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Abstract
We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distin-

guish asthma from healthy control subjects and those that distinguish controlled asthma

from uncontrolled asthma. Following informed consent, 36 human subjects were recruited

for this study. These included 11 healthy control subjects, 15 subjects with controlled asth-

ma with FEV1�80% predicted and 10 subjects with uncontrolled asthma with FEV1 <80%

predicted. BAL fluid was obtained from all subjects. The numbers of different cell types and

the levels of 48 cytokines were measured in these fluids. Compared to healthy control sub-

jects, patients with asthma had significantly more percentages of eosinophils and neutro-

phils, IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, GROα (CXCL1), MIP-1β

(CCL4), MIG (CXCL9), RANTES (CCL5) and TRAIL in their BAL fluids. The only inflamma-

tory markers that distinguished controlled asthma from uncontrolled asthma were neutrophil

percentage and IL-8 levels, and both were inversely correlated with FEV1. We examined

whether grouping asthma subjects on the basis of BAL eosinophil % or neutrophil % could

identify specific cytokine profiles. The only differences between neutrophil-normal asthma

(neutrophil�2.4%) and neutrophil-high asthma (neutrophils%>2.4%) were a higher BAL

fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-

normal asthma (eosinophils�0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher

levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1.

Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids
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that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely

with FEV1.

Introduction
Asthma is a complex chronic inflammatory disorder of the airways with a high prevalence rate
of approximately 300 million people worldwide [1]. Severe asthma represents approximately 5
to 10% of all subjects with asthma [2], but accounts for 40% of the total cost for asthma care [2]
and 30–50% of asthma morbidity [3]. The National Heart, Lung, and Blood Institute’s Severe
Asthma Research Program (SARP) demonstrated that reduced FEV1 (forced expiratory vol-
ume in 1 second), history of pneumonia, and fewer positive skin tests for environmental aller-
gens were critical independent risk factors for severe asthma [4]. However, the SARP study
also reported that the well-established biomarkers of asthma, such as blood eosinophils, serum
IgE, and exhaled nitric oxide levels, do not differentiate asthma severity or correlate with FEV1

or asthma severity [4]. The RET/ATS guidelines have been changed for defining asthma severi-
ty to controlled and uncontrolled asthma. It is important to identify specific cytokines that dis-
tinguish uncontrolled asthma from controlled asthma in the new guideline to develop novel
therapeutic targets for severe asthma.

Increasing evidence suggests that inflammatory cells in the airways can distinguish severe
asthma from mild asthma [5–12]. Because sputum samples are collected non-invasively, sever-
al studies have evaluated sputum samples, and reported higher percentages of neutrophils in
the sputum in severe compared to mild asthma [7, 8]. However, because sputum neutrophil
numbers do not correlate with the cell numbers in bronchoalveolar lavage (BAL) fluids from
the same subjects [13], it is important to validate the observations of neutrophilia in the spu-
tum by sampling other compartments of the airways. A study of tracheal aspirates from pa-
tients intubated for acute severe asthma reported a higher percentage of neutrophils compared
to a control group of patients undergoing nonpulmonary surgical procedures [9]. In another
study, patients intubated for status asthmaticus exhibited a higher mean percentage of neutro-
phils in their BAL fluid compared to that from patients with stable mild asthma [10]. We have
reported that unlike classic slow-onset progressive fatal asthma, peribronchial lung tissues in
sudden-onset fatal asthma had considerably more neutrophils than eosinophils [6]. Thus an in-
creasing body of literature supports the idea that there is an abundance of neutrophils in
severe asthma.

Many cytokines and chemokines could theoretically be associated with "neutrophil- rich"
and “eosinophil-rich” endotypes of asthma [14]. However, most studies have utilized a candi-
date cytokine approach to quantify specific cytokines in asthma [9–12]. One such candidate-
cytokine study evaluated sputum concentrations of IL-8, and reported higher levels in severe
vs. mild asthma [7]. Another study evaluated IL-8 in tracheal aspirates, and reported higher
levels in patients intubated for acute severe asthma compared to a control group of patients un-
dergoing surgical procedures unrelated to the lung [9]. Likewise, the concentration of IL-8 in
BAL fluid from patients intubated for status asthmaticus was elevated compared to mild asth-
ma [10]. To our knowledge, only two study evaluated an array of over 20 cytokines and chemo-
kines in BAL fluid to identify cytokines that distinguish severe asthma from mild or moderate
asthma [15, 16]. One of these studies reported identically level of IL-8 in moderate and severe
asthma in children compared to adult controls [15], whereas the other reported no difference
in BAL fluid levels of IL-8 between mild asthma and severe asthma [16]. To address this
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difference in the observations reported in candidate-cytokine studies [9–12] vs. panel-cytokine
study [16], we examined a panel of 48 cytokines and chemokines in BAL fluids from healthy
control subjects and subjects with controlled and uncontrolled asthma.

Materials and Methods

Subjects
Subjects were recruited in the Department of Asthma, Allergy and Lung Biology, King’s Col-
lege London School of Medicine, U.K. The study was approved by the Ethics Committee of
King’s College Hospital, and each participant provided written informed consent. Subjects
with asthma were included on the basis of history and a demonstrated reversible airflow limita-
tion (20% variability in forced expiratory volume in one second [FEV1] or peak expiratory flow
rate), increased airway responsiveness to methacholine (concentration producing a decrease of
20% from base line in FEV1 [PC20],< 8 mg per millilitre), or both. None had ever smoked, and
there was no history of other respiratory disease. Atopy was defined as the presence of one or
more positive skin prick tests to a range of common aeroallergens. The normal controls had no
history of allergic disease, had normal FEV1, and a PC20 of more than 32 mg per millilitre. Of
the controls, 5 of 11 were atopic. The subjects’ characteristics are shown in Table 1. These in-
cluded 11 healthy control subjects (FEV1 = 102%, 89–110), 15 subjects with controlled asthma
(Mean FEV1 98%, 81–113) and 10 with uncontrolled asthma (Mean FEV1 64%, 48–74,<
80%). For the purpose of this study, we defined asthma severity based on FEV1 while on treat-
ment, according to international ERS/ATS guidelines [17].

Fiberoptic bronchoscopy and collection of BAL fluid
Fiberoptic bronchoscopy was performed, and BAL fluid obtained and processed as previously
described [18]. Briefly, bronchoscopy was performed by the same operator in both the asth-
matics and the controls after they had received 2.5 mg of albuterol by nebulizer, 0.6 mg of atro-
pine, midazolam for sedation, and 2% or 4% of lidocaine for local anaesthesia. BAL was

Table 1. Patient characteristics.

Characteristic Healthy Controlled Asthma Uncontrolled Asthma

n 11 15 10

Age (yr) 24.0 (19–38) 27.1 (19–41) 45.8 (29–63)*+

Sex (% male) 45.5 40 60

Use of ICS (%) none 11.7 100

Mean dose of ICS none 27 710

Use of LABA (%) none none 90

Duration of asthma, (yr) NA 4.7 (3–13) 10.0 (6–20)

Atopy, % 54.5 66.7 70

FEV1, % predicted 102.0 (89–118) 98.1 (83–113) 64.1 (48–74) *+

Total IgE (IU/ml) 49.6 (17–232) 86.7 (19–623) * 123.2 (18–721) *

Blood eosinophils (%leukocytes) 0.6 (0.2–2.6) 2.1 (0.6–3.2) * 2.9 (0.4–4.1) *

Results expressed in means and range.

*Statistical significant compared to healthy group
+Statistical significant compared to controlled asthma

doi:10.1371/journal.pone.0126035.t001
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performed by instilling four 60-ml aliquots of warmed, pH-adjusted, normal saline into either
the right middle lobe or the lingula. After collection, BAL cells were centrifuged at 300 x g for 7
min, washed once, and resuspended in 1.5 mL of PBS; BAL fluid supernatants were distributed
into 10 ml each tube and stored at -80°C for further analysis (up to 3 years). The mean total
amount of BAL fluid was 92ml.

Cell counts in BAL fluid
Cytospin slides of BAL cells were made with a Shandon 2 cytospin device (Shandon Southern
Instruments, Runcorn, UK). For cell differentiation, slides were stained with May-Grunwald
Giemsa. Cell counts were performed and the absolute numbers and percentages of eosinophils,
neutrophils, lymphocytes and monocytes/macrophages were quantified.

Cytokines and chemokines in BAL fluid
Cytokines in BAL fluid were quantified using a Bio-Plex array for 48 cytokines (Bio-Rad, Her-
cules, CA) according to the manufacturer’s instructions: Interleukin (IL)-1α, IL-1β, IL-1 re-
ceptor antagonist (IL-1RA), IL-2, IL-2Rα, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12
(p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-17, IL-18, fibroblast growth factor (FGF), eotaxin
(CCL11), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon (IFN)-γ, interferon gamma-induced protein (IP)-
10/CXCL10, monocyte chemotactic protein (MCP)-1/CCL2, macrophage inflammatory pro-
tein (MIP)-1α/CCL3, MIP-1β/CCL4, platelet-derived growth factor (PDGF), regulated-on-
activation normal T-cell expressed and secreted (RANTES)/CCL5, tumor necrosis factor
(TNF)-α, vascular endothelial growth factor (VEGF), cutaneous T cell attracting chemokine
(CTACK)/ CCL27, growth regulated oncogene α (GROα)/ CXCL1, hepatocyte growth factor
(HGF), IFN-α2, leukemia inhibitory factor (LIF), MCP-3/CCL7, macrophage colony-
stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), monokine in-
duced by interferon-gamma (MIG)/CXCL9, nerve growth factor-β (NGF-β), stem cell factor
(SCF), stem cell growth factor-β (SCGF-β), stromal cell-derived factor-1α (SDF-1α), TNF-β,
and TNF-related-apoptosis-induced- ligand (TRAIL). The lower limits of detection of cyto-
kines that were not detected (ND) or were at borderline limits of detection were: IL-2 (3 pg/
ml), IL-4 (6 pg/ml), IL-13 (4 pg/ml), IL-17 (48 pg/ml), FGF (172.4pg/ml), CCL3 (178 pg/ml),
CCL11 (325 pg/ml), GM-CSF (22 pg/ml), and TNF-α (543 pg/ml).

Statistical Analysis
The results of the study are presented as means ± SEM. Group comparisons were analyzed by
an unpaired Student’s t-test or one-way ANOVA with Tukey's multiple comparisons test. The
Holm procedure was used for multiple comparison adjustment. Linear regression analysis
was performed to assess the relationship among parameters. For the logistic regression com-
paring asthmatic and healthy subjects, an elastic net regression was used with leave-half-out
validation for model selection and error estimation. For the logistic regression comparing
controlled to uncontrolled asthma, a least squares regression predicting FEV1%, stepwise se-
lection was used with the Bayesian Information Criterion as the model selection criterion. All
calculations were performed in R (version 3.0.2). The software package GraphPad Prism 6
(GraphPad Software, San Diego, CA) was used for the preparation of graphs. Statistical signif-
icance was set at p<0.05.
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Results

Differences in BAL fluid cellular and cytokine profiles of subjects with
asthma vs. healthy controls
Compared to healthy control subjects (n = 11), subjects with asthma (n = 25) had higher % eo-
sinophils (p<0.001) and %neutrophils (p<0.05) in their BAL fluids (Fig 1A). Furthermore,
subjects with asthma had 2.3-fold higher IL-1RA (p<0.001), 2.0-fold higher IL-1α (p<0.05),
2.5-fold higher IL-1β (p<0.01), 1.3-fold higher IL-2Rα (p<0.05), 1.7-fold higher IL-5
(p<0.05), 3.2-fold higher IL-6 (p<0.001), 1.4-fold higher IL-7 (p<0.05), 1.7-fold higher IL-8
(p<0.001), 2.2-fold higher G-CSF (p<0.05), 1.7-fold higher CXCL1 (p<0.05), 1.4-fold higher
CCL4 (p<0.05), 1.7-fold higher CXCL9 (p<0.01), 2.0-fold higher CCL5 (p<0.01) and 1.9-fold
higher TRAIL (p<0.05) concentrations in their BAL fluids (Fig 1B). By contrast, subjects with
asthma and healthy controls had similar mean concentrations of such other cytokines as IL-3,
IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-18, IFN-γ, IFN-α2, CXCL10,
CCL2, CCL3, PDGF-bb, VEGF, CCL27, HGF, LIF, CCL7, M-CSF, MIF, NGF-β, SCF, SCGF-β,
SDF-1α and TNF-β (Table 2). IL-2, IL-4, IL-17, CCL11, FGF, GM-CSF, and TNF-α were not
detected in either group. Thus, 14 out of 48 cytokines were higher in subjects with asthma,
compared to healthy control subjects.

BAL cytokine profile analysis identify only IL-8 levels and % neutrophils
as biomarker that distinguish controlled asthma from uncontrolled
asthma, and both correlate inversely with FEV1

Next, we determined which of these cells and 14 cytokines (Fig 1) elevated in asthma distin-
guished controlled from uncontrolled asthma. Unexpectedly, there were only two differences
between these two groups. Subjects with uncontrolled asthma had a mean 1.7-fold higher per-
centage of neutrophils in the BAL fluid compared to those with controlled asthma (controlled
asthma = 1.6±1.1%, uncontrolled asthma = 2.9±0.8%, p<0.01, Fig 2A). The mean concentra-
tion of IL-8 in the BAL fluid from subjects with uncontrolled asthma was 1.5-fold higher than
that in subjects with controlled asthma (controlled asthma = 1128±386 pg/ml, uncontrolled
asthma = 1716±551 pg/ml, p<0.01, Fig 2A). Furthermore, only IL-8 concentrations in all sub-
jects with asthma (controlled and uncontrolled) significantly correlated with the percentages of
neutrophils in the BAL fluid (R = 0.61, p<0.01, Fig 2B). In addition, the percentages of neutro-
phils and the concentrations of IL-8 in the BAL fluid were both inversely correlated with the %
predicted FEV1 (R = -0.46, p<0.05 for both neutrophil% and IL-8 levels, Fig 2B). Even though
BAL eosinophil % in all subjects with asthma correlated with BAL fluid IL-5 levels (Fig 2C),
neither eosinophil % nor IL-5 levels correlated with % predicted FEV1 (Fig 2C). Some cytokines
elevated in subjects with asthma significantly correlated with the level of IL-8 in BAL fluids:
IL1-RA (R = 0.59, p<0.01), IL-1α (R = 0.40, p<0.05), IL-6 (R = 0.68, p<0.001), IL-7 (R = 0.47,
p<0.05), G-CSF (R = 0.74, p<0.0001), CCL4 (R = 0.45, p<0.05), CXCL1 (R = 0.64, p<0.01),
and CXCL9 (R = 0.48, p<0.05). However, these cytokines did not correlate with the % neutro-
phils or % predicted FEV1 in BAL fluids.

Next we statistically examined whether inhaled corticosteroid (ICS) could have contributed
to some of the observations in the present study by separating all subjects with asthma into
those that received ICS vs. those that did not. Subjects with asthma that were being treated
with ICS had higher % neutrophils (p<0.05), higher IL-8 levels (p<0.05) and lower % pre-
dicted FEV1 (p<0.0001). However, the dose of ICS did not correlate the level of % neutrophils
and IL-8 levels in BAL fluids (data not shown).
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Fig 1. Differences in cell and cytokine levels in BAL fluids in healthy controls vs. asthma. (A) Percentages of eosinophils and neutrophils in the BAL
fluids. (B) Concentrations of IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, CXCL1, CCL4, CXCL9, CCL5, and TRAIL in the BAL fluids. Data are
expressed as means ± SEM. * = P < .05, ** = P < .01, *** = P < .001, **** = P < .0001.

doi:10.1371/journal.pone.0126035.g001
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Eosinophil-high and neutrophil-high asthma have different cytokine
profiles and FEV1

Building on the unexpected observation that % neutrophil but not % eosinophils correlated in-
versely with % predicted FEV1 in asthma, we examined whether grouping asthma subjects on
the basis of BAL eosinophil % or neutrophil % could identify specific cytokine profiles. In our
study, the upper limit of percent of eosinophils and neutrophils in the BAL fluid of healthy sub-
jects was 0.3% and 2.4%, respectively (Figs 3 and 4). For the purpose of this study, we separated

Table 2. Cellular and cytokine profile in BAL fluid without statistical difference between subjects with
asthma and healthy controls.

Cellular component and cytokines Healthy Asthmatic

IL-2 (pg/ml) ND ND

IL-3 (pg/ml) 90.4±103.9 138.2±110.2

IL-4 (pg/ml) ND ND

IL-9 (pg/ml) 25.0±9.8 31.5±10.9

IL-10 (pg/ml) 12.8±12.5 14.3±11.9

IL-12 (p40) (pg/ml) 693.5±231.0 811.8±240.4

IL-12 (p70) (pg/ml) 237.1±82.0 233.1±94.4

IL-13 (pg/ml) 12.0±5.2 14.3±6.3

IL-15 (pg/ml) 6.1±4.5 5.8±3.8

IL-16 (pg/ml) 1034.1±935.3 1317.6±749.7

IL-17 (pg/ml) ND ND

IL-18 (pg/ml) 282.0±102.9 408.4±262.2

FGF (pg/ml) ND ND

CCL11 (pg/ml) ND ND

GM-CSF (pg/ml) ND ND

IFN-α2 (pg/ml) 105.3±57.1 126.0±47.0

IFN-γ (pg/ml) 73.6±70.2 88.5±89.8

CXCL10 (pg/ml) 13362.5±19043.1 14797.3±10298.6

CCL2 (pg/ml) 349.5±122.5 403.9±132.9

CCL3 (pg/ml) ND ND

PDGF-bb (pg/ml) 95.1±94.2 192.5±147.9

TNF-α (pg/ml) ND ND

VEGF (pg/ml) 3304.9±1427.3 3358.5±1534.4

CCL27 (pg/ml) 365.0±144.6 416.0±134.5

HGF (pg/ml) 554.5±286.6 748.4±324.3

LIF (pg/ml) 150.3±82.9 168.3±88.0

CCL7 (pg/ml) 522.9±301.4 588.2±243.5

M-CSF (pg/ml) 274.7±103.7 369.1±157.2

MIF (pg/ml) 9627.4±8797.7 14690.1±8929.0

NGF-β (pg/ml) 340.8±87.5 383.7±89.5

SCF (pg/ml) 413.5±222.8 450.1±203.1

SCGF-β (pg/ml) 775.1±546.1 647.5±498.0

SDF-1α (pg/ml) 1118.5±477.5 1427.2±478.7

TNF-β (pg/ml) 582.6±187.4 630.5±208.7

Results expressed in means and range.

ND; Not detected.

doi:10.1371/journal.pone.0126035.t002
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Fig 2. Correlation of FEV1 to eosinophil, neutrophil, IL-5 and IL-8 levels in asthma. (A) Percentages of neutrophils and concentrations of IL-8 in BAL
fluids of subjects with controlled asthma and uncontrolled asthma. (B) Correlations of concentrations of IL-8 with the percentages of neutrophils in the BAL
fluid from all subjects with asthma (left panel). Correlation of percentages of neutrophils and concentrations of IL-8 in BAL fluid with percent predicted FEV1

(middle and right panels, respectively). (C) Correlation of concentrations of IL-5 with the percentages of eosinophil in the BAL fluid from all subjects with
asthma (left panel). Correlation of percentages of eosinophils and concentrations of IL-5 in BAL fluid with percent predicted FEV1 (middle and right panels,
respectively). Data are expressed as means ± SEM. * = P < .05, ** = P < .01, *** = P < .001, **** = P < .0001.

doi:10.1371/journal.pone.0126035.g002
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all subjects with asthma into either eosinophil-high (eosinophils> 0.3%, Eos-High) and
eosinophil-normal (eosinophils�0.3%, Eos-Normal) groups (Fig 3), or neutrophil-high (neu-
trophils%> 2.4%, Neu-High), and neutrophil-normal (neutrophil�2.4%, Neu-Normal)
groups (Fig 4). Compared to Eos-Normal asthma, Eos-High asthma had higher levels of IL-5
(p<0.05), IL-13 (p<0.05), IL-16 (p<0.05), and PDGF-bb (p<0.05), but same % neutrophils,
IL-8, other cytokines (data not shown), and FEV1 (Fig 3). By contrast, compared to Neu-Nor-
mal asthma, Neu-High asthma had higher IL-8 levels (p<0.01) and lower % predicted FEV1

(p<0.01), but similar levels of eosinophil %, IL-5, IL-13, IL-16, and PDGF-bb (Fig 4) and other
cytokines and chemokines (data not shown). These results also indicate an association of Neu-
High asthma with IL-8 and % FEV1.

Fig 3. Cell and cytokine profile of eosinophil-high (Eos-High) asthma and eosinophil-normal (Eos-Normal) asthma. The upper limit of percent of
eosinophils in the BAL fluid of healthy subjects was 0.3%. We separated all subjects with asthma into either eosinophil-high (eosinophils > 0.3%) and
eosinophil-normal (eosinophils�0.3%) groups. Compared to Eos-Normal asthma, Eos-High asthma had higher levels of IL-5 (p<0.05), IL-13 (p<0.05), IL-16
(p<0.05), and PDGF-bb (p<0.05), but same% neutrophils, IL-8, and FEV1. Data are expressed as means ± SEM. *P < .05, **P < .01.

doi:10.1371/journal.pone.0126035.g003
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Multiple regression analysis models
The estimated predictive equation for the presence of asthma using logistic regression was:
Logit (Present (asthma)) = -3.85 + 0.0033 (IL-8) + 2.77 (% eosinophils) (p = 0.05 and 0.09, re-
spectively). The accuracy of this model was 84%, with 89% sensitivity and 75% specificity. The
predictive equation for FEV1% predicted in asthma was 103–0.023 (IL-8) + 0.040 (IL-1α). The
R2 for this model was 0.34 (p = 0.0037 and 0.06, respectively). Atopy had no significant effect.

Discussion
Prior studies have mostly measured candidate cytokines, and reported increased levels of IL-8
and neutrophils in the sputum in severe asthma [7]. Our study of the BAL fluid provides this
specific information by demonstrating that IL-8 is the only cytokine among 48 measured that

Fig 4. Cell and cytokine profile of neutrophil-high (Neu-High) asthma and neutrophil-normal (Neu-Normal) asthma. The upper limit of percent of
neutrophils in the BAL fluid of healthy subjects was 2.4%. We separated all subjects with asthma into neutrophil-high (neutrophils% > 2.4%), and neutrophil-
normal (neutrophil�2.4%) groups. Compared to Neu-Normal asthma, Neu-High asthma had higher IL-8 levels (p<0.01) and lower % predicted FEV1

(p<0.01), but similar levels of eosinophil %, IL-5, IL-13, IL-16, and PDGF-bb. Data are expressed as means ± SEM. *P < .05, **P < .01.

doi:10.1371/journal.pone.0126035.g004
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is significantly elevated in uncontrolled asthma. The higher BAL fluid IL-8 levels in uncon-
trolled asthma seen in our study could reflect persistent stimulation of IL-8 secretion by
chronic stimulation of the nuclear factor-κB signaling pathway following exposure to enviro-
nemantal factor [19], or intrinsic differences in the ability of uncontrolled asthma patients’ air-
way epithelium to produce high amounts of IL-8 [20]. In addition to its ability to stimulate
neutrophil recruitment, IL-8 may contribute to the pathogenesis of severe asthma by directly
facilitating airway remodeling by increasing bronchial smooth muscle cell migration and pro-
liferation [21], inducing airway hyperresponsiveness (AHR) [22], and stimulating epithelial-
mesenchymal transition (EMT) [23] in the airways.

In our study, neutrophil-high asthma had lower FEV1, and the neutrophil percentage in
asthma was inversely correlated with FEV1 and directly correlated with IL-8 levels. The mecha-
nistic contribution of neutrophils to asthma severity is not well understood, and our study was
not designed to address this issue. A variety of factors produced by neutrophils could theoreti-
cally contribute to the pathogenesis of severe asthma. Depletion of neutrophils in a mouse
model of allergic asthma has been reported to reduce AHR and airway remodeling [24]. Matrix
metalloproteinase 9 (MMP-9) from neutrophils has been shown to be associated with asthma
severity [24]. Neutrophil elastase can induce AHR [25], and promote the EMT [26]. After in-
teracting with allergens, neutrophils release α-defensins [27], which can stimulate IL-8 secre-
tion from human bronchial epithelial cells [28]. Neutrophils from subjects with asthma
produce higher TGF-β1 [29], a strong inducer of the EMT. Neutrophils are a major source of
reactive oxygen species (ROS) generated by gp91phox NADPH oxidase [30], and promote al-
lergic airway inflammation [31].

In our study, 12% of the subjects with controlled asthma and all subjects with uncontrolled
asthma used ICS. Because steroids can inhibit apoptosis of neutrophils [32] and suppress eo-
sinophil survival [33], use of ICS could have impacted the results of our study by skewing cell
counts to higher neutrophilia in uncontrolled asthma. However, in our study the dose of ICS
did not correlated the level of neutrophils in BAL fluids, suggesting that this is most likely not
the explanation for higher %neutrophil. As in our study, others have also reported elevated
neutrophils in severe asthma, independent of steroids. For example, the European Network for
Understanding Mechanisms of Severe Asthma study also reported more neutrophils in the
sputum from subjects with severe asthma, independent of corticosteroid use [34]. Likewise, use
of inhaled corticosteroids did not impact BAL fluid IL-8 levels in a study of the molecular phe-
notyping of severe asthma [16]. Further studies are needed to clarify the effect of ICS on neu-
trophils and eosinophils in the airways [35].

Consistent with prior studies [11, 12, 36–43], our results also demonstrate that subjects with
asthma have higher concentrations of IL-5 and the numbers of eosinophils in BAL fluid com-
pared to control subjects. This is not surprising because eosinophilic inflammation is a signifi-
cant feature of the pathology of asthma [9–12, 36, 37, 44]. In our study, eosinophils and IL-5
did not correlate with percent predicted FEV1. The lack of association between eosinophils and
FEV1 in asthma is surprising because eosinophils have been shown to contribute to AHR in
murine, guinea pig and mammal studies [45–48]. However, several human studies have shown
that eosinophils do not correlate with AHR or airflow obstruction [49–51].

It is somewhat surprising some Th2 cytokines and chemokines, especially IL-4, IL-13, and
CCL11 were not elevated in the present study, even though prior reports indicated the increase
of these cytokines and chemokines [38–43, 52–58]. Two studies performed in the 1990s re-
ported elevated IL-4 levels in concentrated BAL fluids in asthma [40, 41]. Since concentrating
BAL fluid may induce a processing artifact, more recent studies have been performed on
unconcentrated BAL fluids [15, 59]. Like our study that was also performed on unconcentrated
BAL fluids using multiplex beads, these studies reported that IL-4 and IL-13 were undetectable
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in unconcentrated BAL fluids in asthma [15, 59]. Like our study, a previous study reported that
there is no elevation of TNFα or GM-CSF in BAL fluids from the subjects of asthma [15]. Prior
studies have reported an increase in CCL11 levels in BAL fluids in subjects with asthma after
allergen challenge [56], and CCL11positive cells or CCL11 mRNA expression in bronchial bi-
opsy specimens in asthma [57, 58]. However, other studies that were similar to ours, and sam-
pled the BAL compartment in asthma without allergen challenge, also failed to detect CCL11
[60], or detected CCL11 at a level that would be too low (7–41 pg/ml) to be detectable by our
kit (lower limit of detection 325 pg/ml) [15, 59].

We unexpectedly did not detect IL-17in our study. A recent study reported that IL-17 is
present in BAL fluids from the subjects with asthma at mean levels of about 60 pg/ml (25–150
pg/ml) [61]. Since the lower limit of detection level of IL-17 in our study 48 pg/ml, this could
account for failure to detect IL-17 in our study.

Recent studies have suggested that asthma is a heterogeneous disease complex that should
be classified into distinct endotypes based on their cytokine profiles [15, 16, 62–65]. In the
present study we also show there are quantitative differences in cytokine pattern between neu-
trophil-high asthma and eosinophil-high asthma. However, our data suggest that uncontrolled
and controlled asthma have a fairly uniform cytokine profile and may have a common patho-
genesis instead of being a collection of fundamentally distinct diseases. Our observations ques-
tion the importance cytokine-based endotypes classification of asthma in predicting
asthma severity.

The specific association of only IL-8 in 48 cytokines quantified in BAL fluids with neutro-
phil-high and uncontrolled asthma in the present study provides specificity to earlier candi-
date-cytokine studies reporting elevated IL-8 and neutrophils in severe asthma [7–10].
Together, these studies indicate that the mechanistic role of IL-8 and recruited neutrophils
should be carefully evaluated in uncontrolled asthma. CXCR2 is one of the receptors for IL-8
[66]. A recent study demonstrated that CXCR2 inhibitor reduced sputum neutrophilia and
asthma exacerbations, and improved Asthma Control Questionnaire (ACQ) score in patients
with severe asthma [67]. If the results of our study are confirmed in mechanistic and large-
scale BAL fluid studies, inhibition of neutrophil recruitment by CXCR2 inhibitors and others
agents should be explored as alternate therapeutic strategies in uncontrolled asthma with
elevated neutrophils.
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