did not measure predation pressure in our experiment and 333 

are unable to confirm the connection with the data available. We expected the effects on 334 

meiobenthic community should have been more pronounced in the HC than the LC treatment. 335 

However, we found that community beta-diversity to be significantly different from the 336 

CTRL in the LC but not in the HC treatment. It is possible that the high erosion and tidal 337 

action in HC increased the variability within replicates, thereby decreasing our power to 338 

detect statistical differences. An additional explanation is that, although simulated grazing 339 

treatments can reduce the biomass of rhizomes, the root and rhizome network is still present 340 

and minimizes potential negative effects of above-ground disturbances on meiobenthic 341 

communities. It would therefore be interesting to test the effects of high clipping with higher 342 

amounts of replication.  343 

We also anticipated changes in sediment condition in the HC to affect the 344 

trophic structure of nematodes; in particular the abundance of OTUs of epistrate feeders as 345 

Dahl et al 34  found significantly higher Chla content in HC sediments. This higher Chla 346 

content found in that study would suggest a higher microphytobenthos production as a result 347 

of a greater light availability due to the removal of seagrass above ground biomass. However 348 

we did not detect a higher OTU abundance of epistrate feeder nematodes in the HC treatment 349 

when compared to the CTRL but rather the opposite. It is likely that the sediment erosion and 350 

high hydrodynamics of our experimental system, would increase with lower seagrass canopy 351 

and induce the observed patterns in nematode trophic structure. Although an effect of clipping 352 



 16

was detected on meiobenthic beta-diversity, community composition and nematode trophic 353 

structure, our results indicate that disturbance related to clipping has less pronounced effects 354 

when compared to shading.   355 

 356 

 There were clear differences between unvegetated areas and CTRL in most 357 

response metrics here studied including meiobenthic alpha diversity, meiobenthic community 358 

beta-diversity, nematode and polychaete trophic structure. The CTRLs had higher alpha 359 

diversity, abundance of epigrowth feeder nematodes and carnivore polychaetes than the 360 

unvegetated plots. Positive effects of seagrasses on macrofauna diversity and abundance of 361 

macrofauna are well known 56,57 but regarding the less studied meiobenthos, the available 362 

literature shows contrasting results 17 and references therein. For example, Arrivillaga & Baltz 58 363 

found no significant differences in meiobenthic abundance, species richness or diversity 364 

between sediments in tropical T. testudinum meadows and unvegetated sediments. 365 

Furthermore, a number of studies have shown meiobenthos abundance to be negatively 366 

correlated to seagrass cover as a result of increased predation pressure by macrofauna on 367 

vegetated sediments 59,60. Nevertheless, the positive effects of T. hemprichii for meiobenthic 368 

alpha and beta-diversity, and trophic structure were clear in our study. Seagrass cover 369 

increases the stabilization of sediments, habitat complexity and sediment organic matter 370 

content, all of which could have positive effects on meiobenthos 17,18,61. Our results suggest 371 

that this habitat modulation by seagrasses influenced nematode community composition. 372 

Unvegetated sediments where dominated by Desmodorida, particularly of the genus 373 

Catanema that seem to find unstable fluid sediments in unvegetated areas advantageous 14,18. 374 

However, other studies have found Catanema to be common in seagrass areas at sediment 375 

depths deeper than the ones sampled in our experiment 18,19. Catanema was replaced by 376 
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Molgolaimus in our seagrass plots, a common nematode genus in sediments of  T. hemprichii 377 

meadows, particularly in its top layer 18. These seagrass plots were clearly dominated by 378 

Monhysterida, which are likely positively impacted by increased amounts of fine particles and 379 

detritus normally found in sediments in seagrass meadows 62. Effects of seagrass on 380 

nematodes and other meiobenthos may, nevertheless, be dependent on seagrass species’ 381 

composition and density and on other abiotic factors not examined here.   382 

In summary, our results indicate that disturbance of seagrass meadows have 383 

propagating effects on meiobenthic communities that are mediated by above-below ground 384 

interactions. Shading altered meiobenthic community composition and nematode and 385 

polychaete trophic structure to a larger dominance of deposit feeders. Such responses to 386 

shading by the meiobenthos seem to be related to reduced seagrass root and rhizome biomass 387 

reported in previous studies 28,34. The continued grazing in the clipping treatments also 388 

resulted in significant changes in meiobenthic community and trophic structure, although 389 

these were not as clear as the shading treatments. Our study suggests that such changes are 390 

connected to a decrease in above-ground biomass and intensified erosion of the sediment 391 

surface reported in previous work 34. Since human-induced disturbances are increasing the 392 

rate of seagrass bed habitat degradation 63 it is crucial to improve our understanding of what 393 

such losses mean for the structure and functioning of benthic ecosystems. Our results 394 

highlight the complex role of above-below ground interactions in marine systems. Seagrasses 395 

function as ecosystem engineers for benthic faunal communities, and how they respond to 396 

disturbances can have significant indirect effects of meiobenthic community diversity and 397 

trophic structure. Considering that meiobenthos can have important roles in benthic foodwebs 398 

10,35 and mediate vital benthic ecosystem function 11,13, prolonged disturbances of seagrass 399 
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habitats as presently seen in many coastal waters, are likely to have important cascading 400 

effects for benthic ecosystem structure and function. 401 

Methods 402 

Study area and experimental setup 403 

We performed an in situ experiment for 5 months (November to March 2015) in 404 

a seagrass meadow in Chwaka Bay on Zanzibar Island (Unguja), Tanzania. Chwaka Bay is a 405 

large (approximately 50 km2) semi-enclosed bay on the east coast of Zanzibar Island with a 406 

maximum (spring tide) tidal fluctuation of 3.2 m 54. The bay is composed by seagrass 407 

meadows (with as many as 11 seagrass species) and unvegetated bare sediment habitats 64. 408 

Within the bay, an experimental site (06°09’S 39°26’E) was selected in the middle of a one 409 

kilometer-wide seagrass meadow dominated by Thalassia hemprichii; a common species in 410 

the region as well as in tropical areas elsewhere 65. The experimental site was located in the 411 

intertidal zone with a water depth of approximately 10 cm during low spring tide. Salinity 412 

was 34 in the experimental area and was measured with a multimeter Multi 340i, CellOx 325 413 

(WTW). 414 

The experimental design comprised of six treatments; low- and high clipping 415 

intensity treatments (LC and HC, respectively), low- and high shading treatments (LS and HS, 416 

respectively) as well as controls of non-manipulated seagrass plots (CTRL). Unvegetated bare 417 

sediments plots were selected in an area adjacent to the manipulated plots. Four replicate plots 418 

for each treatment were placed within a 40 x 40 m experimental site using a random block 419 

design, with each plot covering 10 m2 28,34 (Fig. 8). The LS and HS plots were covered with 420 

plastic semi-transparent shading nets, mounted approximately 40 cm above the sediment 421 

surface; the LS treatment was covered with one shading net and the HS treatment with double 422 

shading nets. This procedure reduced the light irradiance from 470 µmol quanta m−2 s−1 in the 423 
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seagrass control plots, to 356 µmol quanta m−2 s−1 in the LS treatment (a mean light reduction 424 

over day of 64% in relation to CTRL) and 307 µmol quanta m−2 s−1 in the HS treatment(a 425 

mean light reduction over day of 75% in relation to CTRL). A Photosynthetic Active 426 

Radiation (PAR) Logger (Odyssey, New Zealand) was used to measure light intensity levels 427 

in LS, HS, and control plots. Each day the shading nets were cleaned of debris and fouling 428 

organisms, and the nets were replaced two times during the experiment due to natural wear. 429 

For LC and HC treatments, 50% and 100% of the original shoot biomass was removed, 430 

respectively. In the LC treatment, the shoot height was reduced by approximately half the 431 

natural shoot length (~10 cm) and in the HC treatment, the shoots were cut just above the 432 

meristematic region. The clipping was performed at a 3 to 5 day interval until three weeks 433 

before terminating the experiment after which no additional clipping was done.  434 

 435 

Sediment sampling, sample preparation and sequencing 436 

After 5 months at the termination of the experiment the sediment of each of the 437 

24 replicate plots was sampled with six handheld Perspex sediment cores taken from the exact 438 

same location within each of the plots. The handheld sampling units were 45 mm diameter 439 

with a surface area of 17 cm2, a size suitable for sampling of microbial benthic metazoans 440 

such as meiofauna 66,67. The top 3 cm of each core were sliced and sieved through 500 μm and 441 

40 μm stacked sieves, pooled and preserved in 20% DESS before storage at 4°C. After two 442 

weeks the sediment and animals were again placed in a 40 μm sieve and rinsed thoroughly in 443 

filtered artificial saltwater (salinity 34) close to in situ salinity to remove the DESS. The 444 

meiofauna individuals were isolated and separated from the sediment particles using density 445 

extraction by washing the content of the 40 μm sieve into a 500-mL E-flask with LevasilH  446 

200A 40% colloidal silica solution (H.C. Starck SilicaSol GmbH) with a density of 1.3 and 447 
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shaken vigorously as  described previously in Nascimento et al. 11. After aeration, the solution 448 

was left to settle for 5 min. The top 100 mL of the LevasilH solution was sieved through a 449 

sterilized 40 μm sieve and rinsed thoroughly in seawater. The 40 μm sieves were then washed 450 

with 70% ethanol and autoclaved between each replicate. The density extraction procedure 451 

was repeated twice (5-min and then 30-min settling time). The extracted meiofaunal animals 452 

were then washed carefully from the sieve into a 50ml falcon tube with a volume of Milli-Q 453 

ultrapure water that did not exceed 10 ml and frozen at -20 OC until DNA extraction.  454 

DNA extraction 455 

DNA from the meiofauna community was extracted with the PowerMax® Soil 456 

DNA Isolation Kit (MOBIO, Cat#12988), in conformity with the protocol instructions. After 457 

DNA extraction, samples were frozen at -20 °C in 3 mL of C6 solution (10mM Tris). After 458 

this, 100 μL of each DNA extract was purified with PowerClean® Pro DNA Clean-Up Kit 459 

(MOBIO, Cat# 12997-50) and stored in 100 μL of C5 (10mM Tris) solution at -20 °C. Before 460 

PCR amplification, all DNA extracts were standardized to a concentration of 10 ng/μL. The 461 

conservative metabarcoding primers TAReuk454FWD1 (5′-462 

CCAGCA(G/C)C(C/T)GCGGTAATTCC-3′) and TAReukREV3 (5′-463 

ACTTTCGTTCTTGAT(C/T)(A/G)A-3′) and Pfu DNA polymerase (Promega, Southampton, 464 

UK) were used to amplify the 18S nSSU gene region with PCR, creating fragments between 465 

365-410 bp excluding adaptors or barcodes. Each sample from the 24 replicate plots were 466 

amplified in triplicates which were then pooled, dual-barcoded with Nextera XT index 467 

primers following a modified version of Bista et al.68 (2017) and visualized by gel 468 

electrophoresis. The barcoded amplicons were then purified with the Agencourt AMPure XP 469 

PCR Purification kit (Beckman Coulter), quantified with Qubit (Invitrogen, USA) and pooled 470 

in equimolar quantities. The purified amplicons were sequenced in both directions on an 471 
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Illumina MiSeq platform at the National Genomics Institute (NGI -Stockholm, Sweden) as a 472 

single pool comprised of the 24 different samples with 24 unique index primer combinations 473 

(i.e., an index primer combination for each of the 4 replicates plots of our 6 experimental 474 

treatments).  475 

Bioinformatics 476 

Amplicon reads were demultiplexed by the sequencing facility, followed by 477 

initial data processing and quality-filtering in the QIIME 1.9.1 pipeline 69. Paired-end 478 

Illumina reads were overlapped and merged using the join_paired_ends.py script in QIIME, 479 

followed by quality-filtering of raw reads using the multiple_split_libraries_fastq.py script 480 

with a minimum Phred quality score of 19. Unmerged (orphan) Illumina read pairs were 481 

discarded, and excluded from all downstream data analysis steps. PCR primer sequences were 482 

subsequently trimmed from merged reads using Trimmomatic version 0.32 70(parameters used 483 

were ILLUMINACLIP:2:30:10, with all other parameters as default). Trimmed, merged reads 484 

which passed all quality-filtering steps were next subjected to open-reference OTU picking 485 

using a 96% pairwise identity cutoff, using the pick_open_reference_otus.py script in QIIME 486 

1.9.1 (using the uclust algorithm with 10% subsampling, no prefiltering, and reverse strand 487 

match enabled). All resulting singleton OTUs were excluded from the resulting OTU table 488 

outputs. Taxonomy was assigned to representative OTU sequences with the RDP Classifier 71 489 

in QIIME (assign_taxonomy.py with a confidence threshold of 0.7), using the SILVA 119 490 

release as a reference database 72. OTU representative sequences were aligned with PYNAST 491 

73 using the align_seqs.py script.  492 

 493 

Statistics and Reproducibility  494 
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The resulting OTU table and correspondent metadata set was imported into R v 495 

3.4.3 and analysed using the phyloseq 74 and vegan 75 packages. The effect of both shading 496 

and clipping on alpha diversity metrics (observed OTUs, ACE index and Shannon index) and 497 

relative abundance of meiofauna taxonomic groups were tested with one-way PERMANOVA 498 

with the PAST 3.2476. Statistical significance was defined at α=0.05 to cover all analyses. 499 

Community composition was examined by first selecting and filtering metazoan 500 

OTUs and sub-sampling the OTUs counts to the lowest sample size (66 754 counts) with the 501 

rarefy_even_depth function in pyloseq. After Hellinger transformation, the dissimilarity 502 

between faunal assemblages in the different treatments was analysed by non-metric 503 

multidimensional scaling (NMDS), using the altGower distance 77, and by Principal 504 

Coordinates Analysis (PCoA) with UniFrac distance. To statistically test for the effects of 505 

treatment on community composition, we conducted a permutational multivariate analysis of 506 

variance (PERMANOVA) with the adonis function of the vegan package. The function  507 

pairwise.perm.manova of the RVAideMemoire package 78 was used to perform pairwise 508 

comparisons between CTRL and the remaining treatments in terms of differences in 509 

community composition. To examine differences in beta-diversity among treatments we used 510 

the community beta-diversity index 36 that is based on community OTU dissimilarity metrics 511 

and measured as average distance of each observation to the group centroid, using the 512 

betadisper function in the vegan package 75. Pairwise differences between treatments in 513 

average distance to the group centroid were checked with the permutest.betadisper of the 514 

betadisp object that permutes model residuals and generates a permutation distribution of F 515 

with the null hypothesis that there is no difference in dispersion between groups. Furthermore, 516 

metrics to partition beta-diversity were utilized to calculate the relative importance of 517 

turnover and nestedness in the different treatments 79. Beta-diversity can be divided into 518 
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dissimilarity as a result of turnover, i.e species replacement between sites or samples, and 519 

dissimilarity as a result of nestedness, species loss from sample to sample. We used the R 520 

package betapart 79 for this analysis. Additionally, a BIOENV (‘biota-environment’) analysis 521 

80 was performed to explore relationships between environmental variables and meiobenthic 522 

community composition using Spearman’s rank correlations. Concisely, BIOENV identifies 523 

the combination of environmental variables, that best correlated with the changes in 524 

community structure. For the analysis we included 21 variables measured and reported in 525 

Dahl et al.34 and Deyanova et al 28, studies based on the same experimental system. 526 

Specifically we used two classes of environmental variables for the BIOENV analysis: firstly 527 

we used seagrass traits namely: net community production (NCP); leaf biomass, C, N content 528 

and C:N ratio;  rhizome biomass C, N content and C:N ratio; root biomass, C, N content and 529 

C:N ratio; and secondly sediment variables, specifically: density, porosity, sediment %C,  530 

sediment %N, C:N ratio, sediment inorganic C and content in total hydrolysable amino acids 531 

(THAA) and Chla. The methodology used to derive these variables is described in detail in 532 

Dhal et al 34 and Deyanova et al. 28. Furthermore, and in order to complement the BIOENV 533 

analysis and visualize the relationships between the environmental variables and community 534 

composition, a canonical correspondence analysis (CCA) was performed with the best 535 

combination of variables identified by BIOENV as a starting point. After exclusion of the 536 

variables that had a correlation coefficient higher than 0.7 from the analysis, we used the 537 

envfit function of the vegan package to test which environmental variables were significantly 538 

correlated with meiobenthic community composition.  539 

To investigate potential changes in nematode trophic structure we subset our 540 

dataset to include only nematode OTUs that could be taxonomically classified to genus, in a 541 

procedure similarly applied  to terrestrial nematodes 81,82. These 644 OTUs were categorized 542 
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into functional feeding groups as previously defined by Wieser 83, using nematode buccal 543 

cavity morphology to define four trophic groups: selective deposit-feeders (1A), nonselective 544 

deposit-feeders (1B), epistrate feeders (2A) and omnivorous-carnivorous (2B). A full list of 545 

nematode feeding type classifications for the genera used in this is available in Supplementary 546 

Data 2. 547 

Furthermore, we investigated treatment related changes in the trophic structure 548 

of polychaetes, by subsetting the polychaete OTUs taxonomically assigned to Family (total 549 

870 OTUs)  and classifying them to relevant trophic guilds (eg deposit feeders, omnivore, 550 

herbivore or predators) following Jumars 84.   551 

To assess differential OTU abundance between the CTRL and the other 552 

treatments in nematode and polychaete trophic structure, we used the DESeq2 statistical 553 

package 85. DESeq2 accounts for the variance heterogeneity often observed in sequence data 554 

by using a negative binomial distribution as an error distribution to compare abundance of 555 

each OTU between groups of samples 85. All statistical tests were performed on R v 3.4.3. All 556 

statistical analysis outputs can be found in Supplementary Data 3. 557 
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Fig. 1- Stacked bars of the average relative abundances of 18S rRNA gene for meiobenthos in 791 
the different treatments, n=4 biologically independent samples. The y-axis shows the 792 
treatments, and x-axis shows relative abundance (%) of Metazoa phyla (A); order in the 793 
Nematoda (B); and genus in the Nematoda (C).  794 
  795 
 796 
Fig. 2- Alpha-diversity metrics for meiobenthos in the different treatments. Figure panels 797 
show: number of observed unique OTUs (A), ACE index (B) and Shannon index (C). Central 798 
bars represent the mean of each treatment. Different letters indicate statistically significant 799 
differences (PERMANOVA, p<0.05) based on n=4 biologically independent samples.  800 
 801 
Fig. 3- Plot of the non-metric multidimensional scaling (NMDS) analysis based on 802 

normalized OTU matrix for meiobenthos using altGower dissimilarities . Different 803 
colours represent the groupings of the different treatments.  804 

 805 
Fig.4- Meiobenthic community β-diversity index showing the average distance from group 806 
centroid to each observation, n=4 biologically independent samples. Different letter codes 807 
indicate statistically significant differences (PERMDISP, p<0.05). 808 
 809 
Fig. 5- Canonical correspondence analysis (CCA) biplot showing the co-variant relationship 810 
between significant non-correlated environmental factors (See methods) and meiobenthic 811 
community structure. Arrows are vectors representing the correlation between environmental 812 
variables and the axes. 813 
 814 
Fig. 6- OTU abundance of nematode feeding types in the different treatments in relation to the 815 
Controls: High Clip (A), High Shade (B), Low Clip (C) and Low Shade (D), Unvegetated (E). 816 
The x axis shows the log2 fold changes of the four different nematode feeding types (y axis) 817 
calculated by the DESeq2 adjusted base mean (see Methods). A log2 fold change of >0 (green) 818 
indicate that abundance was higher in the Control than in the respective manipulated 819 
treatment, while a log2 fold change of <0 (red) indicates that abundance was lower in the 820 
Control than in the respective manipulated treatment. White asterisks show cases when 821 
differences were statistically significant (p(DESeq2) < 0.05) and error bars represent SE, n=4 822 
biologically independent samples. 823 
 824 
Fig. 7- OTU abundance of polychaete feeding guilds in the different treatments in relation to 825 
the Controls: Low Shade (A) and Unvegetated (B). The x axis shows the log2 fold changes of 826 
the four different nematode feeding types (y axis) calculated by the DESeq2 adjusted base 827 
mean (see Methods). A log2 fold change of >0 (green) indicates that abundance was higher in 828 
the Control than in the respective manipulated treatment, while a log2 fold change of <0 (red) 829 
indicates that abundance was lower in the Control than in the respective manipulated 830 
treatment. White asterisks denote cases when differences were statistically significant 831 
(p(DESeq2) < 0.05) and error bars represent SE, n=4 biologically independent samples. No other 832 
differences were detected between CTRL and the remaining manipulated seagrass treatments 833 
 834 
Fig. 8- Experimental approach. (a) Experimental approach displaying the randomized 835 
complete block design in our study. Different patterns correspond to the different 836 
experimental treatments (four biologically independent replicates per treatment). Letters 837 
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represent replicate blocks. (b) High Shading treatment, (c) High Clipping treatment. Photos 838 
by Martin Gullström 839 
  840 
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 841 

 842 
No of 

variables Correlation Environmental variables 

7 0.6 
Sed C:N ratio;  Bulk C in core; Sed C inorg; Rhizome biomass; NCP; N in 
Plant; C in rhizomes 

7 0.598 
Sed C:N ratio;  Bulk C in core;   Sed C inorg; Leaf biomass;  Rhizome 
biomass; NCP; C in rhizomes

6 0.597 
Sed C:N ratio;  Bulk C in core;Sed C inorg; Leaf biomass;  Rhizome 
biomass; NCP; 

8 0.594 
Sed C:N ratio;  Bulk C in core;  Sed C inorg; Leaf biomass;  Rhizome 
biomass; NCP; N in Plant; C in rhizomes 

6 0.593 
Sed C:N ratio;  Bulk C in core; Sed C inorg; Rhizome biomass; NCP; N in 
Plant 

 843 
Table 1- Biota-environment (BIOENV) analysis showing the 5 best combinations of variables 844 
linked with the highest correlation to the meiobenthos community composition.  Correlation 845 
values represent Spearman’s rank correlation coefficient. Environmental variables 846 
abbreviations: Sediment C:N ratio (Sed C:N ratio); Bulk carbon density (Bulk C in core); 847 
Sediment content in inorganic C (Sed C inorg); Rhizome biomass (Rhizome biomass); 848 
Community metabolism (NCP); Plant Nitrogen content (N in Plant); Rhizomes carbon 849 
content (C in rhizomes): Leaf biomass (Leaf biomass) 850 
 851 



Control

High
Shade

Low
Shade

High
Clip

Low
Clip

Unvegetated

0% 25%

50%

75%

100%

Relative abundance

Tr
ea

tm
en

t

Copepoda Gastrotricha Gastropoda Nematoda Other Platyhelminthes Polychaeta

Control

High
Shade

Low
Shade

High
Clip

Low
Clip

Unvegetated

0% 25%

50%

75%

100%

Relative abundance

Tr
ea

tm
en

t

Acanthopharynx

Achromadora

Anoplostoma

Anticoma

Axonolaimus

Bathylaimus

Camacolaimus

Catanema

Ceramonema

Chromadoridae

Chromadorita

Cylindrolaimus

Daptonema

Desmodora

Desmolaimus

Desmoscolex

Diplolaimella

Diplolaimelloides

Dolicholaimus

Dorylaimopsis

Dracograllus

Draconema

Epsilonema

Eumonhystera

Halalaimus

Halicephalobus

Laxus

Leptolaimus

Metateratocephalus

Meyersia

Molgolaimus

Monhysteridae ambiguous 

Noctuidonema

Nudora

Odontophora

Onchium

Oncholaimus

Paracyatholaimus

Paradraconema

Paralamyctes

Paraphanolaimus

Pareurystomina

Phanoderma

Pseudoncholaimus

Ptycholaimellus

Punctodora

Sabatieria

Schizomidae

Setostephanolaimus

Sphaerolaimus

Spilophorella

Spirinia

Teratocephalus

Terschellingia

Thalassoalaimus

Theristus

Trissonchulus

Control

High
Shade

Low
Shade

High
Clip

Low
Clip

Unvegetated

0% 25%

50%

75%

100%

Relative abundance

Tr
ea

tm
en

t

Araeolaimida Chromadorida Desmodorida Desmoscolecida Enoplia Haliplectidae

Monhysterida Rhabditida Tylenchida Enoplida Triplonchida Unclassified

A

C

B



A ABA AA B

1000

2000

3000

    

O
b

s
e

rv
e

d
Alpha diversity

 Metrics
A

A ABA AA B

2000

3000

4000

5000
    

A
C

E

B

A ABA AA B

3.5

4.0

4.5

5.0

Control High
Shade

Low
Shade

High
Clip

Low
Clip

Unvegetated

S
h

a
n

n
o

n

C



Stress= 0.12

-0.2

-0.1

0.0

0.1

-0.2 0.0 0.2

NMDS1

N
M

D
S

2

Treatment

Control

High Clip

High Shade

Low Clip

Low Shade

Unvegetated



Control
High
Shade

Low
Shade

High
Clip

Low
Clip Unvegetated

0
.0
0
4
5

0
.0
0
5
5

0
.0
0
6
5

Treatments

A
v

e
ra

g
e

 d
is

ta
n

c
e

 t
o

 c
e

n
tr

o
id A

B
B

ABC

C

BC



Sediment C:N

N in Plant

C in Rhizome

-2

-1

0

1

-2 -1 0 1 2 3

CCA1

C
C

A
2

Treatment

Control

HighClip

HighShade

LowClip

LowShade



*

Selective deposit feeders

Nonselective deposit feeders

Epistrate feeder

Predator or omnivore

-1 0 1

N
e

m
a

to
d

e
 f
e

e
d

in
g

 t
y
p

e
High Clip vs ControlA

*

*

-1.0 -0.5 0.0 0.5 1.0 1.5

High Shade vs ControlB

*

*

Selective deposit feeders

Nonselective deposit feeders

Epistrate feeder

Predator or omnivore

-2 -1 0 1

log2FoldChange

N
e

m
a

to
d

e
 f
e

e
d

in
g

 t
y
p

e

Low Clip vs ControlC

*

-1.5 -1.0 -0.5 0.0 0.5 1.0

log2FoldChange

Low Shade vs ControlD

*

*

*

*

Selective deposit feeders

Nonselective deposit feeders

Epistrate feeder

Predator or omnivore

-4 -2 0 2

log2FoldChange

N
e

m
a

to
d

e
 f
e

e
d

in
g

 t
y
p

e

Unvegetated vs ControlE



*

*

Omnivorous

carnivores

Subsurface deposit feeders

suspension feeder

-2 0 2 4

log2FoldChange

P
o

ly
c
h

a
te

 f
e

e
d

in
g

 g
u

ild
Low Shade vs ControlA

*

*

*

-6 -4 -2 0 2

log2FoldChange

Unvegetated vs ControlB



A Experimental site

A B

DC

High shading

High clipping

Control

Low clipping

Low shading

Adjacent to the 
experimental site

Unvegetated control

B C


	Article File
	Fugure 1
	Fugure 2
	Fugure 3
	Fugure 4
	Fugure 5
	Fugure 6
	Fugure 7
	Fugure 8

