15 research outputs found

    The social and thermal competence of wild vervet monkeys

    Get PDF

    MHC polymorphism in Caribbean African green monkeys.

    No full text
    International audienceAfrican green monkeys (AGM) are among the most widely used nonhuman primate models used in various fields of medical research. One species of AGM that originated from West Africa, Chlorocebus sabaeus, was introduced three centuries ago in the Caribbean islands. We present here a systematic study of the major histocompatibility complex (MHC) polymorphism of Caribbean AGM which is currently frequently used as an animal model. We studied 54 animals originated from Barbados (N=25) or Saint Kitts (N=29). The MHC polymorphism was characterized by means of 17 MHC microsatellites spread across MHC and DRB genotyping by DGGE sequencing. We defined nine frequent MHC haplotypes of which two were found in the two insular populations suggesting either past exchanges between the two populations or a common origin of the founders of the two populations. By the analysis of a previously described EST library, we characterized 38 MHC cDNA sequences (17 class I and 21 class II). In conclusion, we characterized for the first time the MHC polymorphism of Barbados and Saint Kitts AGM. We found a restricted polymorphism due to a founding effect, which is responsible for a strong bottleneck. The poorness of MHC polymorphism observed in the Caribbean AGM populations is similar to that observed in the Mauritian cynomolgus macaque population

    Population Genetic Structure of Vervet Monkeys in South Africa

    No full text
    From a conservation and evolutionary genetic perspective, vervet monkeys were a largely neglected group in South Africa until the late 1990s. This changed when conservation authorities in some provinces expressed concern about the mixing of possibly unique genetic units due to artificial translocation of animals, in what was one of the first applications of the evolutionary significant unit (ESU) concept in South Africa. This interest led to more questions on the evolutionary genetics of vervets, including: “What routes were followed during historical migration of vervets into the region?” and “How do current patterns of genetic diversity reflect the influence of barriers to gene flow in the region?

    Phylogeography of the pademelons (Marsupialia: Macropodidae: Thylogale) in New Guinea reflects both geological and climatic events during the Plio-Pleistocene

    No full text
    Aim: Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location: New Guinea and associated islands. Methods:  We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results:  Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north-eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north-eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human-mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid-montane or lowland regions. Main conclusions:  Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north-eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi-taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.Peggy Macqueen, Anne W. Goldizen, Jeremy J. Austin, Jennifer M. Seddo
    corecore