376 research outputs found

    Reciprocal Learning in Production and Logistics

    Get PDF
    Integration of AI technologies and learnable systems in production and logistics transforms the concepts of work organization and task assignments to human and machine agents. Thus, the question arises of what intelligent machines and human workers may be able to achieve as teammates. One answer may be guiding and training the workforce at the workplace to cope with emerging skill mismatches, emphasized by concepts of work-based learning. The extension of cyber-physical production systems towards becoming human-centered and social systems enabling human-machine interaction, creates opportunities for human-machine symbiosis by complementing each other's strengths. In this way, the concept of “Reciprocal Learning” (RL) between humans and intelligent machines has emerged, which is still rather ambiguous and lacks a profound knowledge base. Especially in production and logistics, literature is fragmented. Hence, the objective of this paper is to conduct a systematic literature review to elicit and cluster the knowledge base in RL represented by adjacent interdisciplinary fields of research, such as social and computer sciences. This work contributes to the literature by developing a comprehensive knowledge base on the concept of RL enabling to pursue future research directions towards the realization of human-machine symbiosis through RL in production and logistics

    Long term (2050) projections of techno-economic performance of large-scale heating and cooling in the EU

    Get PDF
    The following study provides data and projections for large-scale District Heating (DH) technologies including an outlook till 2050 and regional differences. The study complements a study for small-scale technologies applicable to residential and tertiary sector. The data set can be downloaded here http://data.jrc.cec.eu.int/dataset/jrc-etri-techno-economics-larger-heating-cooling-technologies-2017JRC.C.7-Knowledge for the Energy Unio

    Brief communication: Unravelling the composition and microstructure of a permafrost core using X-ray computed tomography

    Get PDF
    The microstructure of permafrost ground contains clues to its formation and hence its preconditioning to future change. We applied X-ray computed microtomography (CT) to obtain high-resolution data (Δx=50 µm) of the composition of a 164 cm long permafrost core drilled in a Yedoma upland in north-eastern Siberia. The CT analysis allowed the microstructures to be directly mapped and volumetric contents of excess ice, gas inclusions, and two distinct sediment types to be quantified. Using laboratory measurements of coarsely resolved core samples, we statistically estimated the composition of the sediment types and used it to indirectly quantify volumetric contents of pore ice, organic matter, and mineral material along the core. We conclude that CT is a promising method for obtaining physical properties of permafrost cores which opens novel research potentials

    Measurements of the Correlation Function of a Microwave Frequency Single Photon Source

    Full text link
    At optical frequencies the radiation produced by a source, such as a laser, a black body or a single photon source, is frequently characterized by analyzing the temporal correlations of emitted photons using single photon counters. At microwave frequencies, however, there are no efficient single photon counters yet. Instead, well developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate how the properties of a microwave single photon source can be characterized using correlation measurements of the emitted radiation with such detectors. We also demonstrate the cooling of a thermal field stored in a cavity, an effect which we detect using a cross-correlation measurement of the radiation emitted at the two ends of the cavity.Comment: 5 pages, 4 figure

    Head and neck melanoma: outcome and predictors in a population-based cohort study

    Get PDF
    Background To evaluate predictive clinico-pathological characteristics on outcome in head and neck melanoma (HNM) in a population-based study with particular emphasis on the prognostic effect of sentinel lymph node biopsy (SLNB), Charlson comorbidity index (CCI) and distinct tumor localisations. Methods Here we primarily describe a retrospective multicenter population-based cohort study with 402 patients having undergone resection with curative intent of HNM between 2010 and 2017. SLNB was used in the diagnosis of 79 HNM patients. Outcome was analyzed, focusing on SLNB, CCI as well as tumor localisation. Overall survival (OAS) und recurrence free survival (RFS) was examined by uni- and multivariate analysis. Results Histopathologically verified lymph node metastasis according to SLNB was associated with impaired RFS in HNM patients (p = 0.004). Especially in higher tumor stages, the sole implementation of SLNB improved survival significantly in the present cohort (p = 0.042). With most of the HNM being located in the face, melanoma of the scalp and neck could be linked to deteriorated patient’s outcome in uni- as well as multivariate analysis (p = 0.021, p = 0.004). Conclusions SLNB is a useful tool in predicting development of distant metastasis after HNM resection with curative intent. Especially in higher tumor stages, performing a SLNB ameliorated survival of HNM patients. Additionally, CCI as well as a distinct tumor localisations in HNM were identified as important risk factors in our population-based cohort study

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Get PDF
    Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable xx, the relative virtual-photon energy yy and the relative hadron energy zz. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target (6^6LiD). They cover the kinematic domain in the photon virtuality Q2Q^2 > 1(GeV/c)2)^2, 0.004<x<0.40.004 < x < 0.4, 0.2<z<0.850.2 < z < 0.85 and 0.1<y<0.70.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions

    Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1

    Get PDF
    We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distinguish asthma from healthy control subjects and those that distinguish controlled asthma from uncontrolled asthma. Following informed consent, 36 human subjects were recruited for this study. These included 11 healthy control subjects, 15 subjects with controlled asthma with FEV1≥80% predicted and 10 subjects with uncontrolled asthma with FEV1 2.4%) were a higher BAL fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-normal asthma (eosinophils≤0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1. Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely with FEV1
    corecore