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1 Introduction 

 

The following study provides data and projections for large-scale District Heating (DH) 

technologies including an outlook till 2050 and regional differences. The study will also 

complement a similar study performed in 2016 for small-scale technologies applicable to 

residential and tertiary sector.  

The study was designed and coordinated together with the modellers of the European 

Commission- DG Joint Research Centre (JRC) but is also addressed to anyone else 

interested in techno-economic data for heating and cooling technologies at the range of 

one to several hundered Megawatt (MW). 

The provided information will be used in simulation tools in order to assess the 

possibilities of DH within the EU or specific countries. 

 

 

 

2 Disclaimer 

This report contains projections of techno-economic parameters of district heating and 

cooling technologies. All data in this report has been researched and compiled with 

utmost diligence of ILF/AIT experts.  

Nevertheless there is no guarantee that the presented data captures all different kinds of 

district heating projects as well as errors and mistakes cannot be totally excluded.  

Moreover projections contain considerable uncertainties since many factors will influence 

the development of these technologies both what concerns economic and technical 

performance. 

 

Market 
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Technology 
input (Scope 
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Heat 
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3 Methodology 

The following chapter gives a comprehensive overview about the technologies, and 

parameters which are presented and changes that have been made in addition to the 

tender specifications – Part 2 - Technical specifications (Terms of Reference). 

3.1 Technology overview 

The following figure provides a summary of the different district heating technologies 

evaluated. All in all, 44 technology tables are elaborated which represent the most 

relevant technologies for district heating and cooling in the EU. When relevant, various 

fuel types are also considered for some technologies. Also own technology tables are 

provided if the capacity size has significant influence on the technology data (e.g. small- 

and large scale gas turbines).  

Figure 1: Technology overview 

 

 

3.2  Data sources and approach 

General data 

For data gathering following information sources were used/ combined: 

 Literature  

o Public and own studies 

o Scientific- and conference papers 

o Databases 

 Project information 

o Realised and planned plants 

o Fact sheets and best practice examples 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

5 

o Own projects 

o Estimative offers 

o Reference projects 

 Measurements 

o Monitoring/operational data 

o Laboratory/test bench 

 Reference projects (interviews, literature, etc.) 

 Internal and external expert inputs 

o Opinions, estimations and assessments 

o Information from manufacturers and planners (interviews) 

 Simulations/Calculations 

o Commercial tools/ SW 

o In-house/own developed tools 

Additional to these data sources, inhouse knowledge of ILF/AIT was used and internal 

experts continuously consultated for contribution and reviewing the gathered technology 

data. 

Long term projection 

Based on the past and current economic and technical performance future projections 

were done. To maximize the accuracy of the projections, three steps were used for all 

technologies: 

 Extrapolation of past and current data 

 Expert opinion regarding market trends, material development, political 

regulations 

 Literature study considering latest scientific findings, trends and possible 

disruptive developments 

 

3.3 Parameters 

3.3.1 General format - Overview 

Within the following report key parameters of district heating technologies are provided. 

Each chapter includes one technology first giving a general overview, a main data table 

with different kind of information being separated into the following major categories 

which are: 

— Energy/technical data 

— Environmental data 

— Financial data 

— Technology specific data. 

 

3.3.2 Energy/technical data 

Heat/Cold generation capacity 
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The range indicates the typical capacities in which one unit of the technology is available/ 

used for the considered application.  

Total efficiency, annual average  

The efficiencies are calculated based on the net energy content of the fuel used and the 

net amount of heat/cold/electricity produced, in percent, at ambient conditions 

representative of relevant climatic conditions/zones. The transformation on different 

locations within Europe will be illustrated in chapter 3.4.1. Efficiencies reflect annual 

average efficiencies as experienced by the operator, assuming correct installation and 

operation. When technologies are having a large variation over the year we will give 

monthly efficiency indicators. 

Technical lifetime 

The average lifetime of the main equipment is indicated. 

Type of DH output  

Some district heating technologies are highly dependent on net supply and deliverable 

temperature which affects heat generation and the efficiency. If for example a 

geothermal source with a temperature output of 105 °C can be accessed, but an existing 

district heating network needs to be operated with a temperature output of 135 °C and 

the returning water has a tempetature of 80 °C (135/80 °C), the geothermal source can 

only be cooled down by 15 to 20 K and the source cannot bring the water up to the 

required temperature of 135 °C. If the network is however been operated at low 

temperatures of 70/50 °C the use of more than 50 K seems to be possible which leads to 

a 2 to 3 times higher thermal output. 

For a qualitative consideration of this effect, a proportional factor for the following 

temperature classes of the district heating output will be shown: 

— Steam supply (185/100 °C) 

— Hot water (135/80 °C) 

— Warm water (105/60 °C) 

— Low temperature (70/50 °C) 

With  ++/--  = ± 5-10% change in efficiency/heat generation output 

 +/- = ± 3-5% change in efficiency/heat generation output 

 (+)/(-) = ± 0-3% change in efficiency/heat generation output 

 o/(o)  = no relevant change / reference value 

If the given temperature levels does not fit to a technology, the adapted temperature is 

listed separated in the technology table (see thermal heat storages “PTES” and “ATES”).  

Following the heat generation or efficiency can change at some technologies based on 

different output temperatures. At the other hand, total investment costs, fixed operation 

costs or electric consumption remain unchanged. As a result also specific parameters 

have to be adapted like CAPEX or fixed OPEX. 

To take this into account these parameters also have to be adapted with the following 

equation: 

𝐶𝐴𝑃𝐸𝑋𝑆𝑡𝑒𝑎𝑚 =
𝐶𝐴𝑃𝐸𝑋𝑅𝑒𝑓𝑂𝑢𝑡𝑝𝑢𝑡

(1 + 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 𝐷𝐻 𝑡𝑦𝑝𝑒)
 

If CAPEX or OPEX will be presented €/MWel or €/MWh as shown within the CHP-

technology there will be no need for adaption. In this case the heat output has to be 

adapted. 
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3.3.3 Environmental data 

Direct emissions are indicated as g/GJth thermal output except CO2 which is presented as 

g/MJth. If a technology is electricity driven the main emissions are related to the emission 

factor for electricity which are not provided in this study 

3.3.4 Financial data 

The given data refers to the thermal power output except for CHP plants which refers to 

the electrical output. The reference year for all technologies is harmonized to 2015. The 

data exclude VAT and any other tax. 

Quality of Capital Expenditure (CAPEX) estimation 

It should be understood that uncertainties are inherent in long term projections since 

numerous factors will influence the evolution of the costs, e. g. learning rates, energy 

policy support decisions, global and national economic growth, and competition with 

other technologies. Therefore, the qualities of the given CAPEX figures are indicated with 

the three categories: 

— high (indicates high amount of considered/available data and/or low deviations) 

— medium (indicates medium amount of considered/available data and/or deviations) 

— low (indicates few amount of considered/available data and/or high deviations) 

Learning rate 

The learning rate1 is an empirical concept which quantifies the effects of learning-by-

doing on the capital cost of technologies. The concept assumes that capital costs of 

technologies reduce at a constant rate with each doubling of the installed cumulative 

capacity (plotted as a power-law function).  

Learning rates are normally built by evaluation of historical cost developments. On the 

one hand this work deals with long term projections, why statements about learning 

rates in the future, especially for “new” technologies with less historical data, could not 

be done with a high scientific valuable approach. On the other hand, given learning rates 

for far developed technologies have also a spread through different studies2. 

That is why, learning rates could not be provided for all technologies and deviations and 

uncertainties has to be accepted. Some figures are based on indications/estimations by 

the authors and if known a qualitive explanation is given concerning cost reduction 

potentials. 

Note: Mature technologies normally have lower learning rates. 

3.3.4.1 CAPEX 

Nominal investment 

CAPEX is the cost of delivery of a plant as if no interest was incurred during construction. 

That means cost of financing is excluded (i.e. this can be considered as "overnight 

CAPEX"). 

The nominal investment is further divided into “equipment” and “installation”. The 

equipment contains effort which are independent of regional differences (e.g. central 

production in one factory). On the other hand, the installation includes the part which is 

                                           
1 concept was developed in the 1970s by the Boston Consulting Group 
2 Example given: 
Learning rates for energy technologies; L. Schrattenholzer and A. McDonald, 2000  
A review of learning rates for electricity supply technologies; E.S. Rubin et al., 2015 
A review of experience curve analyses for energy demand technologies; M. Weiss et al., 2010 
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dependent on regional differences (e.g. changing on-site effort through labour cost 

differences and other conditions). 

Breakdown 

A breakdown structure shows up what is covered in the nominal investment costs.  

If land acquisition cost will be shown we want to remark that it is highly depending on 

the local situation, which is quickly changing. 

Also interconnection costs are highly depending on individual projects and already 

installed infrastructure. If this will lead to lower estimation accuracy we will neglect these 

costs and will give a corresponding explanation. 

The CAPEX breakdown structure as seen in Figure 2 further points out the allocation 

between installation and equipment costs in order to improve the accuracy of projected 

costs within Europe and includes the categories: 

☒ Main equipment ☐ Project indirect 

☒ Balance of plant ☐ Development 

☐ Electrical and I&C supply and installation ☐ Interconnection 

☐ Civil and structural ☐ Insurance & Other 

 

Figure 2: Illustration of CAPEX breakdown 

 

 

Main equipment 

Supply and installation costs of core-components like for instance boilers, cooling towers, 

steam turbine generators, condensers, photovoltaic modules, combustion turbines. 

Balance of plant 

Supply and installation costs not included in the primary system, e.g. compressors, 

pumps, piping. 

Electrical and I&C supply and installation 

Costs included here are for instance electrical transformers, switchgear, switchyards, 

instrumentation. 

30% 

20% 
15% 

10% 

5% 

10% 

5% 
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Civil and structural 

Costs for site preparation excluding the costs of infrastructure connections, i.e. 

electricity, fuel and water connections. These are for example construction of buildings 

and roads on the site, drainage, construction of buildings on the site. 

Project indirect 

These costs are not directly accountable to a cost object. They can include engineering, 

construction management, security costs, contractor overhead costs, maintenance, and 

construction contingency. 

Development 

Costs that the utility will have to pay in addition to the engineering, procurement and 

construction, e.g. preliminary feasibility and engineering studies, permits, legal fees, land 

acquisition, taxes, licensing. 

Interconnection 

Costs for infrastructure connections, i.e. electricity, fuel and water. 

Insurance & Other 

Insurance and other costs which are not included in the listed categories. 

3.3.4.2 OPEX 

OPerating EXpenditure (OPEX) results from the ongoing costs to run a plant. The 

operational costs are divided into the two categories: 

Fixed operation and maintenance costs (FOM) 

Fixed operational costs are indicated in [k€/MW/year] and/or [% of CAPEX/year] and 

include periodic O&M service and, where relevant, costs related to administration, 

operational staff and insurance. 

Fixed operational costs do not vary significantly with a technology’s energy 

generation/consumption. They are independent from how the plant is operated. 

Fixed operational costs exclude any costs of refurbishment needed to extend lifetime 

beyond technical lifetime. 

Variable operation and maintenance costs (VOM) 

Variable operational costs are indicated in [€/MWh]. 

Variable Operation and Maintenance expenses are production-related costs which vary 

with energy generation and consumption, respectively.  

They exclude personnel, fuel and CO2 emission costs. 

3.3.5 Technology specific data 

Including any issues faced when determining the value of the performance indicators, in 

order to help data users to understand and interpret the data and get detailed 

information about the technology. 

CAPEX scaling factor 

In this section, when known and relevant, a scaling factor/formula for the CAPEX costs 

depending on the unit size or different typical sizes is presented. The factor/formula is 

valid for the given reference scale if no further description/restriction is made. 
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3.4 Regional differences 

The study provides information to ensure that different conditions within Europe will be 

considered in order to improve the accuracy of parameters. For each parameter and 

technology named below, the effect for different specific locations and identify 

correction/proportional factors is discussed.  

Therefore, relevant data were analysed and appropriate dependencies calculated. Based 

on these figures and graphics the dependencies in different locations can be evaluated 

and this correction factor can be taken into account by the user. 

Following parameters/ projections were analysed: 

— Average air temperature 

— Average global horizontal irradiation (GHI) 

— Geothermal energy 

— Cost transformation 

 

As an example the output of a gas turbine (GT) according to mid-outside temperature is 

shown below.  

Figure 3: Example calculation of a proportional factor regarding GT electrical output in accordance 
to average outside temperatures 
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3.4.1 Temperatures  

Ambient air temperatures are relevant for gas turbines, combustion technologies and in 

lower relevance also for DH and storage losses and solar thermal efficiency. 

Figure 4: Average surface temperatures  

 

Source: http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html  

 

http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html
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3.4.2 Average global horizontal irradiation GHI 

The average global horizontal irradiation (GHI) is taken into account for solar thermal 

systems. 

Figure 5: Global Horizontal Irradiation across Europe 

 

Source: http://solargis.com/assets/graphic/free-map/GHI/Solargis-Europe-GHI-solar-resource-map-en.png  

 

 

 

http://solargis.com/assets/graphic/free-map/GHI/Solargis-Europe-GHI-solar-resource-map-en.png
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3.4.3 Geothermal potential  

The output of a geothermal heating plant highly correlates to the estimated layer 

temperature.  

Moreover investment costs are depending on the depth of the drillings and which type of 

extraction technology is used (EGS or direct use at aquifer layers). 

For a better user convenience information published on the GEOLEC GIS system is 

proposed.  

Figure 6: Geothermal temperature at 5 km depth 

 

Source: http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html  

  

http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html
http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html
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3.4.4 Cost transformation 

In order to consider regional differences within Europe in terms of capital expenditure 

(CAPEX) the nominal investment shown below is split into the two groups: main 

equipment and installation (which includes also labour costs).  

With regards to main equipments it is assumed, that within Europe there are no 

significant differences because core elements like gas- or steam turbine modules, large-

scale heat pumps but also electrical subsystems like high voltage transformers are only 

produced by a handful of international technology companies with different supply chains 

and several locations for the final assembly. This information was gathered from multiple 

manufacturers. 

At the over hand, different goods and services for building up a district heating/cooling 

infrastructure can or have to be provided with local partners. Some examples for such 

services: civil work and site management and authority approval including Health, Safety 

& Environment (HSE) studies but also some auxiliary equipment like controls and wiring 

or insulation. The following figure gives a comprehensive overview for different groups of 

installation: 

Figure 7: Typical material and labour ratio for direct and indirect costs 

 

Source: 2016 Global Construction Costs Yearbook, Compass International Consultants Inc. 

In order to consider differences within Europe, specific country conditions have been 

evaluated like hourly income for workers, construction material benchmark for facility 

buildings and other figures. These are shown below: 
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Figure 8: Typical Building costs within Europe 

Source: 2016 Global Construction Costs Yearbook, Compass International Consultants Inc. 

Most of the technologies in this report are based on the reference value of Central Europe 

(Germany/Austria/Switzerland)3 with an indicator value of 1.000. But it has to be noted, 

that there will be also regional differences within one country (i.e. for Germany in 

between 690 and 1290). 

𝐶𝐴𝑃𝐸𝑋𝑁𝑒𝑤 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 = 𝐶𝐴𝑃𝐸𝑋𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 +  𝐶𝐴𝑃𝐸𝑋𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑓𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐸𝑢𝑟𝑜𝑝𝑒 ∗  
𝐶𝑜𝑠𝑡𝑖𝑛𝑑𝑒𝑥 𝑁𝑒𝑤 𝐶𝑜𝑢𝑛𝑡𝑟𝑦

𝐶𝑜𝑠𝑡𝑖𝑛𝑑𝑒𝑥 𝑅𝑒𝑓𝐶𝑜𝑢𝑛𝑡𝑟𝑦
 

 

To give an example the CAPEX of tank type boiler with in total 0.11 M€/MW shall be 

transferred from the reference value (Central Europe) to the country of Norway. To do 

so, the installation cost of 0.04 M€/MW can be changed by the factor of 1 745 divided by 

the reference value of 1 000. The equipment cost of 0.07 M€/MW will stay unchanged. 

 

𝐶𝐴𝑃𝐸𝑋𝑁𝑜𝑟𝑤𝑎𝑦 = 0.07
𝑀€

𝑀𝑊
+  0.04 

𝑀€

𝑀𝑊
∗  

1 745

1 000
= 0.1398

𝑀€

𝑀𝑊
 

 

 

                                           
3 If projects from other countries are taken into account, they are indicated separately. 
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3.4.5 Summary 

Based on both calculations/simulations and experience/measurements the table below was developed under consideration of the above 

mentioned parameters and their dependencies to some technologies. 

Table 1: Overview of regional differences in parameters, technologies and regions 

Parameter 
Technology 

Reference 

region 

Reference 

temperature 

Proportional 

factor 
Dependency 

Temperatures Gas turbines Central 9°C 0.6 %/K Heat generation capacity 

 Combustion Central 9°C < 0.1 %/K Total degree of utilization 

 District Heating Network Central 9°C 1.5 %/K Net loss 

 Tank Storages Central 9°C < 0.1 %/K Total efficiency, nominal load  

 Remaining Storages Central  2.1 %/K Annual losses 

 Solar thermal Central 9°C 2.4 %/K Annual collector yield 

 Heat pumps  Central 9°C description in chapter 5.1 

Average GHI Solar thermal Central 9°C 0.05 %/GHI Annual collector yield 

Geothermal  Geothermal Central 9°C description in chapter 4.3 

Costs All Central - description in chapter 3.4.4 
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4 Direct Sources  

4.1 Combustion - Hot water boilers 

Such units are used to combust different materials like fossil fuels, biomass or even 

waste. The related heat enthalpy is then used for heating up water or to produce steam.  

This type of technology has been developed for decades and is nowadays often used 

within peak-load periods and as a backup unit. 

4.1.1 Tank type boilers (1 to 20 MW) 

Tank type boilers are factory prepared by several suppliers and highly available within 

the range of 1 to 20 MW. The integrated burner is able to use fluid and/or gaseous 

combustibles within the furnace section.  

Figure 9: Section of a one furnace tank type boiler 

 

Source: https://www.bosch-industrial.co.uk/files/201309111326480.BR_HotWaterBoilers_en.pdf  

These boilers are separated into a shell section for the hot flue gas and the tube section 

in which the water used within the district heating network is warmed up or vaporized 

into steam. The heat of the flame is transmitted via multiple fire tubes.  

After leaving the boiler, the exhaust gas can be cooled down or even condensed further 

within an economizer. The overall efficiency of this unit is highly depending on the 

temperature level of the incoming water.  

https://www.bosch-industrial.co.uk/files/201309111326480.BR_HotWaterBoilers_en.pdf
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To increase the flexibility and maximize the thermal output of a tank type boiler up to 30 

MW, it can be divided into two furnace sections with separate burners. 

Figure 10: Section of a two furnace tank type boiler 

 

Source: https://www.bosch-industrial.co.uk/files/201309111326480.BR_HotWaterBoilers_en.pdf  

Figure 11: CAPEX breakdown of a heating plant only based on hot water boilers (tank type) 

 

 

The electricity consumption is mainly caused by the boiler water pump (and the fresh air 

fan which overcomes internal pressure losses.  

35% 

12% 
6% 
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5% 
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Table 2: Overview of hot water boilers – tank type 

      

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 1-30             A   

Total efficiency, nominal load  % 97 97 98 98 98   95 98 95 98   B 1,2 

Total efficiency, annual average % 93 93 94 94 94   85 95 88 95   C 1,2 

Electricity consumption %/MWth 0.5 0.5 0.5 0.5 0.4   0.4 0.8 0.3 0.7   L,F 1 

Technical lifetime years 25 25 25 25 25   25 >25 25 >25   K   

                              

Steam supply   - - - - -   -- - -- -   D   

Hot water (up to 140°)   (-) (-) (-) (-) (-)   (-) o (-) o   D   

Warm water (up to 105°C)   (o) (o) (o) (o) (o)   (o) o (o) o   D   

Low temperature (up to 70°C)   + + + + +   + ++ + ++   D   

B. Environmental data       

CO2 g/MJth 65 65 65 65 65   60 80 60 75   H   

SO2 g/GJth 1.0 1.0 1.0 1.0 1.0             H   

NOX g/GJth 20 20 15 15 15   5 60 5 40   G 1, 2, 

CH4 g/GJth 1.0 1.0 1.0 1.0 1.0   0.1 5 0.1 5     1, 2, 3 

N2O g/GJth 0.2 0.2 0.15 0.15 0.15   0.15 0.40 0.1 0.3     2,3 

Particles g/GJth 0.05 0.05 0.05 0.05 0.05   NA NA NA NA   H 1 

C. Financial data                        

Quality of CAPEX estimation   high       

Nominal investment M€/MW 0.11 0.11 0.11 0.11 0.11   0.08 0.3 0.05 0.25   J 2,4 

 - of which equipment M€/MW 0.07 0.07 0.07 0.07 0.07   0.05 0.2 0.03 0.2   J 2,4 

 - of which installation M€/MW 0.04 0.04 0.04 0.04 0.04   0.03 0.1 0.01 0.1   J 2,4 

Fixed O&M k€/MW/a 3 3 3 2 2   1 5 1 5   F   

Variable O&M excl. electricity costs €/MWh 0.5 0.5 0.5 0.5 0.5   0.2 1.0 0.3 0.8   F   

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=0.17x-0.15 M  
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References: 

1 Burner and boiler manufacturer information, 2016 

2 Technology Data for Energy Plants, Danish Energy Agency, 2016 

3 Non-CO2 greenhouse gas emissions from boilers and industrial processes, VTT 2005 

4 Project information, 2016 

Notes: 

A 
For the limit for one furnace boilers will be ~14 MW, for gas fired boiler ~17 MW. Range can be increased 
with two furnace system. 

B 
Includes a condensing economizer, without economizer the efficiency will be up to some 90-92 %, LHV 
reference. 

C 
Includes a condensing economizer, without economizer the efficiency will be up to some 88-90 %, LHV 
reference. 

D 
Efficiency depends on incoming water temperature. Assumptions been made: steam: 95 °C (-2% eff.), hot 
water: 75 °C (-1% eff.), warm water: 60 °C (Ref.), low temp.: 40 °C (+5% eff.). 

F ILF/AIT calculations/estimations. 

G Ultra-Low NOx burners can reach a level of 5 g/GJ, the use of oil instead of gas will increase NOx-emissions.  

H Fuel dependent, not technology dependent. 

J 
The average numbers are for an 18 MW heating plant with one gas boiler, included economizer (+1 MW) 
costs and additional piping ~90 T€/MW. 

K 
Technical lifetime of the tank often exceeds 25 years, burner needs to be retrofitted after 15-25 years 
(depending on emission regulations). 

L Mainly caused by the feed water pump (~1-2 kW/MWth) and fresh air fan (~3-5 kW/MWth). 
M x…Heat generation capacity [1 MWth … 30 MWth]. 

 

4.1.2 Water tube boilers (above 20 MW) 

The basic definition of a water tube boiler is that water is heated inside tubes by hot 

gases surrounding these tubes. Water tube boilers are also used for higher thermal 

powers above 20MWth and since there are many different types, these boilers can be 

designed for almost any fuel and burner system, respectively. Main process parameters 

for the water can go up to 30 bar and 250 °C, individually designed. For the CAPEX 

breakdown indication see chapter above.  
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4.1.2.1 Natural gas fired hot water tube boilers 

Table 3: Overview of natural gas fired hot water tube boilers 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper  A 1, 2, 4 

Heat generation capacity MWth 20 - 250              

Total degree of utilization, nominal load  % 95 95 95 95 95   90 96 92 97    

Total degree of utilization, annual average % 87 87 87 87 87   
  

     B, C  

Electricity consumption  % 0.5 0.5 0.4 0.4 0.4   0.3 0.7 0.3 0.7  D  

Technical lifetime years 30 30 35 35 40   30 50 30 50    

                           

Steam supply   - - - - -   -- - -- -    

Hot water    o o o o o   (-) o (-) o    

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o    

Low temperature   + + + + +   + ++ + ++    

B. Environmental data   5, 6, 7 

CO2 g/MJth 60 60 60 60 60   30 70 30 70    

SO2 g/GJth < < < < <              

NOX g/GJth 20 20 18 18 15   15 50 10 40    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data   1, 3, 8 

Quality of estimation   medium    

Nominal investment M€/MWth 0.1 0.1 0.1 0.1 0.1   0.05 0.12 0.05 0.12    

 - of which equipment M€/MWth 0.06 0.06 0.06 0.06 0.06   0.03 0.07 0.03 0.07    

 - of which installation M€/MWth 0.04 0.04 0.04 0.04 0.04   0.02 0.05 0.02 0.05    

Fixed O&M k€/MWth/a 2 2 1.9 1.9 1.8   1 4 1 5    

Variable O&M excl. electricity costs €/MWhth 0.2 0.2 0.2 0.2 0.2   0.1 0.5 0.1 0.5    

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=0.27x-0.20 E  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Workshop BOSCH: Fachseminar Auslegung und Planung von Thermischen Großanlagen 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
 

Notes: 

A Natural gas (LHV appr. 40 MJ/kg) fired hot water tube boiler (3% O2 flue gas) 
B based on planned availability of 8 000 h/a (DH+GEN) 
C uncertainty depending on (unplanned) maintenance 
D MWel,aux.pwr/MWth 
E x…Heat generation capacity [20 MWth … 250 MWth] 
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4.1.2.2 Biogas fired hot water tube boilers 

Table 4: Overview of biogas fired hot water tube boilers 

             

  Unit 2015 2020 2030 2040 2050   Uncertainty (2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 A 1, 2, 4, 

9, 10 

Heat generation capacity MWth 20 - 250              

Total degree of utilization, nominal load  % 85 85 85 85 85   83 93 83 93    

Total degree of utilization, annual average  % 78 78 78 78 78   
  

     B, C  

Electricity consumption  % 0.5 0.5 0.4 0.4 0.4   0.3 0.7 0.3 0.7  D  

Technical lifetime years 25 25 30 30 30   20 35 20 35    

                           

Steam supply   - - - - -   -- - -- -    

Hot water    o o o o o   (-) o (-) o    

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o    

Low temperature   + + + + +   + ++ + ++    

B. Environmental data 
  5, 6, 7, 

10 

CO2 g/MJth 130 130 130 130 130   80 150 80 150    

SO2 g/GJth < < < < <              

NOX g/GJth 23 23 22 22 20   15 50 10 30    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
  1, 3, 8, 

9, 11 

Quality of estimation   medium    

Nominal investment M€/MWth 0.105 0.105 0.105 0.105 0.105   0.05 0.12 0.05 0.12    

 - of which equipment M€/MWth 0.065 0.065 0.065 0.065 0.065   0.03 0.03 0.03 0.03    

 - of which installation M€/MWth 0.04 0.04 0.04 0.04 0.04   0.02 0.02 0.02 0.02    

Fixed O&M k€/MWth/a 2.2 2.2 2.1 2.1 2   1 5 1 5    

Variable O&M excl. electricity costs €/MWhth 0.2 0.2 0.2 0.2 0.2   0.1 0.5 0.1 0.5    

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=0.28x-0.20 E  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation ; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Workshop BOSCH: Fachseminar Auslegung und Planung von Thermischen Großanlagen 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
9 Wien Energie: Biomasse Kraftwerk Simmering 
10 Rechnungshofbericht Wien Energie Bundesforste Biomasse Kraftwerk 
11 Wirtschaftlich effiziente Biomasse-Heizkraftwerke, Rolf Michler 
 
Notes: 
A Biogas (LHV appr. 6.2 MJ/kg) fired hot water tube boiler (3% O2 flue gas) 
B based on planned availability of 8000 h/a (DH+GEN) 
C uncertainty depending on (unplanned) maintenance 
D MWel,aux.pwr/MWth 
E x…Heat generation capacity  [20 MWth … 250 MWth] 
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4.1.2.3 Oil fired hot water tube boilers 

Table 5: Overview of oil fired hot water tube boilers 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty  

(2020) 
Uncertainty  

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper  A 1, 2, 4 

Heat generation capacity MWth 20 - 250              

Total degree of utilization, nominal load  % 89 89 89 89 89   85 95 85 95    

Total degree of utilization, annual average  % 81 81 81 81 81   
  

     B, C  

Electricity consumption  % 0.7 0.7 0.6 0.6 0.5   0.5 1 0.3 0.8  D  

Technical lifetime years 25 25 30 30 35   25 50 30 50    

                           

Steam supply   - - - - -   - (o) - (o)    

Hot water    o o o o o   (-) o (-) o    

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o    

Low temperature   o o o o o   o o o o    

B. Environmental data   5, 6, 7 

CO2 g/MJth 80 80 80 80 80   50 100 50 100    

SO2 g/GJth 50 50 40 40 40   30 70 30 70    

NOX g/GJth 10 10 8 8 5   7 15 2 10    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 3 3 3 2 2   2 5 1 5    

C. Financial data   1, 3, 8 

Quality of estimation   medium    

Nominal investment M€/MWth 0.12 0.12 0.12 0.12 0.12   0.08 0.16 0.08 0.16    

 - of which equipment M€/MWth 0.08 0.08 0.08 0.08 0.08   0.05 0.11 0.05 0.11    

 - of which installation M€/MWth 0.04 0.04 0.04 0.04 0.04   0.03 0.05 0.03 0.05    

Fixed O&M k€/MWth/a 2 2 1.9 1.9 1.8   1 5 1 5    

Variable O&M excl. electricity costs €/MWhth 0.3 0.3 0.3 0.3 0.3   0.1 0.5 0.1 0.5    

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=0.32x-0.20 E  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Workshop BOSCH: Fachseminar Auslegung und Planung von Thermischen Großanlagen 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 

Notes: 

A Oil (LHV appr. 42 MJ/kg) fired hot water tube boiler (6% O2 flue gas) 
B based on planned availability of 8 000 h/a (DH+GEN) 
C uncertainty depending on (unplanned) maintenance 
D MWel,aux.pwr/MWth 
E x…Heat generation capacity  [20 MWth … 250 MWth] 
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4.1.2.4 Biomass fired hot water tube boilers 

Table 6: Overview of biomass fired hot water tube boilers 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 A 1, 2, 4, 

9, 10 

Heat generation capacity MWth 20 - 250              

Total degree of utilization, nominal load  % 92 92 92 92 92   85 95 85 95    

Total degree of utilization, annual average % 84 84 84 84 84   
  

     B, C  

Electricity consumption  % 1.6 1.6 1.5 1.5 1.5   1 2 1 2  D  

Technical lifetime years 25 25 30 30 35   25 50 30 50    

                           

Steam supply   - - - - -   -- - -- -    

Hot water    o o o o o   (-) o (-) o    

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o    

Low temperature   + + + + +   + ++ + ++    

B. Environmental data 
  5, 6, 7, 

10 

CO2 g/MJth 110 110 110 110 110   50 150 50 150    

SO2 g/GJth 5 5 5 5 5   0 20 0 20    

NOX g/GJth 90 90 80 80 70   50 150 30 100    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 4 4 4 3 3   2 6 2 6    

C. Financial data 
  1, 3, 8, 

9, 11 

Quality of estimation   medium    

Nominal investment M€/MWth 0.3 0.3 0.3 0.28 0.26   0.25 0.35 0.2 0.35    

 - of which equipment M€/MWth 0.2 0.2 0.2 0.19 0.18   0.17 0.23 0.14 0.23    

 - of which installation M€/MWth 0.1 0.1 0.1 0.09 0.08   0.08 0.12 0.06 0.12    

Fixed O&M k€/MWth/a 5 5 5 4 4   3 8 3 8    

Variable O&M excl. electricity costs €/MWhth 0.2 0.2 0.2 0.2 0.2   0.1 0.5 0.1 0.5    

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=0.80x-0.20 E  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Workshop BOSCH: Fachseminar Auslegung und Planung von Thermischen Großanlagen 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
9 Wien Energie: Biomasse Kraftwerk Simmering 
10 Rechnungshofbericht Wien Energie Bundesforste Biomasse Kraftwerk 
11 Wirtschaftlich effiziente Biomasse-Heizkraftwerke, Rolf Michler 
 

Notes: 

A Biomass (LHV appr. 14 MJ/kg) fired hot water tube boiler (6% O2 flue gas) 
B based on planned availability of 8000 h/a (DH+GEN) 
C uncertainty depending on (unplanned) maintenance 
D MWel,aux.pwr/MWth 
E x…Heat generation capacity  [20 MWth … 250 MWth] 
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4.1.2.5 Waste fired hot water tube boilers 

Table 7: Overview of waste fired hot water tube boilers 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

A 
1, 2, 4, 

8, 10, 11 

Heat generation capacity MWth 20 - 250              

Total degree of utilization, nominal load  % 89 89 90 90 91   85 95 85 95    

Total degree of utilization, annual average % 81 81 81 82 83   
  

     B, C  

Electricity consumption % 2.5 2.5 2.3 2.3 2.1   1 3 1 3  D  

Technical lifetime years 25 25 30 30 35   25 50 30 50    

                           

Steam supply   - - - - -   -- - -- -    

Hot water    o o o o o   (-) o (-) o    

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o    

Low temperature   + + + + +   + ++ + ++    

B. Environmental data 
 

 
5, 6, 7, 
10, 11, 
12 

CO2 g/MJth 120 120 110 100 100   50 150 50 150    

SO2 g/GJth 10 10 8 6 5   0 20 0 20    

NOX g/GJth 30 30 25 25 20   20 50 10 40    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 5 5 4 4 3   3 7 2 5    

C. Financial data 
 

 
1, 3, 9, 
10 

Quality of estimation   medium    

Nominal investment M€/MWth 0.5 0.5 0.4 0.4 0.4   0.3 0.6 0.3 0.6    

 - of which equipment M€/MWth 0.3 0.3 0.26 0.26 0.26   0.2 0.4 0.2 0.4    

 - of which installation M€/MWth 0.2 0.2 0.14 0.14 0.14   0.1 0.2 0.1 0.2    

Fixed O&M k€/MWth/a 10 10 9 9 8   8 20 5 15    

Variable O&M excl. electricity costs €/MWhth 0.3 0.3 0.3 0.3 0.3   0.1 0.5 0.1 0.5    

X. Technology specific data  

Cost function (estimation) M€/MWth Invest(x)=1.33x-0.20 E  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Workshop BOSCH: Fachseminar Auslegung und Planung von Thermischen Großanlagen 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 World Bank Technical Guidance Report – Municipal Solid Waste Incineration 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Operator’s data (direct): Waste to Energy Plant Niklasdorf 

11 
Umweltbundesamt: Leitfaden zur Umweltverträglichkeitserklärung für Abfallverbrennungsanlagen, thermische Kraftwerke und Feuerungsanlagen; 
Report 0193; 2008 

12 Umweltbundesamt: Stand der Technik bei Abfallverbrennungsanlagen 
 

Notes: 

A Solid waste (LHV appr. 13 MJ/kg) fired hot water tube boiler (6% O2 flue gas) 
B based on planned availability of 8 000 h/a (DH+GEN) 
C uncertainty depending on (unplanned) maintenance 
D MWel,aux.pwr/MWth 
E x…Heat generation capacity  [20 MWth … 250 MWth] 
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4.2 Electric boilers 

Electric boilers are using electric energy directly to produce thermal power. Nowadays, 

there are two types of technologies mostly used in the district heating sector: 

● Electric resistance boilers: Heat is generated by heating resistors. These elements 

are supplied by 400 V. Typical these types are used for small and medium sized 

applications ranging from several kW up to 10 MW. 

● Electrode boilers: These boilers are consisting of an inner and an outer container. 

In the inner container two electrodes are located. They are connected to an AC 

(alternating current) medium voltage source (> 5kV). Heat is then generated 

between these electrodes by an ohmic resistance. Available modules can range up 

to 50 MW. 

Figure 12: CAPEX breakdown of electric resistance boilers (excl. medium voltage connection) 
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Table 8: Overview of electric boilers 

 

                        

  Unit 2015 2020 2030 2040 2050   Uncertainty (2020)   Note Ref 

A. Energy/technical data               Lower Upper       

Heat generation capacity MWth 1-30          A   

Total efficiency, nominal load  % 99 99 99 99 99   97  100      1,2 

Total efficiency, annual average % 98 98 98 98 98   96  99      1,2 

Electricity consumption %/MWth 101 101 101 101 101   100 103      1,2 

Technical lifetime years 20 20 20 20 20         B 1 

                          

Steam supply   o o o o o   o o   C   

Hot water (up to 140°)   o o o o o   o o   C   

Warm water (up to 105°C)   (o) (o) (o) (o) (o)   o o       

Low temperature (up to 70°C)   o o o o o   o o       

B. Environmental data                         

CO2 g/MJ - - - - -   - -   D   

SO2 g/GJ - - - - -   - -   D   

NOX g/GJ - - - - -   - -   D   

CH4 g/GJ - - - - -   - -   D   

N2O g/GJ - - - - -   - -   D   

Particles g/GJ - - - - -   - -   D   

C. Financial data                         

Quality of CAPEX estimation   medium             

Nominal investment M€/MW 0.12 0.12 0.12 0.12 0.12   0.06 0.20   E,C 1, 2, 3, 4 

 - of which equipment M€/MW 0.08 0.08 0.08 0.08 0.08   0.04 0.12     1, 2, 3, 4 

 - of which installation M€/MW 0.04 0.04 0.04 0.04 0.04   0.02 0.08     2, 3 

Fixed O&M T€/MW/a 0.5 0.5 0.5 0.5 0.5    0.3 0.7    F 1,2 

Variable O&M excl. electricity costs €/MWh 0.2 0.2 0.2 0.2 0.2    0.1 0.3    G   

X. Technology specific data                         

Cost function (estimation) M€/MWth Invest(x)=0.20x-0.20 H  
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References: 

1 Manufacturer informations, 2015 

2 Technology Data for Energy Plants, Danish Energy Agency , 2012 & 2016 

3 Project information, 10 MW, Germany, 2014 

4 Project information, 20 MW, Germany, 2015 

Notes: 

A Typical unit capacities: 1 to 10 MW for resistance boiler and 5 to 60 MW for electrode boiler  

B Under good circumstances (water quality) and maintenance is a higher lifetime possible (+10 a) 

C Units for Steam and Hot appr. 10 to 30% higher invest (due to 2014/68/EU requirements ) 

D Environmental impacts depends on how the used electricity is produced 

E 
Additional costs for the connection to a 10 or 20 kV grid will be around 0.04 to 0.1 M€/MW (switchgear, 
transformer, additional space) 

F Units for Steam and Hot appr. 50% higher O&M-costs (due to 2014/68/EU requirements) 

G ILF/AIT calculations/estimations 
H x…Heat generation capacity [1 MWth … 30 MWth] 

 

4.3 Geothermal plants 

Geothermal heat is a natural renewable heat source. The geothermal energy comes from 

the residual heat from the earth's formation and for the most part from natural, 

radioactive decay products in the earth's crust. On average, the temperature in the earth 

increases by 3 K per 100 m. However, there are areas with geothermal anomalies where 

the temperature gradient is well above 100 K/km (e.g. Iceland and Tuscany). Such 

positive temperature anomalies are particularly advantageous for the use of geothermal 

energy.  

For conceptioning a geothermal plant the heat transfer mechanisms in the reservoir must 

be understood. In addition to the pure heat conduction, heat transport can also be 

affected regionally by convection of circulating deep water. The geothermal heat can be 

taken either from hot water bodies (hydrothermal) or hot rock layers (petrothermal). 

This report deals with deep geothermal utilizations, that means drillings deeper than 

400 m (usually over 1 000 m depth). Depending on the reservoir, a distinction is made 

between high enthalpy and low enthalpy deposits. Low enthalpy deposits are 

characterized by temperatures below 150 °C and primarily used for heat supply. Using 

binary methods also electricity generation is possible. High enthalpy deposits have 

temperatures above 200 °C and/or high pressures, which allows direct ("conventional") 

power generation. 

Unfortunately, only few regions are suitable for geothermal applications. Currently 

geothermal DH systems are mostly used in China, France, Japan, Iceland, and the United 

States. In general, geothermal heat sources offer cheap running costs, high operation 

stability and long lifetime, low CO2 emissions and the ability for combination with heat 

storage. However, the investment costs are normally high and depend on the specific 

application, the heat source temperature, the distribution systems, and local parameters 

such as the labour costs. Moreover, this technology entails high risks because there is no 

security for success before the first well is drilled and the reservoir has been tested. A 

short distance between the heat source and heat demand area (city) represents a critical 

element for economy successfully geothermal DH applications. In regions with high 

geothermal potential, the usage of this resource for DH applications is often a cheap 

option and can be used for base-load coverages. 
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Figure 13: Methods of heat extraction depending on the different depth which has to be reached in 

order to extract heat from the reservoir 

 

Source: Geothermal Explorers Ltd, 2004 

The figure below gives an overview of the geothermal resources in Europe. It can be 

seen, that Iceland, Tuscany and Turkey has the best resources, where not only heat but 

also electricity generation could be possible.  

Using the next figure, respectively the internet link, modelled temperatures in different 

depths could be identified. Knowing the depth, in which the needed temperature could be 

found, the drilling costs could be calculated. Therefore, a cost function is given in the 

technology sheets. 

Figure 14: Overview of geothermal resources in Europe 

 

Source: EGEC - European Geothermal Energy Council 
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Figure 15: Modelled temperature at 5 km in °C 

 

Source: http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html 

  

http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html
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4.3.1 Hydrothermal plants 

Hydrothermal geothermal energy describes the use of the energetic potential of low- (40 

to 100 °C) or high-temperature (above 100 °C) deep water. In hydrothermal systems, 

water-bearing layers (aquifers) are present in the underground rock formations. The 

warm or hot thermal water is conveyed upwards, cooled in heat exchangers for the heat 

generation of district heating networks and then reinjected into the same aquifer layer at 

a sufficient distance. In Europe, practically only hydrothermal systems are used for heat 

only supply. 

The main components of geothermal DH plants are, in addition to the production and 

injection wells, the pumps, heat exchangers and filter and slop systems. Also, coarse and 

fine filters are usually used to treat the thermal water. If the thermal water temperature 

is too low in comparison to the necessary heating supply temperature, auxiliary systems 

(e.g. peak boilers or heat pumps) are additionally required. The investment costs are 

mainly dominated through the drillings. The specific costs for a drilling could roughly be 

estimated to over EUR 1 000/m.  

The CAPEX breakdown structure listed below differs from the definition of main 

equipment and balance of plant (BOP) to the others. For this technology, the drilling 

effort is taken into account with the balance of plant (BOP) in order to show the 

significant influence of the drilling on the total investment. Note: The presented cost 

distribution can vary widely from one project to another. Especially estimating the 

borehole costs, large uncertainties exist due to the limited availability of drilling rigs, 

changing feedstock prices (e.g. steel), unforeseen technological problems and on-site 

conditions.  

Main equipment: Energy conversion plant with its main components like heat transfer 

station, heat exchangers, pumps, filters, etc. 

Balance of plant: Borehole costs are dominating the overall investment costs and consists 

of seismics / preparatory arrangements, set up and recultivation of the drilling site, 

drilling lease (including personnel and energy costs), costs for drilling bits and mud 

(including the disposal of mud and cuttings) as well as logging and borehole completion. 

Figure 16: CAPEX breakdown of hydrothermal direct use plants 
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Table 9: Overview of hydrothermal direct use plants 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 1 - 50             A 1, 2, 3, 4, 5 

Total efficiency, nominal load  % Not applicable       

Electricity consumption %/MWth 2 2 2 2 2   1 4 1 4   B 6, 7 

Technical lifetime years 25 25 25 25 25   20 >25 20 >25   C 1, 2, 5 

                              

Steam supply   N/A N/A N/A N/A N/A             
D 

  

Hot water   (-) (-) (-) (-) (-)   - o - o     

Warm water   (o) (o) (o) (o) (o)   - o - o   
E 

  

Low temperature   (+) (+) (+) (+) (+)   o + o +     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

F 8 

SO2 g/GJth 0 0 0 0 0             

NOX g/GJth 0 0 0 0 0             

CH4 g/GJth 0 0 0 0 0             

N2O g/GJth 0 0 0 0 0             

Particles g/GJth 0 0 0 0 0             

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate % 5             G 4 

Nominal investment M€/MWth 1.30 1.25 1.20 1.15 1.10   0.8 1.5 0.7 1.3   H 
1, 5, 9, 10, 11, 12, 

13 

 - of which equipment M€/MWth 0.39 0.38 0.36 0.35 0.33   0.25 0.50 0.22 0.44   
I 

7 

 - of which installation M€/MWth 0.91 0.87 0.84 0.80 0.77   0.75 1.00 0.66 0.88   7 

Fixed O&M k€/MWth/a 26 25 24 23 22   21.5 32.4 19.1 28.5   J 1, 5, 7, 11 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=2.88x-0.34   K   

Cost function drilling (estimation) €/m CDrilling(Depth) = 0.152 * (Depth) + 785    L 9, 13, 14, 15 

Construction time months 4 4 4 4 4   3 >6 3 >6   M 9, 13 

Capacity factor  % 30 - 45             N 7, 11, 16 

Production rate l/s 20 - 150             O 9, 16, 17 

Typical drilling depth m 1 000 - 3 000             P 3, 7, 16 

Reservoir temperature °C 80 - 120             Q 3, 16, 17 

Average daily drilling capacity m/day 40   <20 - 60   R 4, 9 
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References: 

1 Developing geothermal district heating in Europe; GeoDH, 2014 

2 District Heating; IEA-ETSAP and IRENA, January 2013 

3 Tiefe Geothermie; ASUE, June 2011 

4 Renewable Energy in Europe - Markets, Trends and Technologies; EREC, 2010 

5 Financing Renewable Energy in the European Energy Market; Ecofys, January 2011 

6 Potenzial der Tiefengeothermie für die Fernwärme- und Stromproduktion in Österreich; Koenighofer, June 2014 

7 Erneuerbare Energien - Systemtechnik, Wirtschaftlichkeit, Umweltaspekte; M. Kaltschmitt et al., 2013 © Springer-Verlag Berlin Heidelberg 

8 Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact; R. DiPippo, 2012 

9 Geothermieprojekt Ried - Wärme und Kälte aus Geothermie und Umgebungswärme; Fuereder, April 2012 

10 Geothermal Heat and Power; IEA-ETSAP, May 2010 

11 Technology Roadmap - Geothermal Heat and Power; OECD/IEA, May 2011 

12 Renewables for Heating and Cooling - Untapped Potential; OECD/IEA, July 2007 

13 Geothermie-Projekt Pullach Daten und Fakten - IEP, May 2008 

14 Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report; Sandia Report, December 2008 

15 New Geothermal Site Identification and Qualification; GeothermEx, April 2004 

16 Regenerative Energietechnik; V. Wesselak et al., May 2013 © Springer-Verlag Berlin Heidelberg 

17 Economic analysis of geothermal energy provision in Europe (Workpackage 5 – Deliverable D35); ENGINE, October 2007 

    

Notes: 

A The first regions using geothermal district heating systems (geoDH) were those, with the best hydrothermal potential. However, new technologies and systems 
increased the number of regions developing this utilization. System capacities range from small (0.5 - 2 MWth) to larger up to 50 MWth. 

B Pumping effort could be counted up to 2 % of the heat power from the geothermal water. 

C The technology has a long life time period with at least 20 but commonly up to 30 years (e.g. the doublet wells of Thisted in Denmark have been in operation for 
30 years). 

D High temperature heat supply is not common as normally temperatures below 120 °C are exploited. If higher reservoir temperatures are gained, usually CHP 
applications will be used (see chapter Geothermal CHP). 

E The supply temperature is mainly defined by the reservoir temperature. If higher temperatures are needed, deeper drillings are necessary. If the boreholes do not 
deliver the expected capacities, auxiliary heating systems could be installed. 

F Closed loop plants emit no gaseous emissions during operation. 

G A learning rate is not really seen as the technology and the used components are far developed. Nevertheless, drillings could have the biggest cost reduction 
potential. On the one hand through faster drilling methods and on the other hand through better exploration (further developed seismic methods could increase the 
success rate and additionally decrease risk and insurance costs). 

H Geothermal district heating systems are capital intensive and the production and injection wells consumes the highest part with up to 70 % of the initial investment 
costs. The cost estimation is based on a 10 MWth geothermal plant and includes also downhole and circulation pumps, heat exchangers, interconnection, control 
equipment and building retrofit. Auxiliary heating system (e.g. peak load boiler) and DH network / distribution is not included. The cost reduction is mainly 
assumed due to better forecasting (reducing the risk and insurance costs) and drilling methods. 

I The highest effort is incurred on-site mainly caused by drilling work. 

J Operating expenses are much lower than in conventional systems, consisting of system maintenance, personnel (operation and control) and insurance. 

K Cost function is developed through cost comparison of realised plants. x…Heat generation capacity [1 MWth … 50 MWth] 

L An investigation of realised projects in middle Europe shows up drilling costs between EUR 1 100 - 1 300/m at depths 2 000 - 3 000 m and is affirming the rough 
estimation by the formula. Note: Given cost function is just for one borehole. 
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M Only the drilling time for the drilling doublet. 

N Geothermal heating units are base load plants and the capacity factor is given through the district heating grid. Normally DH-grids have full load hours up to 4 000 
h/a. Peak load boilers (often fossil fuel) are used to meet the coldest period, rather than drilling additional wells or pumping more fluids, as geothermal usually 
meets at least 50 and up to 90 % of the time, thus improving the efficiency and economics of the system. 

O Higher production rates leads to higher pumping effort which decreases the system efficiency. 

P Typical drilling depths ranges from 1 000 - 3 000 but in some cases also more than 3 500 m. Larger depths make the geothermal heat only application increasingly 
uneconomical. 

Q If the reservoir temperature is too low for direct usage, auxiliary systems (e.g. peak boiler, heat pump, etc.) has to be used. 

R A value of 44 m/day was reached in the project "Ried" (Ref. 9). Note: Depending on the rock formation, daily drilling performance could vary a lot. 
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4.3.2 Low temperature hydrothermal plants with heat pump 

Heat from deep reservoirs can be utilized directly through a heat exchanger. On the one 

hand increasing drilling depths lead to higher temperatures but on the other hand also to 

higher pumping costs. From an economically point of view, therefore it could be more 

attractive to use heat pumps and extract heat from higher reservoirs instead of direct 

usage. Especially if high drilling costs should be avoided, or the reservoir temperature is 

too low. The heat pumps can either be driven by electrical (compressor) or by heat 

(absorption). The geothermal water is saline that is why a separation circuit is used. 

Through a production well, warm geothermal water is pumped to the surface where heat 

is exchanged and pumped back into the reservoir via an injection well. To avoid 

premature cooling, an appropriate distance is needed between the production and 

injection wells. Heat pumps could act as an auxiliary heating unit through lifting the 

temperature to the required level and simultaneously increase the heat extraction 

through cooling down the reinjected water. In some cases the cooling by heat pumps can 

help to reduce gas separation (from the water) and avoid precipitation, which may cause 

clogging the reinjection well. A best practice example is located in Thisted, Denmark 

which two geothermal wells were drilled back in the early 1980’ies. 

The CAPEX breakdown structure listed below differs from the definition of main 

equipment and balance of plant (BOP) to the others. For this technology, the drilling 

effort is taken into account with the balance of plant (BOP) in order to show the 

significant influence of the drilling on the total investment. Note: The presented cost 

distribution can vary widely from one project to another. Especially estimating the 

borehole costs, large uncertainties exist due to the limited availability of drilling rigs, 

changing feedstock prices (e.g. steel), unforeseen technological problems and on-site 

conditions.  

Main equipment: Energy conversion plant with its main components like heat transfer 

station, heat pump(s), heat exchangers, pumps, filters, etc. 

Balance of plant: Borehole costs are dominating the overall investment costs and consists 

of seismics / preparatory arrangements, set up and recultivation of the drilling site, 

drilling lease (including personnel and energy costs), costs for drilling bits and mud 

(including the disposal of mud and cuttings) as well as logging and borehole completion. 

 Figure 17: CAPEX breakdown of low temperature hydrothermal only heating plants with heat 
pump 
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Table 10: Overview of low temperature hydrothermal only heating plants with heat pump 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 1 - 50             A 1 

Total efficiency, nominal load  % Not applicable       

Electricity consumption %/MWth 2 2 2 2 2   1 4 1 4   B 1 

Technical lifetime years 25 25 25 25 25   20 >25 20 >25   C 1, 2 

                              

Steam supply   N/A N/A N/A N/A N/A             
D 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water   - - - - -   -- - -- -   
E 

  

Low temperature   o o o o o   o o o o     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

F 

  

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   medium   G   

Learning rate %                       H   

Nominal investment M€/MWth 1.25 1.22 1.20 1.10 1.00   1.00 1.60 0.70 1.40   I 1, 2, 3, 4 

 - of which equipment M€/MWth 0.50 0.49 0.48 0.44 0.40   0.43 0.61 0.35 0.50   
J 

  

 - of which installation M€/MWth 0.75 0.73 0.72 0.66 0.60   0.61 0.79 0.50 0.65     

Fixed O&M k€/MWth/a 30 29 27 26 25   20 40 20 30   K 1, 4, 5 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=1.60x-0.11   L   

Cost function drilling (estimation) €/m CDrilling(Depth) = 0.152 * (Depth) + 785    M 6, 7 

Capacity factor  % 60 - 80             N   

Production rate l/s 10 - 50             O   

Typical drilling depth km 2 2 2.5 2.5 3             
P 

1 

Reservoir temperature °C 30 - 80             1 

Average daily drilling capacity m/day 50   40 - >60   Q   
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References: 
1 Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; Energinet.dk, May 

2012 
2 District Heating; IEA-ETSAP and IRENA, January 2013 

3 Geothermal Heat and Power; IEA-ETSAP, May 2010 

4 Cost analysis of district heating compared to its competing technologies; O. Gudmundsson et al., 2013 © WIT Transactions on Ecology and The Environment, Vol. 
176 

5 Erneuerbare Energien - Systemtechnik, Wirtschaftlichkeit, Umweltaspekte; M. Kaltschmitt et al., 2013 © Springer-Verlag Berlin Heidelberg 

6 New Geothermal Site Identification and Qualification; GeothermEx, April 2004 

7 Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report; Sandia Report, December 2008 

    

Notes: 
A The geothermal heat source and the heat pump roughly contribute to equal shares. 

B The electrical consumption for the plant (pump, control etc.) could be counted with approx. 2 %. If an electrical heat pump is used, this electrical consumption has 
additional to be taken into account (depending on the COP).  

C The drillings have a long life time period, but maybe the heat pump has to be replaced earlier. 

D High temperature heat supply is against the concept with heat pumps and therefore not used. 

E Mainly low temperature applications are preferred as the heat pump is normally used to increase the temperature to its needed level. That is why, the efficiency 
goes down with increasing temperatures. 

F Closed loop plants emit no gaseous emissions during operation, which makes the utilization of geothermal energy very CO2 friendly. 

G Although not so much deep geothermal systems using heat pumps exist, the CAPEX estimation is set "medium" as costs for hydrothermal plants and heat pumps 
are known and the described system is a combination of both. 

H The technology uses standard components. A learning rate is mostly seen, if the market for large heat pumps is further increasing. 

I The cost estimation includes downhole and circulation pumps, heat exchangers, interconnection, control equipment, building retrofit and heat pumps. Auxiliary 
heating system (e.g. peak load boiler) and DH network / distribution is not included. The cost reduction is mainly assumed due to better forecasting (reducing the 
risk and insurance costs) and drilling methods and a reduction of prices for large heat pumps. 

J The highest effort is incurred on-site mainly caused by drilling work. In comparison to the direct use of hydrothermal energy, the equipment share is slightly 
increasing caused by the heat pump. 

K Operating expenses consists of system maintenance, personnel (operation and control) and insurance. 

L Cost function is just an estimation (mainly based on cost development of heat pumps and their total cost share) due to the lack of reference projects. x…Heat 
generation capacity [1 MWth … 50 MWth] 

M Due to the lower drilling depths, the costs could roughly estimated between EUR 900 - 1 200/m at depths 800 - 2 000 m. 

N The combination of geothermal heat and heat pumps allows better operation modes which increases the capacity factor. 

O Higher production rates leads to higher pumping effort which decreases the system efficiency. 

P As investment and pumping costs increase with the depth, the usage of heat pumps could be an economically attractive option to extract heat from higher 
reservoirs with lower temperatures. Typical depths ranges from 800 - 2 000 (in some cases up to 3 000) m where temperatures from 30 - 80 °C could be expected. 

Q Higher average daily drilling capacities could be reached owing to lower drilling depths. 
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4.3.3 Enhanced geothermal system plants 

Enhanced Geothermal System (EGS) are often referred to as HDR (hot dry rock) systems 

or with the neutral term petrothermal systems. At the moment EGS technologies are 

very cost intensive, but potential is seen to produce large amounts of electricity almost 

anywhere in the world, especially in regions without hydrothermal reservoirs, cost-

effectively. This system is used if the rock in which the high temperatures have been 

found is not very permeable, so that no water can be extracted from it, an artificially 

introduced heat transfer medium (water or CO2) can be circulated between two deep 

wells in an artificially created rupture system. First, water is injected into the gland 

system (with at least one injection hole) into the rock under a pressure that must be so 

far above the petrostatic pressure that the minimum main stress in the respective depth 

layer is exceeded (hydraulic stimulation or fracturing). As a result, flow paths are broken 

up or existing ones are expanded and thus the permeability of the rock is increased. This 

procedure is necessary, as otherwise the heat transfer area and the continuity would be 

too small. Subsequently, this system of natural and artificial cracks forms an 

underground, geothermal heat exchanger. By the second (production) hole the carrier 

medium is conveyed back to the surface. In Europe only three Enhanced Geothermal 

Systems are being tested in the pilot projects in Soultz-sous-Forêts (F), in Bad Urach (D) 

and in Basel (CH). The method of hydraulic fracturing is controversial, since small (barely 

noticeable) earth vibrations (induced seismicity) are possible in projects of deep 

geothermal energy during the stimulation phase (high pressure stimulation). As there 

occurred some problems in Bad Urach (financing/drilling issues) and in Basel 

(discontinued due to quake) it was decided not to continue these two projects. 

At the moment no EGS plant for only heating utilization exists, and hence the data basis 

for the table below is not very strong and it is questionable whether in the near future 

only EGS heating systems will be built and if they are economically feasible. In order to 

provide figures for an EGS heating plant, data from the CHP plant of Soultz-sous-Forêts 

are used and analogical modified. 

The CAPEX breakdown structure listed below differs from the definition of main 

equipment and balance of plant (BOP) to the others. For this technology, the drilling 

effort is taken into account with the balance of plant (BOP) in order to show the 

significant influence of the drilling on the total investment. Note: The presented cost 

distribution can vary widely from one project to another. Especially estimating the 

borehole costs, large uncertainties exist due to the limited availability of drilling rigs, 

changing feedstock prices (e.g. steel), unforeseen technological problems and on-site 

conditions.  
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Main equipment: Energy conversion plant with its main components like heat transfer 

station, heat exchangers, pumps, filters, etc. 

Balance of plant: Borehole costs are dominating the overall investment costs and consists 

of seismics / preparatory arrangements, set up and recultivation of the drilling site, 

drilling lease (including personnel and energy costs and reservoir stimulation / hydraulic 

fracturing), costs for drilling bits and mud (including the disposal of mud and cuttings) as 

well as logging and borehole completion. 

 

Figure 18: CAPEX breakdown of enhanced geothermal system only heating plants 
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Table 11: Overview of enhanced geothermal system only heating plants  

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth > 10             A   

Total efficiency, nominal load  % Not applicable       

Electricity consumption %/MWth 3 3 3 3 3   2 6 2 6   B   

Technical lifetime years 30 30 30 30 30   25 >30 25 >30   C 1 

                              

Steam supply   N/A N/A N/A N/A N/A             

D 

  

Hot water   (-) (-) (-) (-) (-)   - o - o     

Warm water   (o) (o) (o) (o) (o)   - o - o     

Low temperature   (+) (+) (+) (+) (+)   o + o +     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

E 

  

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   low   F   

Learning rate %                       G   

Nominal investment M€/MWth 3.5 3.3 3.0 2.8 2.5   2.5 5.0 1.5 3.5   H 1, 2, 3, 4 

 - of which equipment M€/MWth 1.05 1.00 0.90 0.84 0.75   0.66 1.32 0.50 1.00   
I 

  

 - of which installation M€/MWth 1.45 2.30 2.10 1.96 1.75   1.98 2.64 1.50 2.00     

Fixed O&M k€/MWth/a 20 19 18 16 15   15 25 10 20   J 5 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=6.22x-0.25   K   

Construction time months 6 6 6 5 5   5 8 4 7   L 1 

Typical drilling depth km 6 6 7 8 10             M   

Reservoir temperature °C > 150             N 6 

Cost function drilling €/m CDrilling(Depth) = 2 500 * (Depth)   O 1 

Average daily drilling capacity m/day < 40             P   
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References: 

1 Geothermal Investment Guide; GeoElec (Project Deliverable 3.4), November 2013 

2 Factsheets on Geothermal Electricity; GeoElec, 2013 

3 Towards more Geothermal Electricity Generation in Europe; GeoElec (Final Report), 2013 

4 Projected Costs of Generating Electricity; IEA, September 2015 

5 Cost of Electricity from Enhanced Geothermal Systems; S. K. Sanyal et al., January 2007 

6 Integral modeling and financial impact of the geothermal situation and power plant at Soultz-sous-Forets; P. Heidinger, January 2010 (C. R. Geoscience 342 (2010) 
626–635) 

    
Notes: 

A It is assumed to achieve high heat capacities in order to build economic feasible Enhanced Geothermal Systems (EGS) heat plants. 

B In comparison to conventional geothermal plants the pumping effort will be slightly higher owing to the required fracturing pressure. 

C Long life time with over 30 years is assumed. 

D The supply temperature is mainly defined by the reservoir temperature. If higher temperatures are needed, deeper drillings are necessary. If the boreholes do not 
deliver the expected capacities, auxiliary heating systems could be installed. In general EGS is a technology with deep drillings to exploit high temperature 
reservoirs. Therefore, high temperature heat supply should be possible but will strongly influence both efficiency and costs.  

E EGS works at least with two wells (injection and production). Hence the closed loop, these plants should not emit gaseous emissions during operation. 

F The CAPEX estimation is very low, as there exists very few CHPs and no one "heat-only"-EGS plant. 

G Learning rate figures could not be given at the moment as there has to be still done some research issues and developments. Note: The Google Foundation sees 
EGS as a technology that could be used as a source of energy on a large scale in the future, thus supporting the development of EGS with several million US dollars. 

H Cost estimation is mostly done on the given case study "EGS project in Germany" and under further consideration of the listed references. In the case study a binary 
plant (ORC) was considered, which was excluded for the heat only cost estimation. According to Ref. 2, drilling represents more than half of the total cost of 
enhanced geothermal systems. 

I The highest effort is incurred on-site mainly caused by drilling work and hydraulic fracturing. 

J The authors of Ref. 6 assume lower O&M costs in comparison to conventional geothermal systems. The assumption is based on that EGS projects will have more 
controlled and optimized production/injection operation, absence of make-up well drilling, and relatively small number of well workovers expected in an EGS 
operation. 

K Cost function is just an estimation due to the lack of reference projects. x…Heat generation capacity [>10 MWth ] 

L Due to the higher stimulation and hydraulic fracturing effort, longer construction time is assumed. 

M EGS may extract heat from depths of 4 - 6 km and predictions assume 10 km wells in the future to exploit high temperature sources. 

N Due to the high effort of EGS, deeper drillings are assumed with temperatures over 150 °C. E.g. At the EGS plant Soultz-sous-Forets the temperature is 200 °C in 
depth of 5 000 m (Ref. 6). 

O The case study in Ref. 1 assumes drilling costs of approx. EUR 2 500/m and well. The higher costs can be substantiated by greater depths and higher temperatures 
(need for higher material resistances). 

P It is assumed that the average daily drilling capacity of EGS projects is lower to conventional geothermal projects as deeper drillings are necessary. 
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4.4 Solar thermal 

Comparing the specific energy yield per square meter collector area, solar thermal 

energy has a higher yield value than other technologies. 

Feeding in of large heat amounts from solar systems into large district heating networks 

(also known as SDH – solar district heating) is, however, not easily possible, since even 

the lower grid temperatures during summer operation of the district heating supply can 

often not be achieved by solar thermal energy even under efficient conditions. In the 

case of solar thermal, there is also the problem of the seasonal oppositeness of heat 

supply and demand. As solar thermal systems supply most of their generated energy 

during the summer months, the challenge is to store at least some of the heat generated 

during the colder season in seasonal heat storage. Further challenges could be limited 

feed-in capacities given by the network and the required space. Even the need for space 

is often a logistical obstacle. It is most likely that conversions or industrial traps are likely 

to be accessible (with a reasonable financial burden) if there is a suitable location for the 

heating network (contaminated sites). Open spaces for the arrangement of solar thermal 

systems with several thousand m² of collector area are mostly not available - especially 

in urban centres. Typical space requirement for a free-standing solar thermal system is 

between 3-4 m² per collector area. 

Common types are flat plate collectors (FPC) without vacuum and evacuated tubular 

collectors with compound parabolic concentrator (ETC-CPC). The differences between 

these two types are explained below. Figure 19 illustrates how the efficiency parameters 

and the collector mean temperature affect the efficiency. Type “A” corresponds to a high 

performing ETC-CPC, type “B” to a FPC with treated cover glass and convection barrier 

and “C” to a cheaper FPC without treatment or convection barrier. The figure shows, that 

in this example type “B” is good at medium to high temperatures and type “C” is good at 

low temperatures. Although the ETC-CPC is best at higher collector temperatures, in 

many SDH plants FPC have been chosen instead of ETC because of the better 

price/performance ratio. 

In most SDH systems a mixture of water and glycol (determined by the minimum 

ambient temperature of the given location) is used as collector fluid, which lowers the 

freezing point. The disadvantage of glycol is that it decreases the efficiency due to the 

higher viscosity and lower heat capacity. 

Another approach is to dispense with the antifreeze mixture and heat up the solar circuit 

through the DH grid when it is necessary. This consumes approx. 1–2 % of the yearly 

energy output of the solar plant. 
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Figure 19: Examples of collector efficiency based on aperture area as function of temperature 

difference between collector fluid and ambient air. Total solar irradiation is 1 000 W/m² on the 
collector plane. 

 

Source: Solar district heating guidelines 

4.4.1 Flat plate collector 

Flat plate collectors operate at an average temperature of approx. 80 °C. In them the 

light is not bundled, but directly heats a flat heat-absorbing surface which conducts heat 

well and is traversed with tubes containing the heat transfer medium. In these collectors, 

a water-propylene glycol mixture (ratio 60:40) is usually used as heat transfer medium. 

The addition of 40 percent propylene glycol achieves frost protection down to -23 ° C and 

below freezing without volume increase (to avoid possible frost bumping), as well as a 

boiling temperature that may be 150 °C or more depending on the pressure. 

Figure 20: CAPEX breakdown of solar thermal heating plants with flat plate collectors 
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Table 12: Overview of solar thermal heating plants with flat plate collectors  

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Collector area m² 500 - 50 000             A 1, 2 

Annual collector yield MWh/(m².a) 0.373 0.374 0.375 0.376 0.377   0.338 0.665 0.340 0.680   B 3, 4 

Total efficiency, annual average % 34.2 34.3 34.4 34.5 34.6   33 43 35 46   C 3 

Electricity consumption %/MWth 1 1 1 1 1   0.6 1.4 0.7 1.3   D 1, 5 

Technical lifetime years 25 25 30 30 30   20 35 25 35   E 1, 5, 6 

                              

Steam supply   N/A N/A N/A N/A N/A             

F 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water   -- -- -- -- --   -- - -- -     

Low temperature   (o) (o) (o) (o) (o)   o + o +   G   

B. Environmental data       

CO2 g/MJth 0 0 0 0 0                 

SO2 g/GJth 0 0 0 0 0                 

NOX g/GJth 0 0 0 0 0                 

CH4 g/GJth 0 0 0 0 0                 

N2O g/GJth 0 0 0 0 0                 

Particles g/GJth 0 0 0 0 0                 

C. Financial data                                        

Quality of CAPEX estimation   high       

Learning rate %                       H   

Nominal investment M€/MWth 0.482 0.475 0.465 0.455 0.435   0.420 0.530 0.380 0.480   I 1, 4, 6, 7, 8 

 - of which equipment M€/MWth 0.337 0.333 0.326 0.319 0.305   0.309 0.380 0.283 0.348     1, 6, 8, 9 

 - of which installation M€/MWth 0.145 0.142 0.139 0.136 0.130   0.095 0.166 0.087 0.152   J 1, 6, 8, 9 

Fixed O&M k€/MWth/a 1.8 1.7 1.6 1.5 1.4   1.0 2.4 0.9 2.1   K 1, 7 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A             L 1, 6, 7 

X. Technology specific data       

Cost function (estimation) €/m² CFPC(AColl) = 1 535 * (Collector Area)^(-0.165)   M 5, 8, 10 

Cost function (estimation) M€/MWth Invest(x)=0.661x-0.165   N 5, 8, 10 

Construction time months 4 4 3 3 3   2 5 2 5   O 1, 6 
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References: 

1 S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH (http://www.solid.at/en/) 

2 Ranking List of European Large Scale Solar Heating Plants; Solar District Heating (SDH), December 2016 (http://solar-district-
heating.eu/ServicesTools/Plantdatabase.aspx) 

3 SDH Online-Rechner (Online calculator for a quick feasibility study of solar district heating including seasonal storage); Solites (Steinbeis Forschungsinstitut für 
solare und zukunftsfähige thermische Energiesysteme), 2013 (http://www.sdh-online.solites.de/) 

4 Solar district heating guidelines - Collection of fact sheets; SDH, August 2012 (http://solar-district-heating.eu/) 

5 Technology and Demonstrators - Technical Report Subtask C - Part C1; IEA SHC Task 52 Solar Heat and Energy Economics in Urban Environments, January 2016 

6 Manufacturer information; Communciations between March - June 2017 

7 Big solar thermal plants; Company presentation GreenOneTec, 2017 

8 Estimative offers from manufacturers and planers, 2017 

9 Technology Data for Energy Plants; Energinet.dk, May 2012 

10 f-EASY (SDH) (Simple calculator for a quick feasibility study of solar district heating). Available under: http://www.solarkey.dk/f-easy/f-easy.xlsx 

    

Notes: 

A According to Ref. 2, two plants exists with a size above 50 000 m² and both are located in Denmark. At the moment, the biggest solar thermal plant is Silkeborg 
(DK) with a size of approx. 157 000 m² and a capacity of 110 MWth, which was put into operation in December 2016. Note: Actually, in the city of Graz (A) plans 

are ongoing which intends to have much greater solar thermal plant (see "Big Solar Graz" with a planned collector area of approx. 500 000 m² and a seasonal 
storage (PTES) of approx. 1.8 million m³). 

B Own calculations with SDH Online-Rechner with reference location Wuerzburg and feeding a DH grid (supply temperature 70 °C, return line 40 °C). Slightly 
increased efficiencies are assumed for the long term projection. The given lower value represents the location Stockholm and the upper value Barcelona. 

C The presented efficiency is a result of calculations (yearly collector yield per annual global radiation; considered conditions see comment above). The lower and 
upper values represent Stockholm respectively Barcelona. Note: Collector yield and efficiency mostly depends on operation temperatures of the DH network, 
collector technology and several additional parameters (orientation, distance between collector rows, control strategy, heat exchanger, storage type, combination 
with other energy technologies, etc.). The efficiency is limited to approx. 65 % owing to physical reasons. 

D Usually the needed electricity (solar pump, control, etc.) could be estimated with 0.7 - 1.2 kWh per 100 kWh heat production. Main part is the pumping energy 
which depends on collector type and field connection. 

E Depends mainly on stagnation periods. Collectors without stagnation could have lifetimes above 30 years. 

F Normally solar collectors are operated below 100 °C in order to reach "useful" collector yields. Reducing the temperature level leads to higher yield/efficiency. 
Note: Typical stagnation temperatures of FPCs are between 150 and above 200 °C. 

G Reducing operation temperature of 1 K leads approx. 1 - 2 % higher solar output, as lower temperatures imply higher operating efficiency for the solar collectors. 

H Most cost reduction potentials are seen in mounting system standardizations (e.g. fastening anchor, concrete elements, substructure) as big ground mounted solar 
thermal fields are relatively new (in comparison to solar thermal collectors itself) and learning effects would happen. The collectors itself would getting better 
regarding costs (production and prozess improvements) and efficiency (like actually developments in double glass / foil technologies). 

I The given cost estimation is based on a 10 000 m² collector field plant including collectors, installation, piping, heat exchanger unit, diurnal storage (size 1 000 
m³). 

J Estimation for the whole solar thermal plant including mounting and piping. Surcharge for pile foundation for the substructure is considered. Nevertheless, soil 
condition is a big uncertainty in estimating the installation effort. Hint: A team of 4 - 5 people could install 200 - 300 m² collectors per day (including preparation 
and follow-up). 

K Value is based on monitoring data. Key maintenance checks consist of: adaption and debugging control system, leakages (fluid loss and/or air in the system), fluid 
quality (PH value, glycol content), components (relief valves, expansion vessels, sensors, etc.) and landscaping. The time effort for visual inspection could be 
estimated as 16 hours (one day for 2 persons). Alternatively the whole maintenance could be estimated to EUR 1 - 2 per MWh. Data only valid for big solar thermal 
plants in megawatt scale. 

L Except electricity no variable O&M costs occur. 
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M Formula is based on listed references and adjusted with given estimative offers. The formula could be used up to 50 000 m² (considered estimative offers range 
from 500 - 50 000 m² and for this range the formula fits). 

N Given cost formula is converted from EUR/m² to EUR/kWth with a conversion factor of 0.7 kWth/m². x…Heat generation capacity 

O From construction start on site to commissioning of a 10 000 m² plant. 
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4.4.2 Evacuated tube collectors 

Evacuated tube collectors generally consist of two glass tubes, the inner tube being 

selectively coated. Heat losses are largely prevented by the vacuum. They have an 

additional heat-insulating effect due to the vacuum. Evacuated tube collectors with 

compound parabolic concentrator (ETC-CPC) uses additional mirror surfaces (integrated 

or external) increase the utilization rate. These so-called concentrating collectors achieve 

higher temperatures with the same absorber surface, since the specifically positioned 

curved mirrors cause more solar radiation to hit the same absorber surface. However, 

this advantage cannot be used with diffuse radiation since only directed beams can be 

concentrated.   

Figure 21: CAPEX breakdown of solar thermal heating plants with evacuated tube collectors 
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Table 13: Overview of solar thermal heating plants with evacuated tube collectors  

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Collector area m² 500 - 10 000             A 1, 2 

Annual collector yield MWh/(m².a) 0.408 0.409 0.410 0.411 0.412   0.372 0.700 0.374 0.710   B 3 

Total efficiency, annual average % 37.4 37.5 37.6 37.7 37.8   37 46 39 50   C 3 

Electricity consumption %/MWth 1 1 1 1 1   0.5 1.5 0.6 1.4   D 1, 4 

Technical lifetime years 25 25 25 25 25   20 30 20 30   E 1, 5 

                              

Steam supply   N/A N/A N/A N/A N/A             

F 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water   -- -- -- -- --   -- - -- -     

Low temperature   (o) (o) (o) (o) (o)   o + o +   G   

B. Environmental data       

CO2 g/MJth 0 0 0 0 0                 

SO2 g/GJth 0 0 0 0 0                 

NOX g/GJth 0 0 0 0 0                 

CH4 g/GJth 0 0 0 0 0                 

N2O g/GJth 0 0 0 0 0                 

Particles g/GJth 0 0 0 0 0                 

C. Financial data                                        

Quality of CAPEX estimation   high       

Learning rate %                       H   

Nominal investment M€/MWth 0.75 0.70 0.65 0.60 0.56   0.60 0.80 0.45 0.65   I 
1, 3, 5, 

7 

 - of which equipment M€/MWth 0.45 0.42 0.39 0.36 0.33   0.35 0.53 0.28 0.41   J 1, 6, 7 

 - of which installation M€/MWth 0.30 0.28 0.26 0.24 0.22   0.17 0.35 0.14 0.28   K 1, 6, 7 

Fixed O&M k€/MWth/a 3.5 3.3 3.0 2.5 2.0   2.8 4.5 1.6 3.0   L 1, 5, 7 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A             M 1, 5 

X. Technology specific data       

Cost function (estimation) €/m² CETC-CPC(AColl) = 2 035 * (Collector Area)^(-0.15)   N 3, 6 

Cost function (estimation) M€/MWth Invest(x)=0.978x-0.15   O 3, 6 

Construction time months 5 4 4 3 3   3 6 2 6   P 1, 5 
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References: 

1 Ritter XL Solar GmbH (http://ritter-xl-solar.com/en/home/); Communications between March - May 2017 

2 Ranking List of European Large Scale Solar Heating Plants; Solar District Heating (SDH), December 2016 (http://solar-district-
heating.eu/ServicesTools/Plantdatabase.aspx) 

3 SDH Online-Rechner (Online calculator for a quick feasibility study of solar district heating including seasonal storage); Solites (Steinbeis Forschungsinstitut für 
solare und zukunftsfähige thermische Energiesysteme), 2013 (http://www.sdh-online.solites.de/) 

4 Solar district heating guidelines - Collection of fact sheets; SDH, August 2012 (http://solar-district-heating.eu/) 

5 Manufacturer information; Communications between March - June 2017 

6 Technology Data for Energy Plants; Energinet.dk, May 2012 

7 Estimative offers from manufacturers and planers, 2017 

    

Notes: 

A According to Ref. 2, eight plants with in the range between 1 000 - 10 000 m² exists and most of them are located in Germany. At the moment, the biggest ETC 
plant is Senftenberg (DE) with a size of 8 300 m² and a capacity of 5.8 MWth, which was put into operation in 2016. 

B Own calculations with SDH Online-Rechner with reference location Wuerzburg and feeding a DH grid (supply temperature 70 °C, return line 40 °C). Slightly 
increased efficiencies are assumed for the long term projection. The given lower value represents the location Stockholm and the upper value Barcelona. Note: If the 
plant is operated only with water (no glykol) 1 - 2 % of the collector yield is needed for the active frost protection. 

C The presented efficiency is a result of calculations (yearly collector yield per annual global radiation; considered conditions see comment above). The lower and 
upper values represent Stockholm respectively Barcelona. Note: Collector yield and efficiency mostly depends on operation temperatures of the DH network, 
collector technology and several additional parameters (orientation, distance between collector rows, control strategy, heat exchanger, storage type, combination 
with other energy technologies, etc.). The efficiency is limited to approx. 65 % owing to physical reasons. 

D Electricity demand for solar pump and control is around 1 kWh per 100 kWh heat production. Variations for the solar pump could occur due to the hydraulic 
connection of the collector field. 

E Depends mainly on stagnation periods. Collectors without stagnation could have lifetimes above 30 years. 

F Technically ETCs could be used for high temperature applications till 140 °C and for some research activities they are operated till 180 °C (driving a Stirling engine). 
Hence, it is recommended to operate these collectors below 110 °C due to economic reasons. Temperatures above 110 °C requires higher installation efforts due to 
the "pressure equipment directive (2014/68/EU)" which lead to much higher installations costs and makes it uneconomical. 

G Compared to FPC the ETC technology has a higher efficiency at higher collector temperatures. Nevertheless, in most SDH plants FPC have been chosen instead of 
ETC because of the lower price/performance ratio (Ref. 4). 

H The price could be reduced to half if there were a corresponding market, but at the moment there is not a high demand for evacuated tube collectors. If the market 
does not change, no serious cost reductions are seen in the near future. 

I The given cost estimation is based on a 10 000 m² collector field plant including collectors, installation, piping, heat exchanger unit, diurnal storage (size 1 000 m³). 

J In comparison to flat plate collectors, the equipment effort is a little bit lower and, going hand in hand, the installation a little bit higher. The reason for this is the 
lower standardization (especially in the mounting systems) which requires more on-site work. 

K Estimation for the whole solar thermal plant including mounting and piping. Surcharge for pile foundation for the substructure is considered. Nevertheless, soil 
condition is a big uncertainty in estimating the installation effort. Hint: A team of 4 - 5 people could install 100 - 200 m² collectors per day (including preparation 
and follow-up). 

L Yearly maintenance (e.g. adaption and debugging control system, leakages (fluid loss and/or air in the system), fluid quality (PH value, glycol content), components 
(relief valves, expansion vessels, sensors, etc.) and landscaping) is below 1 % of the investment costs and could be done within running operation (effort for 10 000 

m²: 2 persons x 8 h per year). In comparison to FPCs, this technology has slightly higher O&M costs, due to higher efforts like checking the collectors (each collector 
pipe and their suitable connection), visual inspection, exchange of small parts, filter and sealing changes, etc. 

M Except electricity no variable O&M costs occur. 

N Formula is based on listed references and adjusted with given estimative offers. The formula could be used up to 50 000 m² (considered estimative offers range 
from 500 - 50 000 m² and for this range the formula fits). 

O Given cost formula is converted from EUR/m² in EUR/kWth with a conversion factor of 0.7 kWth/m². x…Heat generation capacity 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

55 

P In comparison to flat plate collectors this type consumes a little bit longer construction time as there exists not so much standardized collector solutions. 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

56 

5 Heating/ Cooling – Heat Pumps 

District heating networks are an interesting application field for large heat pumps. While 

some heat pumps are already used in Scandinavian networks, there are only a few plants 

in the rest of Europe. However, the interest of heat grid operators in large heat pumps is 

increasing. 

Large-scale heat pumps, according to the state of the art, currently reach supply heating 

temperatures of around 80 °C. For the integration into district heating networks, this 

maximum supply temperature is in many cases too low. In the winter months the supply 

temperatures in district heating systems are often above 100 °C, so that the operation of 

large heat pumps seems not appropriate. 

If the flow temperature of the heat pump is not sufficient, there is the possibility of post-

heating with auxiliary (mostly boiler) systems. If the return line of the district heating 

system is used as the heat source for the heat pump, the cooling of the return flow can 

have a positive effect on the fuel utilization rate during the operation of a cogeneration 

system. 

Another potential application field is the improved utilization of existing heat storages 

(especially seasonal storages). Large heat pumps can be used to further reduce the 

temperatures in the heat storage, which means that the stored heat is used more 

effectively. In addition, there is a favourable temperature level for the operation of large 

heat pumps, as these are generally used in the basic load in order to achieve the most 

economical operation with high full utilization hours. Large heat pumps are therefore 

often operated in combination with CHP plants and boilers to cover the peak load. In 

addition to pure heat generation, heat pumps can also be used to increase the capacity 

of existing district heating systems. 

5.1 Electric heat pumps 

Electric heat pumps could be used in wide applications and very different heat sources. 

That is why, a general approach is introduced in order to estimate the COP (Coefficient 

Of Performance) based on the temperature levels (source, sink) and a overview of the 

cost compositions. 

The performance depends strongly on the lower and upper temperature level. The 

theoretically maximum achievable performance coefficient “COPmax” of a heat pump is 

limited by the reciprocal of the Carnot efficiency. For calculations the absolute 

temperature values must be used. The efficiency of a heat pump (ηHP) is formed from 

the ratio of actual performance (COP) to ideal performance (COPmax) at the used 

temperature levels. Practically heat pumps achieve efficiencies in the range 0.45 to 0.55. 

For the COP calculation an efficiency of 0.5 could be used. 

𝐶𝑂𝑃𝑚𝑎𝑥 =
1

𝜂𝐶
=

𝑇𝑤𝑎𝑟𝑚

𝑇𝑤𝑎𝑟𝑚−𝑇𝑐𝑜𝑙𝑑
 ⟹ 𝜂𝐻𝑃 =

𝐶𝑂𝑃

𝐶𝑂𝑃𝑚𝑎𝑥
→ 𝐶𝑂𝑃 = 𝐶𝑂𝑃𝑚𝑎𝑥 ∗ 𝜂𝐻𝑃 

Based on the figure below, the heat source temperatures could be estimated for the 

efficiency calculation. The visualization is limited to 50 °C as the temperature level of flue 

gas, waste heat and geothermal over and above that. The source “ambient temperature” 

is not listed, because this heat source is not used for district heating applications due to 

low COPs. As a rough estimation, the local average ambient temperature could be used 

for surface water (e.g. seas, lakes). 
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Figure 22: Typical heat source temperatures of heat pumps in DH systems 

 

Source: Large heat pumps in European district heating systems; A. David, 2016 

The CAPEX breakdown structures below are based on three different heat sources. In 

general, the heat pump causes about 50 percent of the total investment. Heat source 

exploitation consumes approx. 20 %, electrical and civil and structural works both 

approx. 10 %. The development and interconnection costs amount to approx. 5 % each 

of the total investment (Ref. 4). Based on these figures and on the financial data of the 

provided table the costs for different applications could be estimated. 

Figure 23: CAPEX breakdown of electrical heat pumps with ground water source 
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Figure 24: CAPEX breakdown of electrical heat pumps with waste heat source 

 

 

Figure 25: CAPEX breakdown of electrical heat pumps with flue gas source 
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Table 14: Overview of electric driven heat pumps 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Thermal power output MWth 1 - 10   0.5 20 0.5 40   A 1, 2, 3 

Cooling generation capacity MWth 0.7 - 7   0.35 15 0.35 30   B 1, 2, 3 

COP Heating % 350 360 370 380 410   330 380 350 450   C 1, 4, 5, 6 

COP Cooling % 250 260 270 280 310   230 280 250 350   D 7 

Electricity consumption %/MWth 10 9 7 5 4   4 10 3 6   E 1 

Technical lifetime years 20 20 25 25 25   15 30 15 30   F 1, 8 
                              

Steam supply   N/A  N/A  N/A  N/A  N/A              
G 

3, 4, 6 
Hot water   N/A  N/A  N/A  N/A  N/A              

Warm water   -- -- -- -- --   -- - -- -   H 

Low temperature   (o) (o) (o) (o) (o)   o (+) o +   I 

B. Environmental data       

CO2 g/MJth 0 0 0 0 0               

1 

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   high       

Learning rate %                       J 9 

Nominal investment M€/MWth 0.72 0.66 0.60 0.56 0.54   0.5 1.0 0.4 0.8   K 1, 2, 9, 10, 11 

 - of which equipment M€/MWth 0.36 0.33 0.3 0.28 0.27   0.26 0.4 0.22 0.32   
L 

1, 5 

 - of which installation M€/MWth 0.36 0.33 0.3 0.28 0.27   0.26 0.4 0.22 0.32   1, 5 

Fixed O&M k€/MWth/a 3.0 3.0 2.7 2.4 2.0   2.0 4.0 1.0 3.0     1, 12 

Variable O&M excl. electricity costs €/MWhth 2.0 1.8 1.7 1.6 1.6   1.5 2.0 1.5 2.0   M 1 

X. Technology specific data       

Cost function (estimation) M€/MWth CelHP(Q.th) = 0.352 * Q.th
-0.122   N   

Construction time months 6 6 6 6 6   4 9 4 9   O 1 

Space requirement m²/MWth 20 20 20 20 20   10 40 10 40   P 11 

Primary regulation %/30sec 10 10 10 10 10   10 25 10 30   

R 

1 

Secondary regulation %/min 20 20 20 20 20   20 40 20 40   1 

Minimum load % 20 20 15 15 10   10 30 10 30   1, 11 

Warm start-up time h 0 0 0 0 0   0 1 0 1   1, 11 

Cold start-up time h 0.5 0.5 0.5 0.5 0.5   0.25 2 0.2 1.50   1, 11 
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References: 
1 Technology Data for Energy Plants; Energinet.dk, August 2016 

2 Best available technologies for the heat and cooling market in the European Union; EC-JRC, 2012 

3 Analyse des Potenzials von Industriewärmepumpen in Deutschland; Universität Stuttgart IER/IZW, December 2014 (online available: http://www.ier.uni-
stuttgart.de/publikationen/veroeffentlichungen/forschungsberichte/downloads/141216_Abschlussbericht_FKZ_0327514A.pdf) 

4 Renewables for Heating and Cooling - Untapped Potential; OECD/IEA, 2007 

5 Store varmepumper i fjernvarmeforsyningen - Evaluering af initiativerne for rejsehold og tilskudsordning for store varmepumper i fjernvarmeforsyningen; 
Energistyrelsens, May 2016 

6 Large heat pumps in European district heating systems; Andrei David, Presentation at "En+Eff - 22nd International Trade Fair and Congress" on 20th April 2016, 
Frankfurt 

7 Wärmepumpe - Lecture Notes (W10 Physikalisches Grundpraktikum, Abteilung Wärmelehre); TU Dresden, May 2015 

8 Economic efficiency of building installations - Fundamentals and economic calculation; VDI Guidelines, September 2012 

9 Klimaneutraler Gebäudebestand 2050; Umweltbundesamt, 2016; Online available: http://www.umweltbundesamt.de/publikationen/klimaneutraler-
gebaeudebestand-2050 

10 Heat Pumps - Technology Brief; IEA-ETSAP and IRENA, January 2013 

11 Manufacturer information; Input from autumn 2015 

12 District Heating; IEA-ETSAP and IRENA, January 2013 

    

Notes: 
A Ref. 3 provides an overview which includes heat output, available supply temperature and refrigerant of 44 industrial heat pumps (which also mostly suits for DH 

applications) of 14 manufacturers. The performance spectrum of the offered heat pumps ranges from 0.015 to 20 MW. By parallel operation larger heating 
capacities can also be achieved. 

B Calculated based on the heating capacity and an average COP Cooling of 250 %. 

C The given values are calculated for a supply temperature of 80 °C and a source temperature of 30 °C. Increasing the COPs will primarily be caused through lower 
supply temperatures in the future. 

D COP Cooling = COP Heating - Pel. 

E Contains only auxiliary electricity (pumps etc.) but not the driving power (which depends on the COP and is characterized through the temperature levels (source, 
sink); Pel = Q.th / COP). The electrical auxiliary power consumption is not included in the COP estimation/calculation. 

F The technology itself is very reliable and robust and with regular maintenance, 25 years of use is no problem. There are some specimens that have been in 
operation for more than 40 years. Due to legal regulations (F-Gas regulation), the refrigerants were substituted with less GWP (global warming potential) in some 
old machines. But it could be that the "new" refrigerants could harm to the heat pumps, as no long term experiences exists. 

G The technology is mostly predestined for lower temperature applications. Nevertheless, R&D projects are ongoing to reach supply temperatures up to 160 °C 
(therefore, also new refrigerants are investigated). E.g. http://dry-f.eu/ 

H Only few manufacturers offers heat pumps with supply temperatures up to 100 °C (Ref. 3). The few existing heat pumps are mostly used for industrial purposes. 

I Most heat pump applications in DH systems work with temperature levels up to 70 - 80 °C (Ref. 12).  

J No high scientifically resilient figures are available. According to Ref. 9, a learning rate of 5 % for material and the same for the work is assumed. But this figures 
are just estimations and mostly based on small-scale heat pumps. Higher learning rates could be expected for large-scale heat pumps. 

K Given CAPEX estimation (2015-2050) is based on a 1 MWth heat pump. Although the CAPEX estimation is set "high", the lower and upper CAPEX figures show a 
bigger bandwith. The reason for this is, that only very few manufacturers dominate the large-scale market for heat pumps. But there are a lot of other heat pump 
manufacturers which would like to have higher market shares, whereby they offer their products at lower price levels. That means, chosing the manufacturer has a 
very high influence on the heat pump price. 

L On average, Ref. 5 shows that the heat pump itself constitutes approx. 50 % of the total investment. 
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M Part load operation could increase variable O&M costs. 

N Cost function only valid for the heat pumps itself in order to easily compare different heat sources. Normally the heat pump itself consumes approx. 50 % of total 
investment costs (see also the CAPEX breakdown structures for different heat sources). The function is based on reference project information and manufacturer 
estimative offers. 

O Depends on future production figures, plant standardizations and of course on-site conditions. Large heat pumps could have long delivery times up to 1 year. 

P Approximately 50 % is for the heat pump and the other half for other installations (e.g. interconnection, maintenance spare, etc.). 

R The future regulation service markets will have a big influence on regulation ability improvements (e.g. power-to-heat applications). 
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5.2 Gas driven heat pumps 

Gas driven heat pumps use a gas engine (e.g. Otto engine) to drive the heat pump 

compressor. The waste heat from the engine is additionally used, so that a various 

combination of CHPs, heat pump, condensing value utilization and primary energy is 

used. In principle, all gas engine heat pump technologies are reversible and can both 

used for heating and cooling/air conditioning. Hence, not all products on the market may 

be designed for cooling also. A special feature of the gas engine heat pump is the offering 

of four different temperature levels: 

— evaporator heat: 10 °C and lower, depending on the heat source 

— condenser heat: 40 - 50 °C from the heat pump process 

— cooling water waste heat: approx. 65 °C of the gas engine 

— sensitive heat: approx. 100 - 600 °C from the exhaust gas of the gas engine 

Big advantage of gas heat pumps are that they less rely on free renewable heat sources, 

compared to electrical heat pumps. Furthermore, their capacity is less depending on the 

heat source temperature which results to a more constant heat delivery profile. One of 

the biggest disadvantage is, that this technology can only be installed where gas is 

available. As they direct compete to heat only boilers not so much systems are existing 

yet. Applications mainly exist for commercial buildings but not for DH systems.  

 

Figure 26: CAPEX breakdown of gas driven heat pumps 
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Table 15: Overview of gas driven heat pumps 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 0.025 - 0.85   0.02 1.2 0.02 2.0   A 1, 2, 3 

Cooling generation capacity MWth 0.025 - 0.70   0.02 0.85 0.02 1.5     1, 2 

Heating factor % 155 155 157 158 160   110 170 120 170   B 1, 2, 3 

Refrigeration factor % 145 145 147 58 160   100 160 110 160     1, 4 

Heating, annual efficiency % 120 125 130 135 140   115 135 120 150   C 3, 4, 5 

Cooling, annual efficiency % 100 105 110 115 120   90 120 110 130   D 4 

Electricity consumption %/MWth 1.2 1.2 1.1 1.1 1   1.0 1.5 1.0 1.5     3, 6 

Technical lifetime years 15 20 20 20 20   15 20 15 20   E 2, 5, 7 

                              

Steam supply   N/A N/A N/A N/A N/A                 

Hot water   N/A N/A N/A N/A N/A                 

Warm water   -- -- -- -- --   -- - -- -       

Low temperature   (o) (o) (o) (o) (o)   o (+) o +       

B. Environmental data       

CO2 g/MJth 18 18 18 18 18             

F 

8 

SO2 g/GJth < < < < <               

NOX g/GJth 13 13 13 13 13             2 

CH4 g/GJth < < < < <               

N2O g/GJth < < < < <               

Particles g/GJth < < < < <               

C. Financial data                                        

Quality of CAPEX estimation   low       

Learning rate %                           

Nominal investment M€/MWth 1.3 1.2 1.1 1.0 0.9   1.0 1.6 0.8 1.3     2, 4, 9 

 - of which equipment M€/MWth 0.65 0.60 0.55 0.50 0.45   0.48 0.72 0.36 0.54     2 

 - of which installation M€/MWth 0.65 0.60 0.55 0 0.45   0.48 0.72 0.36 0.54     2 

Fixed O&M k€/MWth/a 4.7 4.7 4.7 4.7 4.7             G 2, 9 

Variable O&M excl. electricity costs €/MWhth 2 2 2 2 2               10 

X. Technology specific data       
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References: 

1 Marktübersicht Gaswärmepumpen 2013/14 Gasklimageräte, Gasmotorwärmepumpen, Gasabsorptionswärmepumpen, Gasabsorptionskälteanlagen, 
Gasadsorptionswärmepumpen: Angebot und Anbieter; ASUE, 2013 

2 Technology Data for Individual Heating Plants and Energy Transport (Updated chapters); Danish Energy Agency and Energinet.dk, August 2016 

3 BHKW-Kenndaten; ASUE, 2014 

4 Gas Heat Pumps - Efficient heating and cooling with natural gas; GasTerra, 2010 

5 BWP-Branchenstudie 2013 - Szenarien und politische Handlungsempfehlungen - BWP, 2013 

6 Heizen und Kühlen mit Gaswärmepumpen / Gasklimageräten; ASUE, 2008 

7 WAS KOSTET DIE ENERGIEWENDE? Wege zur Transformation des deutschen Energiesystems bis 2050; Fraunhofer ISE, 2015 

8 Gaswärmepumpen; ASUE, 2002 

9 Klimaneutraler Gebäudebestand 2050; Umweltbundesamt, 2016; Online available: http://www.umweltbundesamt.de/publikationen/klimaneutraler-
gebaeudebestand-2050 

10 Heizen, Kühlen und Klimatisieren mit Erdgas (Tagungsband der ASUE-Fachtung); ASUE, June 2016 

    

Notes: 

A The power output could be controlled in a range between 35 - 100 % by modulating the gas burners. 

B Depending on model and application (heating temperature), the nominal efficiency can vary between around 1.2 and 1.6 NCV. 

C Application: Ground heat to 60 - 70 °C supply temperature. 

D Application: Cooling 6/12 °C. 

E The technical life time of gas heat pumps is at least fifteen years if maintained according to manufacturer regulations (Ref. 6). 

F The emissions are calculated from fuel to thermal output, whereas the gas engine contributes with 50 % of 155 % heating factor (that means conversion factor of 
50/155 from fuel to thermal output). 

G Maintenance on the gas engine is initially limited to an annual visual inspection. The engine oil, spark plugs and V-belt must be replaced every 10 000 operating 
hours. It takes approximately half a working day to inspect a standard installation. Every 30 000 operating hours the system requires an overhaul, during which 
components in the periphery of the engine are replaced as a precautionary measure. The revolving part of the engine remains unaltered. The compressors (usually 
scroll compressors) are entirely maintenance-free (Ref. 7). 
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5.3 Absorption heat pumps 

Thermally driven heat pumps use the same thermodynamic cycle as electrically driven 

compression heat pumps, however the compressor is replaced by a thermal sorption 

cycle. To drive the cycle thermal energy is needed. Electricity is only needed for auxiliary 

components like pumps to circulate the working fluid. Thermally driven machines are 

often used for cooling purposes in combination with waste heat or heat produced by 

renewable sources. Nevertheless, they can also work as heat pumps.  

In general the cycles are based on a working pair of a refrigerant and a sorption medium. 

In absorption devices the refrigerant is absorbed, i.e. dissolved, in the liquid sorption 

medium changing its concentration. Most common working pairs are Water/Lithium 

Bromide and Ammonia/Water. 

In order to increase performance configurations such as double-effect machines have 

been developed. Such configurations are thermodynamically more efficient but need 

higher driving temperatures and usually require complex hydraulics and sophisticated 

control. Therefore, they are less frequent than single-effect machines. Sources could be 

hot water, steam or even directly fired. These machines are more expensive than the 

single-effect machines.  

Absorption machines offer quite stable COPs both in cooling/heat pumping mode. These 

devices face problems such as crystallization of the sorbent and corrosion and efficiency 

losses from the circulation pumps. Ammonia/water machines require adapted pumps. 

The following table summarizes the technologies, the working pairs used and compare 

the main properties and performance of thermally driven heat pumps. 

Ammonia/Water: Are based on ammonia as a refrigerant and water as a solvent. They 

can also reach very low evaporator temperatures (e.g. -50 °C). 

Water/Lithium bromide: The evaporator temperature cannot be below approx. 3 °C, 

since water is used as a refrigerant. However, this limitation is not a problem if, for 

example, waste heat is to be used as a heat source at a not too low temperature level. 

Table 16: Technology overview 

Refrigerant/sorbent Water/LiBr Water/LiBr Ammonia/Water 

Temperature Heat Source [°C] 75 – 110 135 – 200 100 - 180 

Capacity [kW] 15 – 12 000 200 – 6 000 18 - 700 

COP Heating 1.4 – 1.7 1.8 – 2.2 1.4 – 1.7 

COP Cooling 0.6 – 0.7 0.9 – 1.3 0.5 – 0.7 

Source: IEA HPP Annex 34: Thermisch angetriebene Wärmepumpen zum Heizen und Kühlen, I. Malenković, 
2012 

For reversible operation (both heating and cooling) mostly Water/LiBr machines are in 

usage, beside temperatures below 0 °C are required, Ammonia/Water machines will be 

used. 

For designing absorption heat pumps and temperature level estimations it has to be 

considered, that the “lower” temperature ratio (Tm-Tc) has to be less than the “higher” 

(Th-Tm). Using the heat pump as a chiller, low driving temperatures (< 80 °C) should be 

avoided as the efficiency and capacities are getting smaller. 

 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

66 

Figure 27: Technology principle of absorption heat pumps 

 

Source: IEA HPP Annex 34: Thermisch angetriebene Wärmepumpen zum Heizen und Kühlen, I. Malenković, 
2012 

The CAPEX breakdown structure below is based on a single-effect machine with 1 MWth 

output for heating usage. The position “Main equipment” considers also transport costs 

for shipping etc. as the manufacturers of such machines are mostly located in Asia and 

North America. 

Figure 28: CAPEX breakdown of absorption driven heat pumps (single-effect) 
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Table 17: Overview of absorption driven heat pumps (single-effect) 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Thermal power output MWth 0.15 - 12               1 

Cooling generation capacity MWth 0.1 - 10               1 

COP Heating % 170 170 171 172 173   140 170 140 175   A 2, 3, 4 

COP Cooling % 70 70 71 72 73   40 70 40 75   B 2, 3, 4 

Electricity consumption %/MWth 1.5 1.5 1.5 1.5 1.5   1 3 1 3     2, 5 

Technical lifetime years 25 25 25 25 25   20 30 20 >30     2, 5 

                              

Steam supply   N/A  N/A  N/A  N/A  N/A              
C 

1, 4 
Hot water   N/A  N/A  N/A  N/A  N/A              

Warm water   -- -- -- -- --   -- - -- -   
D 

Low temperature   (o) (o) (o) (o) (o)   o (+) o +   

B. Environmental data       

CO2 g/MJth 0 0 0 0 0               

5 

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate % 7 - 8             E 5 

Nominal investment M€/MWth 0.42 0.39 0.38 0.37 0.35   0.30 0.60 0.25 0.50   F 2, 6, 7 

 - of which equipment M€/MWth 0.21 0.195 0.19 0.185 0.175   0.15 0.24 0.14 0.21   
G 

5, 6 

 - of which installation M€/MWth 0.21 0.195 0.19 0.185 0.175   0.15 0.24 0.14 0.21   5, 6 

Fixed O&M k€/MWth/a 2 2 2 2 2   1 3 1 3     5 

Variable O&M excl. electricity costs €/MWhth 0.30 0.28 0.25 0.24 0.23   0.30 0.40 0.20 0.30     5 

X. Technology specific data       

Cost function (estimation) M€/MWth CAb-HP, single-effect(Q.th) = 0.42 * Q.th
-0.205   H 8 

Cost function (estimation) M€/MWth CAb-HP, double-effect(Q.th) = 0.66 * Q.th
-0.205   I 8 

Construction time months 6 6 6 6 6   4 9 4 9     5 

Minimum load % 10 10 10 10 10   10 10 10 10   J 5 

Warm start-up time h 0 0 0 0 0   0 1 0 1     5 

Cold start-up time h 0.5 0.5 0.5 0.5 0.5   0.25 2 0.25 2     5 
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References: 
1 Thermally driven heat pumps; IEA HPP Annex 34, 2013 

2 Information of manufacturers; Communications between March - May 2017 

3 Solar Energy; Christoph Richter, Daniel Lincot and Christian A. Gueymard, 2013 (© Springer Science+Business Media New York) 

4 Absorption Chillers and Heat Pumps; Keith E. Herold, Reinhard Radermacher and Sanford A. Klein, 1996 (© Taylor & Francis Group, LLC) 

5 Technology Data for Energy Plants; Energinet.dk, August 2016 

6 Best available technologies for the heat and cooling market in the European Union; EC-JRC, 2012 

7 S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH (http://www.solid.at/en/) 

8 PREISATLAS - Ableitung von Kostenfunktionen für Komponenten der rationellen Energienutzung; Lucas et al., 2002 

    

Notes: 
A Based on a single-effect absorption machine typical COPs are between 1.4 - 1.7 (depending on temperature differeneces and on the working pairs). Due to 

thermodynamic / physical principles the COP is restricted to 1.8. See also: "Zero - Order Model". 
B COP cooling = COP Heating - 100%. See also: "Zero - Order Model". 

C Absorption heat pumps are not predestined for high supply temperature usage. 

D The reachable temperatures for heating usage is limited through the crystallization line, which depends on vapour pressure and mass fraction of the media. E.g.: A 
single-effect machine could provide up to 80 °C for heating usage, based on 160 °C hot water source and 30 °C chilled water (Ref. 2).  

E Estimation based on Ref. 5 in which it is assumed that the costs are decreasing by 7 - 8 % for every doubling. 

F Given CAPEX estimation (2015-2050) is based on a 1 MWth heat pump. For other thermal power ranges the given cost function could be used. 
G Relation depends very much on-site conditions (e.g. specific type, availability of heat source, etc.). 

H Formula is based on given reference and adjusted with estimative offers. The formula could be used in a range of 1 - 10 MWth. 

I Formula is based on given reference and formula used above. Note: The comparison of ref. 8 comes up with a factor of 1.58 higher costs for double than single-
effect machines. 

J Percent of full load operation. 
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6 Combined heat and power 

Combined heat and power (CHP), also known as cogeneration, is: 

— The concurrent production of electricity or mechanical power and useful thermal 

energy (heating and/or cooling) from a single source of energy. 

— A suite of technologies that can use a variety of fuels to generate electricity or 

power at the point of use, allowing the heat that would normally be lost in the power 

generation process to be recovered to provide needed heating and/or cooling. 

CHP technology can be deployed quickly, in some cases cost-effectively, and with few 

geographic limitations. CHP can use a variety of fuels, both fossil- and renewable-based. 

It has been employed for many years, mostly in industrial, large commercial and 

institutional applications. CHP can provide highly efficient electricity and process heat 

(see also comparison of the figure below) to some of the most vital industries, largest 

employers, urban centres, etc. It is reasonable to expect CHP applications to operate at 

high total degrees of fuel utilization.  

On a large scale, conventional steam generators and combined cycle power plants are 

used and at smaller scales (typically below 1 MW) gas- or diesel engines may be used. 

Figure 29: Comparison of "conventional" electricity production to CHP application 

 

 

Source: https://imagemag.ru/img-ba_cogeneration.html 

6.1 Combustion technologies 

General clarifications 

Data in tables below have been found after research of different sources / references / 

in-house data as indicated in literature list and with help of thermodynamic simulation 

using “EBSILON®Professional”. Literature and used references for this chapter are 

indicated within chapter 6.1.8. 

https://www.google.at/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiM24f9j8PWAhUFvhQKHSvxBoIQjRwIBw&url=https://imagemag.ru/img-ba_cogeneration.html&psig=AFQjCNHkBJ-EmyTPdJRFBK_uUUj4TqzcGg&ust=1506524624803200
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Individual remarks for parameters provided below 

— The general approach for the calculation of thermal power exchange from the 

combined heat and power plant (CHPP) to the district heating system is the 105 °C 

level for the district heating temperature. Additionally the corresponding electrical 

power of the individual CHPP is taken for further considerations (simultaneous “heat 

and power mode”). 

— Heat generation capacity: The range of thermal power that can be produced by CHPPs 

of presented configuration  

— Electrical power generation: The range of electrical power that can be produced by 

CHPPs of presented configuration  

— Net electrical efficiency: Electrical net efficiency of the CHPP running in “heat and 

power mode” 

— Degree of fuel utilization accountable to el. Power: Electrical power divided by sum of 

electrical and thermal power. 

— Degree of fuel utilization accountable to district heating: Thermal power divided by 

sum of electrical and thermal power. 

— Total degree of utilization, nominal load: Sum of electrical and thermal power divided 

by fuel heat 

— Total degree of utilization, annual average: As factor above, but based on planned 

availability of the CHPP per year 

— Electricity consumption: Electrical auxiliary power per produced thermal power (in 

“heat and power mode”). 

— Technical lifetime: Estimated lifetime of a new “greenfield” CHPP with presented 

configuration 

— Table: Steam supply, Hot water, Warm water, Low temperature: For corresponding 

factors “Cb” (electric power divided by thermal power in “heat and power mode”) and 

“Cv” (electric power in “heat and power mode” divided by maximum electric power in 

“only electric power mode” – using a condensing steam turbine with steam 

extraction) please see “Notes” below for the individual tables. 

— Environmental Data: Emissions produced per thermal power produced (in “heat and 

power mode” i.a.) 

— Financial Data: “Medium” quality is chosen, since estimations are based on data as 

indicated in literature list. Financial data is not based on binding offers from EPC 

(Engineering, Procurement and Construction) contractors or OEMs (Original 

Equipment Manufacturer). 

— All financial data are given per electrical power produced (maximum electric power in 

“only electric power mode” – using a condensing steam turbine with steam 

extraction).  

— Uncertainty: Uncertainty gives an estimated error range, considering capacity range, 

assumption influence and calculation uncertainty. 
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6.1.1 Subcritical steam generators (approx. > 20 MW thermal output) 

For CHPPs using backpressure steam turbines, the approach for the calculation of 

thermal power that can be used for district heating is, as stated above, 105 °C for the 

district heating temperature (“Warm water”) and a minimum of 10 °C spread of the 

backpressure steam temperature of the steam turbine (115 °C saturated at 1.7 bar). The 

corresponding electrical power, when running the plant in this backpressure mode, is 

used for the calculation of further parameters of the tables below. Maximum electrical 

power (see also Cv factor) of such a CHPP using a condensing steam turbine with steam 

extraction can be produced in “condensing mode”; that means without any thermal heat 

production for district heating. 

The CAPEX breakdown structure of this category is listed in the figure below. 

Figure 30: CAPEX breakdown of subcritical steam generators4 

 

 

6.1.1.1 Natural gas fired fired subcritical steam generators 

In natural gas fired fired subcritical steam generators, natural gas is burnt in a furnace 

section. Heat from the combustion and the exhaust gas is used to produce subcritical 

steam from feed water. Steam is expanded in backpressure (1.7 bar) steam turbine for 

electricity production. Heat from backpressure steam or extracted steam is used via 

condensation for district heating. The alternative design is that heat is taken from steam 

turbine extraction at proper pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of gas is estimated as constant. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

subcritical steam generator (combustion eff. approx. 95%; 3% O2 flue gas; steam 120 

bar, 500 °C) with backpressure steam turbine (performance values reclined on Siemens 

SST-400 class). 

                                           
4 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 
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Table 18: Overview of natural gas fired subcritical steam generators  

 

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   1, 2, 4 

Heat generation capacity MWth 20 - 250              

Electrical power generation  MWel 10 - 100              

Net electrical efficiency % 26 26 27 27 28   25 28 29 31    

degree of fuel utilization accountable to el. Power % 28 28 29 29 30   27 29 28 31  A  

degree of fuel utilization accountable to district 
heating 

% 72 72 71 71 70   71 73 69 71 
 

B  

Total degree of utilization, nominal load  % 95 95 95 95 95   90 96 92 97    

Total degree of utilization, annual average % 87 87 87 87 87   
  

     C, D  

Electricity consumption % 0.9 0.9 0.85 0.85 0.8   0.8 1.2 0.7 1  E  

Technical lifetime years 25 25 30 >30 >30   25 30 25 35    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    o o o o o   o + o +  G  

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   5, 6, 7 

CO2 g/MJth 110 110 110 110 110   100 120 100 120    

SO2 g/GJth < < < < <              

NOX g/GJth 65 65 60 60 50   60 70 45 55    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data  J 1, 3, 8, 9 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.72 1.72 1.63 1.63 1.45   1.45 2.17 1.45 2.17  K, L  

 - of which equipment M€/MWel,max 1.18 1.18 1.09 1.09 1.00   1.00 1.45 1.00 1.45    

 - of which installation M€/MWel,max 0.54 0.54 0.54 0.54 0.45   0.45 0.72 0.45 0.72    

Fixed O&M k€/MWel,max/a 9 9 9 9 7   5 14 5 14    

Variable O&M excl. electricity costs €/MWhel,max 0.5 0.5 0.5 0.5 0.5   0.3 1 0.3 1    

X. Technology specific data     

Cost function (estimation) M€/MWel Invest(x)=4.59x-0.20  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
 
Notes: 
A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.24; Cv=0.43; slightly higher efficiencies estimated, since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.32; Cv=0.59 
H Design case! District heating water temperature 105°C; Cb=0.39; Cv=0.71 
I District heating water temperature 70 °C; Cb=0.47; Cv=0.85 
J Reference location is Austria 

K 
Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 5% 

L Data correction for different district heating temperatures estimated within error margin 

M x… Electrical power generation [10 MWel … 100 MWel] 
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6.1.1.2 Oil fired fired subcritical steam generators 

In oil fired fired subcritical steam generators, oil is burnt in a furnace section. Heat from 

the combustion and the exhaust gas is used to produce subcritical steam from feed 

water. Steam is expanded in backpressure (1.7 bar) steam turbine for electricity 

production. Heat from backpressure steam is used via condensation for district heating. 

The alternative design is that heat is taken from steam turbine extraction at proper 

pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of oil is estimated as constant. 

Assumptions for the data in the table below: Oil (LHV appr. 42 MJ/kg) fired subcritical 

steam generator(combustion eff. approx. 89%; 5% O2 flue gas; steam 120 bar, 500 °C) 

with backpressure steam turbine (performance values reclined on Siemens SST-400 

class). 
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Table 19: Overview of oil fired subcritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   
1, 2 , 

4 

Heat generation capacity MWth 20 - 250              

Electrical power generation  MWel 10 - 100              

Net electrical efficiency % 24 24 24.5 25 25   23 26 24 27    

degree of fuel utilization accountable to el. Power % 28 28 29 29 30   27 29 28 31  A  

degree of fuel utilization accountable to district 
heating 

% 72 72 71 71 70   71 73 69 72  B  

Total degree of utilization, nominal load  % 89 89 89 89 89   85 91 86 92    

Total degree of utilization, annual average % 81 81 81 81 81   
  

     C, D  

Electricity consumption % 0.9 0.9 0.85 0.85 0.8   0.8 1.2 0.7 1  E  

Technical lifetime years 25 25 25-30 >30 >30   25 30 25 35    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   
5, 6, 
7 

CO2 g/MJth 115 115 115 115 115   100 125 100 125    

SO2 g/GJth 105 105 100 90 90   100 120 80 100    

NOX g/GJth 50 50 45 45 40   40 60 30 50    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 5 5 5 5 5   3 6 3 5    

C. Financial data  J 
1, 3, 
8, 9 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.99 1.99 1.90 1.90 1.81   1.63 2.35 1.45 2.17  K, L  

 - of which equipment M€/MWel,max 1.36 1.36 1.27 1.27 1.18   1.09 1.54 1.00 1.45    

 - of which installation M€/MWel,max 0.63 0.63 0.63 0.63 0.63   0.54 0.81 0.45 0.72    

Fixed O&M k€/MWel,max/a 9 9 8 8 7   5 14 5 14    

Variable O&M excl. electricity costs €/MWhel,max 0.6 0.6 0.6 0.6 0.6   0.4 1.1 0.4 1.1    

X. Technology specific data    

Cost function (estimation) M€/MWel Invest(x)=5.31x-0.20  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 

 

Notes: 
A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.24; Cv=0.43; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.32; Cv=0.59 
H Design case. District heating water temperature 105 °C; Cb=0.39; Cv=0.71 
I District heating water temperature 70 °C; Cb=0.47; Cv=0.85 
J Reference location is Central Europe 

K 
Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 5% 

L Data Correction for different district heating temperatures estimated within error margin 
M x… Electrical power generation [10 MWel … 100 MWel] 
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6.1.1.3 Biomass fired fired subcritical steam generators 

In biomass fired fired subcritical steam generators, biomass is burnt in a furnace section. 

Heat from the combustion and the exhaust gas is used to produce subcritical steam from 

feed water. Steam is expanded in backpressure (1.7 bar) steam turbine for electricity 

production. Heat from backpressure steam is used via condensation for district heating. 

The alternative design is that heat is taken from steam turbine extraction at proper 

pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of biomass is estimated as slightly increasing in future. 

Assumptions for the data in the table below: Biomass (LHV appr. 14 MJ/kg) fired 

subcritical steam generator (combustion eff. approx. 92%; 6% O2 flue gas; steam 120 

bar, 520 °C) with backpressure steam turbine (performance values reclined on a CHPP in 

Austria).
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Table 20: Overview of biomass fired subcritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2 , 4, 10, 

11 

Heat generation capacity MWth 20 - 100              

Electrical power generation  MWel 10 - 50              

Net electrical efficiency % 25 25 26 26 27   22 27 24 28    

degree of fuel utilization accountable to el. 
Power 

% 28.5 29 29 29.5 30   27 30 28 31 
 

A  

degree of fuel utilization accountable to 
district heating 

% 71.5 71 71 70.5 70   70 73 69 72 
 

B  

Total degree of utilization, nominal load  % 92 92 92.5 92.5 93   90 94 91 95    

Total degree of utilization, annual average % 84 84 84.5 84.5 85   
  

     C, D  

Electricity consumption % 1.9 1.9 1.8 1.8 1.7   1.6 2.3 1.4 2.1  E  

Technical lifetime years 20-25 20-25 25 >25 >25   20 25 20 30    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   5, 6, 7, 11 

CO2 g/MJth 155 155 150 150 145   140 170 130 160    

SO2 g/GJth 6 6 5 5 4   4 10 4 10    

NOX g/GJth 125 120 115 115 110   100 140 90 130    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 5 5 5 5 5   3 12 3 12    

C. Financial data 
 

J 
1, 3, 8, 9, 
10, 12 

Quality of estimation   medium    

Nominal investment M€/MWel,max 3.6 3.6 3.4 3.2 3.0   2.7 4.5 2.3 4.1  K, L  

 - of which equipment M€/MWel,max 2.7 2.7 2.5 2.3 2.1   2.0 3.0 1.6 2.7    

 - of which installation M€/MWel,max 0.9 0.9 0.9 0.9 0.9   0.7 1.4 0.7 1.4    

Fixed O&M k€/MWel,max/a 45 45 36 36 27   27 72 18 54  M  

Variable O&M excl. electricity costs €/MWhel,max 0.6 0.6 0.6 0.6 0.6   0.4 1.1 0.4 1.1    

X. Technology specific data    

Cost function (estimation) M€/MWel Invest(x)=10.0x-0.25  N  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Wien Energie: Biomasse Kraftwerk Simmering 
11 Rechnungshofbericht Wien Energie Bundesforste Biomasse Kraftwerk 
12 Wirtschaftlich effiziente Biomasse-Heizkraftwerke, Rolf Michler 

 

Notes: 
A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 

C based on planned availability of 8 000h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0,24; Cv=0,43; slightly higher efficiencies estimated, since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0,33; Cv=0,59 
H Design case! District heating water temperature 105°C; Cb=0,40; Cv=0,71 
I District heating water temperature 70 °C; Cb=0,48; Cv=0,85 
J Reference location is Austria 

K 
Data is related to a condensing steam turbine with extraction at 1,7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 5% 

L Data Correction for different district heating temperatures estimated within error margin 
M Fuel handling / operation is estimated to be less cost intensive in future 
N x… Electrical power generation [10 MWel … 100 MWel] 
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6.1.1.4 Coal (plus biomass and/or waste) fired subcritical steam generators 

Pulverized coal fired combustion sections (with direct/indirect co-firing of biomass/waste) 

produce subcritical steam from feed water. Steam is expanded in backpressure steam 

turbine for electricity production. Heat from backpressure steam is used via condensation 

for district heating. The alternative design is that heat is taken from steam turbine 

extraction at proper pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of coal and biomass/waste additive is estimated as slightly 

increasing in future. 

Assumptions for the data in the table below: Coal (plus optional biomass and/or waste, 

LHV appr. 30 MJ/kg) fired steam generator (combustion eff. approx. 93 %; 6% O2 flue 

gas, steam 195 bar, 545 °C) with backpressure steam turbine (performance values 

reclined on an existing CHPP in Germany). 
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Table 21: Overview of coal fired subcritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   
1, 2 , 4, 
10, 11 

Heat generation capacity MWth 250 – 1 500              

Electrical power generation  MWel 100 – 1 000              

Net electrical efficiency % 28 28 29 29 30   25 30 27 32    

degree of fuel utilization accountable to el. Power % 32 32 33 33 34   30 34 32 36  A  

degree of fuel utilization accountable to district 
heating 

% 68 68 67 67 66   66 70 64 68  B  

Total degree of utilization, nominal load  % 93 93 93.5 93.5 94   90 95 91 96    

Total degree of utilization, annual average % 85 85 85.5 85.5 86   
  

     C, D  

Electricity consumption % 2.9 2.9 2.8 2.8 2.7   2.5 3.5 2.3 3.3  E  

Technical lifetime years 35 35 35 35 35   30 40 30 40    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   
5, 6, 7, 
11 

CO2 g/MJth 145 145 140 140 130   130 160 120 150    

SO2 g/GJth 85 85 80 80 75   50 100 30 100    

NOX g/GJth 70 70 65 65 60   50 85 40 70    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 4 4 4 4 4   3 6 2 5    

C. Financial data  J, K 
1, 3, 8, 
9, 10 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.1 1.1 1.0 1.0 0.9   0.9 1.6 0.8 1.6  L, M  

 - of which equipment M€/MWel,max 0.7 0.7 0.6 0.6 0.6   0.6 0.9 0.5 0.9    

 - of which installation M€/MWel,max 0.4 0.4 0.4 0.4 0.3   0.3 0.6 0.2 0.6    

Fixed O&M k€/MWel,max/a 54 54 54 54 54   39 78 39 78    

Variable O&M excl. electricity costs €/MWhel,max 0.8 0.8 0.8 0.8 0.8   0.4 1.1 0.4 1.1    

X. Technology specific data    

Cost function M€/MWel Invest(x)=2.17x-0.10  N  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 EnBW Energie Baden-Württemberg AG: Kohlekraftwerk Heilbronn, Block 7 
11 Kohlekraftwerk Voitsberg; Lecture TU Graz 1997 
 
Notes: 
A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel.aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.31; Cv=0.48; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.40; Cv=0.62 
H Design case! District heating water temperature 105°C; Cb=0.47; Cv=0.74 
I District heating water temperature 70 °C; Cb=0.56; Cv=0.86 
J Reference location is Germany 

K 
Optional additive fuel to coal (biomass or solid waste) is investigated together with pure coal fired steam generation. since performance modifications 
are marginal. Nominal investment for steam generation units that are capable to fire biomass or solid waste additives to coal are slightly higher than 

for pure coal fired units, but this difference is covered by the assumed error margin. 
L Data is related to a condensing steam turbine with extraction at 1.7bar running in “only electric power mode” (maximum electric power); for financial 

data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 3% 

M Data Correction for different district heating temperatures estimated within error margin 
N x… Electrical power generation [100 MWel … 1000 MWel] 
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6.1.1.5 Solid waste fired subcritical steam generators 

A waste-to-energy plant, primarily consisting of a waste reception area, a feeding 

system, a grate fired furnace interconnected with a steam boiler, a back pressure steam 

turbine, a generator, an extensive flue gas cleaning system and systems for handling of 

combustion and flue gas treatment residues produces electricity and heat for district 

heating simultaneously. The alternative design is that heat is taken from steam turbine 

extraction at proper pressure level. 

Future prospects for parameters are mainly based on a possible further improvement of 

industrial waste separation, development on steam turbines’ efficiencies and a reduction 

of auxiliary power. Combustion efficiency of solid waste is also estimated as slightly 

increasing in future. 

Assumptions for the data in the table below: Solid waste (LHV approx. 13 MJ/kg) fired 

subcritical steam generator (combustion eff. approx. 89 %; 5% O2 flue gas; steam 

44 bar, 400 °C) with backpressure steam turbine (performance values reclined on a 

running waste-to-energy plant in Austria). 

Figure 31: Visualisation of a waste-to-energy plant 

 

Source: http://newsletter.sivecochina.com/en/customer-
story/taiwanese_waste_to_energy_plant_optimizes_its_entire_operation_with_coswin/

http://www.google.at/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwizgMqAlsPWAhXMcRQKHSb-BrMQjRwIBw&url=http://newsletter.sivecochina.com/en/customer-story/taiwanese_waste_to_energy_plant_optimizes_its_entire_operation_with_coswin/&psig=AFQjCNGQdWi_IXbfoGkdHhGME5A-QOOKxg&ust=1506526233392105
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Table 22: Overview of waste fired subcritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 Note  Ref 

A. Energy/technical data   Lower Upper Lower Upper   
1, 2 , 4, 10, 

11, 13 

Heat generation capacity MWth 10 - 50              

Electrical power generation  MWel 5 - 25              

Net electrical efficiency % 17.5 17.5 18 18.5 19   15 19 17 21    

degree of fuel utilization accountable to el. 
Power 

% 23 23 23.5 23.5 24   22 24 23 25  A  

degree of fuel utilization accountable to 
district heating 

% 77 77 76.5 76.5 76   76 78 75 77  B  

Total degree of utilization, nominal load  % 89 89 89.5 89.5 90   85 91 86 92    

Total degree of utilization, annual average % 81 81 81.5 81.5 82   
  

     C, D  

Electricity consumption  % 3 3 2.5 2.5 2   2 4 1.5 4  E  

Technical lifetime years 20 25 25 25 30   20 25 25 35    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   
5, 6, 7, 10, 

11, 12 

CO2 g/MJth 150 150 145 145 140   120 170 110 160    

SO2 g/GJth 12 11 10 8 6   10 15 5 15    

NOX g/GJth 41 40 35 35 30   30 60 20 50    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 4 4 3 3 3   3 8 2 8    

C. Financial data  J 1, 3, 8, 9, 10 

Quality of estimation   medium    

Nominal investment M€/MWel,max 7.2 7.2 6.9 6.9 6.7   5.6 8.9 5.6 8.9  K, L  

 - of which equipment M€/MWel,max 5 5 4.7 4.7 4.5   3.8 6.0 3.8 6.0    

 - of which installation M€/MWel,max 2.2 2.2 2.2 2.2 2.2   1.8 2.9 1.8 2.9    

Fixed O&M k€/MWel,max/a 201 201 190 190 179   112 268 89 246    

Variable O&M excl. electricity costs €/MWhel,max 1 1 1 1 1   0.5 1.5 0.5 1.5    

X. Technology specific data    

Cost function (estimation) M€/MWel Invest(x)=20.0x-0.30  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Operator’s data (direct): Waste to Energy Plant Niklasdorf 

11 
Umweltbundesamt: Leitfaden zur Umweltverträglichkeitserklärung für Abfallverbrennungsanlagen, thermische Kraftwerke und Feuerungsanlagen; 
Report 0193; 2008 

12 Umweltbundesamt: Stand der Technik bei Abfallverbrennungsanlagen 
13 World Bank Technical Guidance Report – Municipal Solid Waste Incineration 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel.aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.12; Cv=0.27; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.22; Cv=0.48 
H Design case! District heating water temperature 105°C; Cb=0.29; Cv=0.64 
I District heating water temperature 70 °C; Cb=0.36; Cv=0.81 

J Reference location is Austria 

K 
Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 7% 

L Data Correction for different district heating temperatures estimated within error margin 
M x… Electrical power generation [5 MWel … 25 MWel] 
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6.1.2 Supercritical steam generators (approx. > 100 MW thermal 
output) 

 

Figure 32: CAPEX Breakdown of Supercritical Steam Generator5 

  

For steam turbines driven by supercritical steam the same approach for the 

thermodynamic calculation is used as for subcritical steam generators as indicated in 

chapter above. 

6.1.2.1 Natural gas fired supercritical steam generators 

In natural gas fired supercritical steam generators, natural gas is burnt in a furnace 

section. Heat from the combustion and the exhaust gas is used to produce supercritical 

steam from feed water. Steam is expanded in backpressure steam turbine for electricity 

production. Heat from backpressure steam is used via condensation for district heating. 

The alternative design is that heat is taken from steam turbine extraction at proper 

pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of gas is estimated as constant. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

supercritical steam generator (combustion eff. approx. 95%; 3% O2 flue gas; steam 

285 bar, 600 °C) with backpressure steam turbine (performance values reclined on 

Siemens SST-6000). 

                                           
5 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 

1% 

30% 

26% 
8% 

7% 

7% 

12% 

5% 
5% 

Main equipment

Balance of plant

Electrical and I&C supply and installation

Civil and structural

Project indirect

Development

Interconnection

Insurance & Other
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Table 23: Overview of natural gas fired supercritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty  

(2020) 
Uncertainty  

(2050) 
 Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   1, 2 , 4 

Heat generation capacity MWth 300 - 1 000              

Electrical power generation  MWel 300 - 1 500              

Net electrical efficiency % 31 31 32 32 32   29 33 30 35    

degree of fuel utilization accountable to el. Power % 34 34 35 35 36   33 35 35 37  A  

degree of fuel utilization accountable to district 
heating 

% 66 66 65 65 64   65 67 63 65  B  

Total degree of utilization, nominal load  % 95 95 95 95 95   92 96 93 97    

Total degree of utilization, annual average  % 87 87 87 87 87   
  

     C, D  

Electricity consumption % 2,2 2,2 2 2 1,9   2 3 1,5 2,5  E  

Technical lifetime years 25 25 25-30 >30 >30   25 30 25 35    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   5, 6, 7 

CO2 g/MJth 110 110 110 110 110   100 120 100 120    

SO2 g/GJth < < < < <              

NOX g/GJth 65 65 60 60 50   60 70 45 55    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data  J 1, 3, 8, 9 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.01 1.01 0.94 0.94 0.94   0.87 1.45 0.72 1.45  K, L  

 - of which equipment M€/MWel,max 0.72 0.72 0.65 0.65 0.65   0.58 1.02 0.50 1.02    

 - of which installation M€/MWel,max 0.29 0.29 0.29 0.29 0.29   0.29 0.43 0.22 0.43    

Fixed O&M k€/MWel,max/a 6 6 6 6 5   4 10 4 10    

Variable O&M excl. electricity costs €/MWhel,max 0.5 0.5 0.5 0.5 0.5   0.3 1 0.3 1    

X. Technology specific data    

Cost function (estimation) M€/MWel Invest(x)=2.91x-0.15  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-6000 series 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
 
Notes: 
A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.36; Cv=0.52; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.45; Cv=0.65 
H Design case! District heating water temperature 105 °C; Cb=0.52; Cv=0.76 
I District heating water temperature 70 °C; Cb=0.61; Cv=0.87 
J Reference location is Germany 

K 
Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 3% 

L Data Correction for different district heating temperatures estimated within error margin 

M x… Electrical power generation [300 MWel … 1500 MWel] 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

89 

6.1.2.2 Oil fired supercritical steam generators 

In oil fired supercritical steam generators, oil is burnt in a furnace section. Heat from the 

combustion and the exhaust gas is used to produce supercritical steam from feed water. 

Steam is expanded in backpressure steam turbine for electricity production. Heat from 

backpressure steam is used via condensation for district heating. The alternative design 

is that heat is taken from steam turbine extraction at proper pressure level. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of oil is estimated as constant. 

Assumptions for the data in the table below: Oil (LHV appr. 42 MJ/kg) fired supercritical 

steam generator (combustion eff. approx. 89%; 5% O2  flue gas; steam 285 bar, 600 °C) 

with backpressure steam turbine (performance values reclined on Siemens SST-6000 

class). 
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Table 24: Overview of oil fired supercritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   1, 2 , 4 

Heat generation capacity MWth 300 - 1 000              

Electrical power generation  MWel 300 - 1 500              

Net electrical efficiency % 29 29 30 30 31   28 31 30 33    

degree of fuel utilization accountable to el. Power % 34 34 35 35 35   33 36 34 36  A  

degree of fuel utilization accountable to district 
heating 

% 66 66 65 65 65   64 67 64 66  B  

Total degree of utilization, nominal load  % 89 89 89 89 89   88 92 88 92    

Total degree of utilization, annual average % 81 81 81 81 81   
  

     C, D  

Electricity consumption % 2.4 2.3 2.2 2.2 2.1   2 3 2 3  E  

Technical lifetime years 25 25 25 25 25   25 >25 25 >25    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (o) (o) (o) (o) (o)   (o) + (o) +  G  

Warm water    o o o o o   o o o o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   5, 6, 7 

CO2 g/MJth 125 125 125 125 125   100 150 100 150    

SO2 g/GJth 70 70 60 60 60   60 90 50 80    

NOX g/GJth 20 20 15 15 15   15 25 10 20    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 3 3 3 3 3   2 5 2 4    

C. Financial data  J 
1, 3, 8, 

9 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.16 1.16 1.01 1.01 1.01   1.01 1.59 0.72 1.45  K, L  

 - of which equipment M€/MWel,max 0.80 0.80 0.72 0.72 0.72   0.65 1.08 0.50 1.02    

 - of which installation M€/MWel,max 0.36 0.36 0.29 0.29 0.29   0.36 0.51 0.22 0.43    

Fixed O&M k€/MWel,max/a 6 6 5 5 5   4 12 4 10    

Variable O&M excl. electricity costs €/MWhel,max 0.6 0.6 0.6 0.6 0.6   0.4 1.1 0.4 1.1    

X. Technology specific data    

Cost function M€/MWel Invest(x)=3.06x-0.15  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-6000 series 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
 

Notes:  

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel.aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.36; Cv=0.52; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.45; Cv=0.65 
H Design case! District heating water temperature 105 °C; Cb=0.52; Cv=0.76 
I District heating water temperature 70 °C; Cb=0.61; Cv=0.87 
J Reference location is Germany 

K 

Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for 
financial data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment 
(equipment & installation) by appr. 3% 

L Data Correction for different district heating temperatures estimated within error margin 
M x… Electrical power generation [300 MWel … 1500 MWel] 
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6.1.2.3 Coal fired supercritical steam generators 

Pulverized coal fired combustion sections produce supercritical steam from feed water. 

Steam is expanded in backpressure steam turbine for electricity production. Heat from 

backpressure steam is used via condensation for district heating. 

Future prospects for parameters are mainly based on a possible further (small) 

development on steam turbines’ efficiencies and a reduction of auxiliary power. 

Combustion efficiency of coal is estimated as slightly increasing in future. 

Assumptions for the data in the table below: Coal (LHV appr. 31 MJ/kg) fired supercritical 

steam generator (combustion eff. approx. 93.5%; 6% O2 flue gas; steam 285 bar, 

600 °C) with backpressure steam turbine (performance values reclined on an existing 

CHPP in Germany). 
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Table 25: Overview of coal fired supercritical steam generators 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty (2050)  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   
1, 2, 4, 10, 

11, 12 

Heat generation capacity MWth 500 - 3 000              

Electrical power generation  MWel 300 - 1 500              

Net electrical efficiency % 28 28 29 29 30   25 30 27 32    

degree of fuel utilization accountable to el. 
Power 

% 33.2 33.5 34 34 35   32 34 33 37  A  

degree of fuel utilization accountable to 
district heating 

% 66.8 66.5 66 66 65   66 68 63 67  B  

Total degree of utilization, nominal load  % 91 91 91.5 91.5 92   88 93 88 95    

Total degree of utilization, annual average % 83 83 83.5 83.5 84   
  

     C, D  

Electricity consumption % 3.5 3.5 3 3 2.5   2.5 4.5 1.5 4  E  

Technical lifetime years >35 >35 >35 >35 >35   25 40 25 40    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    o o o o o   o o o o  G  

Warm water    (o) (o) (o) (o) (o)   - (o) - (o)  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data   
5, 6, 7, 11, 

12 

CO2 g/MJth 150 150 145 145 140   130 160 120 150    

SO2 g/GJth 88 85 80 80 75   50 100 30 100    

NOX g/GJth 70 70 65 65 60   50 85 40 70    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 4 4 4 3 3   3 6 2 5    

C. Financial data  J 
1, 3, 8, 9, 
10, 12 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.11 1.11 1.04 1.04 0.97   0.97 1.53 0.83 1.39  K, L  

 - of which equipment M€/MWel,max 0.76 0.76 0.69 0.69 0.69   0.55 0.98 0.55 0.90    

 - of which installation M€/MWel,max 0.35 0.35 0.35 0.35 0.28   0.42 0.55 0.28 0.49    

Fixed O&M k€/MWel,max/a 55 55 55 55 55   42 69 42 69    

Variable O&M excl. electricity costs €/MWhel,max 0.8 0.8 0.8 0.8 0.8   0.4 1.1 0.4 1.1    

X. Technology specific data    

Cost function M€/MWel Invest(x)=2.21x-0.1  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 EnBW Energie Baden-Württemberg AG: Kohlekraftwerk Heilbronn, Block 7 
11 Kohlekraftwerk Voitsberg; Lecture TU Graz 1997 
12 Bezirksregierung Münster: Kohlekraftwerk Datteln 4, Immissionsschutzrechtlicher Genehmigungsbescheid 2017 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel.aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.32; Cv=0.45; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.42; Cv=0.58 
H Design case! District heating water temperature 105°C; Cb=0.50; Cv=0.69 
I District heating water temperature 70 °C; Cb=0.59; Cv=0.80 
J Reference location is Germany 

K 

Data is related to a condensing steam turbine with extraction at 1.7bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 2% 

L Data Correction for different district heating temperatures estimated within error margin 
M x… Electrical power generation [300 MWel … 1500 MWel] 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

95 

6.1.3 Natural gas fired gas turbines with direct heat recovery 

For CHPPs using natural gas fired gas turbines in single cycle configuration (or open cycle 

configuration) the approach for the calculation of thermal power that can be used for 

district heating is (for better comparison) always a 105 °C level for the district heating 

temperature (“Warm water”) and 120 °C for the exhaust flue gas stack temperature. The 

corresponding electrical power when running the plant in this single cycle heat recovery 

mode is approximately constant to a “once through” mode without thermal heat recovery 

for district heating. 

The major components of such single cycle plants are an industrial (also called heavy 

duty) or an aero-derivative single-cycle gas turbine, a gearbox (when needed), and a 

generator plus for combined heat and power production a heat recovery boiler / heat 

exchanger (“Warm / Hot Water”) that transfers heat from the hot flue gas to the district 

heating water. 

Figure 33: CAPEX breakdown of natural gas fired single cycle gas GTs with direct heat recovery6 

 

 

6.1.3.1 Small sized gas turbines with direct heat recovery 

Future prospects for parameters are mainly based on a possible further (small) 

development on gas turbines’ electrical efficiencies and a reduction of auxiliary power. 

Financial trend is taken from extrapolation from former and current data. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

“small” (up to 30 MWel) single cycle gas turbine (SGT-300 class, appr. 15% O2 flue gas; 

exhaust gas stack temperature after heat recovery 120 °C). Performance values of table 

the below are based on and calculated with gas turbine performance data from “GT 

performance library” and estimated inlet district heating temperature of 60 °C. 

                                           
6 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 
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Table 26: Overview of small sized gas turbines with direct heat recovery 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   
1, 2, 4, 

10 

Heat generation capacity MWth 1 - 50              

Electrical power generation  MWel 0.5 - 30              

Net electrical efficiency % 31 31 32 33 33   29 33 31 36    

degree of fuel utilization accountable to el. Power % 36 36 37 37 38   34 38 36 40  A  

degree of fuel utilization accountable to district 
heating 

% 64 64 63 63 62   62 66 60 64  B  

Total degree of utilization, nominal load  % 85 85 85 85 85   83 88 83 90    

Total degree of utilization, annual average % 77 77 77 77 77   
  

     C, D  

Electricity consumption % 0.8 0.8 0.7 0.7 0.7   0.7 0.9 0.6 0.8  E  

Technical lifetime years 30 30 35 35 35   25 35 30 40    

                           

Steam supply   o o o o o   o + o +  

F 

 

Hot water    o o o o o   o o o o   

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)   

Low temperature   o o o o o   - o - o   

                           

B. Environmental data   
5, 6, 7, 
10 

CO2 g/MJth 100 100 100 100 100   90 110 90 110    

SO2 g/GJth < < < < <              

NOX g/GJth 85 85 80 75 70   60 100 50 80    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data  G 
1, 3, 8, 
9, 10,11 

Quality of estimation   medium    

Nominal investment M€/MWel,ISO 0.99 0.99 0.90 0.90 0.81   0.90 1.08 0.72 0.99  H, I  

 - of which equipment M€/MWel,ISO 0.63 0.63 0.54 0.54 0.45   0.54 0.72 0.45 0.63    

 - of which installation M€/MWel,ISO 0.36 0.36 0.36 0.36 0.36   0.36 0.36 0.27 0.36    

Fixed O&M k€/MWel,ISO/a 10 10 9 9 8   7 14 5 11    

Variable O&M excl. electricity costs €/MWhel,ISO 8 8 8 8 8   5 12 5 12  J  

X. Technology specific data    

Cost function M€/MWel Invest(x)=3.05x-0.35  K  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for gas turbine SGT-300 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015 
11 Budget Offer Comp. Wulff & UMAG for Heat Exchanger 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
Cb factor approximately independent from district heating temperature. Cb mainly connected to gas turbine model (gas turbine efficiency). The 
higher gas turbine efficiency, the higher Cb factor. In this case for small GTs: Cb=0.55; Cv=1 

G Reference location is Germany 
H Financial data is given per electric power, GT running at ISO conditions 
I Data Correction for different district heating temperatures is insignificant 
J Split between fixed and variable O&M cost is depending on the maintenance contract with the GT manufacturer. Costs here are allocated to variable 

O&M 
K x… Electrical power generation [0.5 MWel … 30 MWel] 
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6.1.3.2 Medium sized gas turbines with direct heat recovery 

Future prospects for parameters are mainly based on a possible further (small) 

development on gas turbines’ electrical efficiencies and a reduction of auxiliary power. 

Financial trend is taken from extrapolation from former and current data. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

“medium” (30 to 250 MWel) single cycle gas turbine (SGT5-2000 class, appr. 15% O2 flue 

gas; exhaust gas stack temperature after heat recovery 120 °C). Performance values of 

table below are based on and calculated with gas turbine performance data from GT 

performance library and estimated inlet district heating temperature of 60 °C. 
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Table 27: Overview of medium sized gas turbines with direct heat recovery 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 4, 

10 

Heat generation capacity MWth 50 - 300              

Electrical power generation  MWel 30 - 250              

Net electrical efficiency % 34 35 35 36 36   32 36 38 40    

degree of fuel utilization accountable to el. 
Power 

% 40 41 41 42 42   38 42 40 44 
 

A  

degree of fuel utilization accountable to 
district heating 

% 60 59 59 58 58   58 62 56 60 
 

B  

Total degree of utilization, nominal load  % 85 85 85 85 85   83 88 83 90    

Total degree of utilization, annual average % 77 77 77 77 77   
  

     C, D  

Electricity consumption % 1 1 0.9 0.9 0.9   0.9 1.1 0.8 1  E  

Technical lifetime years 30 30 35 35 35   25 35 30 40    

                           

Steam supply   o o o o o   o + o +  

F 

 

Hot water    o o o o o   o o o o   

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)   

Low temperature   o o o o o   - o - o   

B. Environmental data 
 

 
5, 6, 7, 

10 

CO2 g/MJth 110 110 110 110 110   100 120 100 120    

SO2 g/GJth < < < < <              

NOX g/GJth 60 60 55 50 45   50 80 30 70    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

G 
1, 3, 8, 9, 
10, 11 

Quality of estimation   medium    

Nominal investment M€/MWel,ISO 0.45 0.45 0.37 0.37 0.37   0.37 0.52 0.30 0.45  H, I  

 - of which equipment M€/MWel,ISO 0.30 0.30 0.22 0.22 0.22   0.25 0.34 0.20 0.30    

 - of which installation M€/MWel,ISO 0.15 0.15 0.15 0.15 0.15   0.12 0.18 0.10 0.15    

Fixed O&M k€/MWel,ISO/a 8 7 7 7 6   6 9 4 7    

Variable O&M excl. electricity costs €/MWhel,ISO 7 7 7 7 7   5 8 5 8  J  

X. Technology specific data    

Cost function M€/MWel Invest(x)=1.64x-0.25  K  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for gas turbine SGT5-2000E 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015 
11 Budget Offer Comp. Wulff & UMAG for Heat Exchanger 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
Cb factor approximately independent from district heating temperature. Cb mainly connected to gas turbine model (gas turbine efficiency). The higher 
gas turbine efficiency, the higher Cb factor. In this case for medium GTs: Cb=0.67; Cv=1 

G Reference location is Germany 
H Financial data is given per electric power, GT running at ISO conditions 
I Data Correction for different district heating temperatures is insignificant 
J Split between fixed and variable O&M cost is depending on the maintenance contract with the GT manufacturer. Costs here are allocated to variable 

O&M 
K x… Electrical power generation [30 MWel … 250 MWel] 
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6.1.3.3 Large sized gas turbines with direct heat recovery 

These “large scale” gas turbines are basically designed and optimized for a combined 

cycle configuration with a heat recovery steam generator (HRSG) and a steam turbine. 

Direct heat recovery configuration for district heating is rather unusual for these “large 

scale” gas turbines and presumes a couple of design changes of the gas turbine. 

Future prospects for parameters are mainly based on a possible further (small) 

development on gas turbines’ electrical efficiencies and a reduction of auxiliary power. 

Financial trend is taken from extrapolation from former and current data. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

“large” (> 250 MWel) single cycle gas turbine (SGT6-8000 class, appr. 15% O2 flue gas; 

exhaust gas stack temperature after heat recovery 120 °C). Performance values of table 

below are based on and calculated with gas turbine performance data from GT 

performance library and estimated inlet district heating temperature of 60 °C. 
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Table 29: Overview of large sized gas turbines with direct heat recovery 

  

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 4, 

10 

Heat generation capacity MWth > 300              

Electrical power generation  MWel > 250              

Net electrical efficiency % 40 40 41 41 42   38 42 40 44    

degree of fuel utilization accountable to el. Power % 45 46 46 47 47   44 46 46 48  A  

degree of fuel utilization accountable to district 
heating 

% 55 55 55 55 55   54 56 52 54 
 

B  

Total degree of utilization, nominal load  % 89 89 89 89 89   85 90 85 90    

Total degree of utilization, annual average % 81 81 81 81 81   
  

     C, D  

Electricity consumption % 1.2 1.2 1.1 1.1 1.1   1 1.3 0.9 1.2  E  

Technical lifetime years 30 30 35 35 35   25 35 30 40    

                           

Steam supply   o o o o o   o + o +  

F 

 

Hot water    o o o o o   o o o o   

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)   

Low temperature   o o o o o   - o - o   

B. Environmental data 
 

 
5, 6, 7, 
10 

CO2 g/MJth 115 115 115 115 115   100 130 100 130    

SO2 g/GJth < < < < <              

NOX g/GJth 35 35 30 30 25   30 50 20 50    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

G 
1, 3, 8, 
9, 10, 11 

Quality of estimation   medium    

Nominal investment M€/MWel,ISO 0.39 0.38 0.37 0.37 0.36   0.37 0.43 0.31 0.43  H, I  

 - of which equipment M€/MWel,ISO 0.27 0.26 0.25 0.25 0.24   0.25 0.28 0.20 0.28    

 - of which installation M€/MWel,ISO 0.12 0.12 0.12 0.12 0.12   0.12 0.15 0.11 0.15    

Fixed O&M k€/MWel,ISO/a 5 5 4 4 4   4 7 3 6    

Variable O&M excl. electricity costs €/MWhel,ISO 5 5 5 5 5   3 6 3 6  J  

 X. Technology specific data    

Cost function (estimation) M€/MWel Invest(x)=0.94x-0.15  K  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for gas turbine SGT6-800H 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015 
11 Budget Offer Comp. Wulff & UMAG for Heat Exchanger 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
Cb factor approximately independent from district heating temperature. Cb mainly connected to gas turbine model (gas turbine efficiency). The higher 
gas turbine efficiency, the higher Cb factor. In this case for large GTs: Cb=0.81; Cv=1 

G Reference location is Germany 
H Financial data is given per electric power, GT running at ISO conditions 
I Data Correction for different district heating temperatures is insignificant 
J Split between fixed and variable O&M cost is depending on the maintenance contract with the GT manufacturer. Costs here are allocated to variable 

O&M 
K x… Electrical power generation [> 250 MWel] 
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6.1.4 Natural gas fired gas turbines in combined cycle configuration 

For CHPPs using natural gas fired gas turbines in combined cycle configuration the 

approach for the calculation of thermal power that can be used for district heating is (for 

better comparison) always a 105 °C level for the district heating temperature (“Warm 

water”) and a reasonable value for the exhaust flue gas stack temperature depending on 

the heat recovery steam generator (HRSG) configuration. Heat for the district heating 

system is recovered from the exhaust steam of a 1.7 bar backpressure steam turbine. 

The corresponding electrical power when running the plant in this combined cycle steam 

turbine backpressure heat recovery mode is the sum of the electrical powers of the gas 

turbine generator and the steam turbine generator. 

The major components of combined cycle CHPPs are an industrial (also called heavy 

duty) or an aero-derivative gas turbine, a gearbox (when needed), and a generator plus 

for an HRSG with backpressure steam turbine and generator. A heat recovery boiler / 

heat exchanger (“Warm Water”) transfers heat from the exhaust backpressure steam 

(1.7 bar) of the steam turbine to the district heating water. 

Future prospects for parameters are mainly based on a possible further (small) 

development on gas and steam turbines’ electrical efficiencies and a reduction of 

auxiliary power. Financial trend is taken from extrapolation from former and current 

data. 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

combined cycle CHPP (SGT5-2000 GT class, appr. 15% O2 flue gas; two-pressure HRSG 

with supplementary firing of natural gas; backpressure steam turbine with heat recovery 

heat exchanger / condenser for heat transfer to district heating system). Performance 

values of table below are based on and calculated with gas turbine performance data 

from “GT performance library” and appropriate modelled HRSG/ST- system. Estimated 

inlet district heating temperature is 60 °C. 

Figure 34: CAPEX breakdown of natural gas fired gas turbines in combined cycle configuration7 

 

                                           
7 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 
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Table 28: Overview of natural gas fired gas turbines in combined cycle configuration 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 4, 

10 

Heat generation capacity MWth 50 - 500              

Electrical power generation  MWel 50 - 500              

Net electrical efficiency % 42 43 44 45 45   40 50 42 54    

degree of fuel utilization accountable to el. Power  % 54 54 55 56 56   52 56 54 58  A  

degree of fuel utilization accountable to district 
heating  

% 46 46 45 44 44   44 48 42 46 
 

B  

Total degree of utilization, nominal load  % 80 80 80 80 80   75 85 75 85    

Total degree of utilization, annual average  % 73 73 73 73 73   
  

     C, D  

Electricity consumption  % 2.3 2.3 2.2 2.2 2.2   2 3 2 3  E  

Technical lifetime years 30 30 30 35 35   25 35 25 40    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    (-) (-) (-) (-) (-)   (-) + (-) +  G  

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data 
 

 
5, 6, 7, 
10 

CO2 g/MJth 150 150 140 140 140   120 170 120 170    

SO2 g/GJth < < < < <              

NOX g/GJth 75 75 70 70 65   60 90 50 80    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

J 
1, 3, 8, 
9, 10 

Quality of estimation   medium    

Nominal investment M€/MWel,max 1.2 1.2 1.1 1.1 1.0 
 

1.1 1.3 0.9 1.2  K, L  

 - of which equipment M€/MWel,max 0.8 0.8 0.7 0.7 0.7 
 

0.8 0.9 0.6 0.8    

 - of which installation M€/MWel,max 0.4 0.4 0.4 0.4 0.3 
 

0.3 0.4 0.3 0.4    

Fixed O&M k€/MWel,max/a 5 5 4 4 4   4 7 4 6    

Variable O&M excl. electricity costs €/MWhel,max 5 5 5 5 5   3 6 3 6  M  

X. Technology specific data    

Cost function M€/MWel Invest(x)=3.75x-0.2  O  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for gas turbine SGT5-2000E 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=1.06; Cv=0.79; slightly higher efficiencies estimated, since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=1,14; Cv=0,85 
H Design case! District heating water temperature 105°C; Cb=1.18; Cv=0.88 
I District heating water temperature 70 °C; Cb=1.27; Cv=0.94 
J Reference location is Central Europe 
K Data is related to a combined cycle power plant (CCPP) with condensing steam turbine with extraction at 1.7 bar running in “only electric power 

mode” (maximum electric power at STG); GT is running at ISO conditions; for financial data using a backpressure steam turbine at proper 
backpressure values for district heating reduce values for nominal investment (equipment & installation) by appr. 2% 

L Data Correction for different district heating temperatures estimated within error margin 
M Split between fixed and variable O&M cost is depending on the maintenance contract with the GT manufacturer. Costs here are allocated to variable 

O&M 
O x… Electrical power generation [50 MWel … 500 MWel] 
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6.1.5 Gas engines  

Gas engines are internal combustion engines (ICE) which run on gas fuels (such as coal-, 

producer-, bio-, landfill- or natural gas) and can both produce electrical and thermal 

power. The gas is combusted inside a reciprocating, spark plug ignited piston engine. The 

heat source for the heat recovery to the district heating is taken from 2two sources, 

namely the cooling water and oil cooler loop of the machine itself and heat from the 

engines flue gas. The cooling of the machine takes place at a lower temperature level, 

therefore usually two heat exchangers are used in series. The first heat exchanger is 

connected to the machine cooling loop and serves the low temperature coming in from 

the district heating. The second heat exchanger utilizes the flue gas to provide the final 

temperature. 

There are three ways to operate a gas engine: no heat extraction, heat extraction only 

from the cooling loop and heat extraction both from the cooling loop and the flue gas. In 

the first case an auxiliary cooling system is required to provide engine cooling. 

The approach for the following determination of thermal power, which can be used for 

district heating, is at a temperature level of 105 °C (“Warm / Hot water”) with a power 

range from 1 to 10 MWth. For the tables below it is assumed that the maximum possible 

amount of heat is extracted from the motors.  

Figure 35: CAPEX breakdown of gas engines with heat recovery8 

  

6.1.5.1 Natural gas fired gas engines 

Future prospects for parameters are mainly based on a possible optimization of the 

internal combustion. Current assumptions suggest that an improvement of max. 4 

percentage points is possible. Nevertheless an optimization of the combustion process 

leads in turn to a decreased level of thermal energy that can be extracted 

Assumptions for the data in the table below: Natural gas (LHV appr. 40 MJ/kg) fired 

stationary gas engine. The performance data derived from typical gas engines used 

currently used in the market and validated with in-house data of respective machines.  

                                           
8 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 
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Civil and structural

Project indirect

Development

Interconnection

Insurance & Other
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Table 29: Overview of natural gas fired engines with heat recovery 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 
4, 10, 
11, 14 

Heat generation capacity MWth 1 - 9.0              

Electrical power generation  MWel 0.8 - 11              

Net electrical efficiency %  44  44 44  44 44   35 50 37 50    

degree of fuel utilization accountable to el. Power % 49 49 51 53 53   43 55 47 49  A  

degree of fuel utilization accountable to district 
heating 

% 51 51 49 47 47   45 57 41 53 
 

B  

Total degree of utilization, nominal load  % 88 88 90 92 92   84 92 86 97    

Total degree of utilization, annual average % 82 82 84 86 86   
  

     C, D  

Electricity consumption % 0.2 0.2 0.2 0.2 0.2   0.1 0.3 0.1 0.3  E  

Technical lifetime years 30 30 35 35 35   25 35 30 37    

                           

Steam supply   N/A N/A N/A N/A N/A   N/A N/A N/A N/A    

Hot water    -- -- -- -- --   -- -- -- --  

F 

 

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)   

Low temperature   (+) (+) (+) (+) (+)   (+) (+) (+) (+)   

B. Environmental data 

 

 

5, 6, 

7, 12, 
13 

CO2 g/MJth 120 120 115 110 110   100 140 90 140    

SO2 g/GJth < < < < <              

NOX g/GJth 180 160 125 125 125   100 250 50 200    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

G 
1, 3, 
8, 9, 
13 

Quality of estimation   medium    

Nominal investment M€/MWel,ISO 0.7 0.7 0.5 0.5 0.5 
 

0.5 1.0 0.4 0.9  H, I  

 - of which equipment M€/MWel,ISO 0.6 0.6 0.4 0.4 0.4 
 

0.4 0.7 0.3 0.7    

 - of which installation M€/MWel,ISO 0.1 0.1 0.1 0.1 0.1 
 

0.1 0.2 0.1 0.2    

Fixed O&M k€/MWel,ISO/a 9 9 9 9 9 
 

7 12 7 12    

Variable O&M excl. electricity costs €/MWhel,ISO 7 7 7 7 7   6 13 6 13  J  

X. Technology specific data    

Cost function M€/MWel Invest(x)=1.11x-0.30  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for Gas Engines, GE Energy, Jenbacher 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Clarke Energy, Gas Engines 
11 Data sheet jenbacher Gas Engines Type 2 to Type 9 / J920 
12 Industrieverband (VDAMA): Abgasgesetzgebung Diesel- und Gasmotoren 
13 Klima- und Energiefonds: Blue Globe Report- Energieeffizienz: Gasmotor der Zukunft; 2008 
14 MWM: Aufbau von Energieanlagen mit Gasmotor-Antrieb 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 

B 
=Pth/(Pel+Pth) in “heat and power mode”, Heat output separated into engine cooling system (~ 50% output) and exhaust gas heat exchanger output 
(~ 50%) 

C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
Cb factor approximately independent from district heating temperature. Cb mainly connected to gas engine exhaust temperature. In this case: 
Cb=1.22; Cv=1.0 Efficiency mainly depends on incoming water temperatures. Gas engine cooling system can operate near to 70 °C, higher 
temperatures have been cooled down.  

G Reference location is Germany 
H Financial data is given per electric power, gas engine running at ISO conditions 
I Data Correction for different district heating temperatures is insignificant. Thermal output have to be changed 
J ASUE BHKW Kenndaten 2014/15, cost function y=8.63*MWel^(-0.317) adapted by a multiplier of 1.5 because of other related systems (Selective 

catalytic reduction (SCR), pumps, etc.), Reference value= 6 MW. 
M x… Electrical power generation [1 MWel … 11 MWel] 
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6.1.5.2 Biogas fired gas engines 

Future prospects for parameters are mainly based on a possible optimization of the 

internal combustion. Current assumptions suggest that an improvement of max. 4 

percentage points is possible. Nevertheless an optimization of the combustion process 

leads in turn to a decreased level of thermal energy that can be extracted 

Assumptions for the data in the table below: Biogas (LHV appr. 17.9 MJ/kg) fired 

stationary gas engine. It is assumed that in order to achieve low SOx emissions the 

biogas is desulphurized to 0.05 % sulphur in the fuel gas. The performance data derived 

from typical gas engines currently used in the market and validated with in-house data of 

respective machines. The gas engines used for firing biogas are the same as for natural 

gas, with the exception of the flue gas duct which is designed for higher exit 

temperatures and SOx content. 
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Table 30: Overview of biogas fired engines with heat recovery 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 4, 
10, 11, 

14 

Heat generation capacity MWth 0.4 - 9.0              

Electrical power generation  MWel 0.3 - 11              

Net electrical efficiency %     41       35 50 40 50    

degree of fuel utilization accountable to el. 
Power 

% 49 49 51 53 53   43 55 47 59 
 

A  

degree of fuel utilization accountable to district 
heating 

% 51 51 49 47 47   45 57 41 53 
 

B  

Total degree of utilization, nominal load  % 85 85 86 88 88   81 92 83 92    

Total degree of utilization, annual average % 79 79 80 82 82   
  

     C, D  

Electricity consumption % 0.2 0.2 0.2 0.2 0.2   0.1 0.3 0.1 0.3  E  

Technical lifetime years 25 25 30 30 30   20 30 25 35    

                           

Steam supply   N/A N/A N/A N/A N/A   N/A N/A N/A N/A    

Hot water    -- -- -- -- --   -- -- -- --  

F 

 

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)   

Low temperature   (+) (+) (+) (+) (+)   (+) (+) (+) (+)   

B. Environmental data 
 

 
5, 6, 7, 
12, 13 

CO2 g/MJth 210 210 200 190 190   180 240 100 210    

SO2 g/GJth 160 140 120 120 120   110 170 90 150    

NOX g/GJth 205 170 150 150 150   100 250 100 190    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

G 
5, 3, 8, 
9, 13 

Quality of estimation   medium    

Nominal investment M€/MWel,ISO 0.8 0.8 0.7 0.7 0.7 
 

0.6 1.2 0.5 1.1  H, I  

 - of which equipment M€/MWel,ISO 0.7 0.7 0.6 0.6 0.6 
 

0.5 1.0 0.4 0.9    

 - of which installation M€/MWel,ISO 0.1 0.1 0.1 0.1 0.1 
 

0.1 0.2 0.1 0.2    

Fixed O&M k€/MWel,ISO/a 9 9 9 9 9 
 

6 12 2 9    

Variable O&M excl. electricity costs €/MWhel,ISO 13.1 13.1 13.1 13.1 13.1 
 

11 29 11 29  J  

X. Technology specific data    

Cost function M€/MWel Invest(x)=1.27x-0.30  K  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for Gas Engines, GE Energy, Jenbacher 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Clarke Energy, Gas Engines 
11 Data sheet jenbacher Gas Engines Type 2 to Type 9 / J920 
12 Industrieverband (VDAMA): Abgasgesetzgebung Diesel- und Gasmotoren 
13 Klima- und Energiefonds: Blue Globe Report- Energieeffizienz: Gasmotor der Zukunft; 2008 
14 MWM: Aufbau von Energieanlagen mit Gasmotor-Antrieb 
 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
Cb factor approximately independent from district heating temperature. Cb mainly connected to gas engine exhaust temperature. In this case: 
Cb=1.22; Cv=1.0 

G Reference location is Germany 
H Financial data is given per electric power, gas engine running at ISO conditions 
I Data Correction for different district heating temperatures is insignificant 
J ASUE BHKW Kenndaten 2014/15, cost function y=19.4*MWel^(-0.411) adapted by a multiplier of 1.5 because of other related systems (SCR, pumps, 

etc.), indicated Reference value= 7 MW. 
K x… Electrical power generation [1 MWel … 11 MWel] 
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6.1.6 Integrated gasification plants 

The integrated gasification cycle (IGC) is a process with upstream fuel gasification. In 

this process, the primary fuel (such as coal, biomass or waste) is converted into 

energetic fuel gas (synthetic gas or “syngas”) under stoichiometry (λ approximately 

between 0.2 and 0.4) in a carburetor. This gas could be used in gas turbines / steam 

generators with optionally modified combustion section. Both electrical and thermal 

power could be generated with the available CHP applications. 

For CHPPs using backpressure steam turbines the approach for the calculation of thermal 

power, that can be used for district heating, is 105 °C for the district heating 

temperature (“Warm water”) with a minimum of 10 °C spread of the backpressure steam 

temperature of the steam turbine (115 °C saturated at 1.7 bar). The corresponding 

electrical power when running the plant in this backpressure mode is used for the 

calculation of further parameters of the tables below. Maximum electrical power (see also 

Cv factor) of such a CHPP using a condensing steam turbine with steam extraction can be 

produced in “condensing mode” (without any thermal heat production for district 

heating). 

Figure 36: CAPEX breakdown of integrated gasification CHP plants9 

  

6.1.6.1 Gasified biomass fired CHPPs 

Future prospects for parameters are mainly based on a possible further development of 

the biomass gasification process, on the reduction of auxiliary power and on possible 

small increase of steam turbines’ efficiencies. Combustion efficiency of syngas is 

estimated as constant in future. 

Assumptions for the data in the table below: Syngas from gasified solid biomass (LHV 

appr. 6.2 MJ/kg) fired subcritical steam generator (combustion eff. approx. 85%; 3% O2 

flue gas; steam 40 bar, 455 °C) with backpressure steam turbine (performance values 

are reclined on a biomass CHPP in Sweden). The alternative design is that heat is taken 

from steam turbine extraction at proper pressure level. 

                                           
9 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 

1% 
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Table 31: Overview of gasified biomass fired CHPPs 

 
            

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note  Ref 

A. Energy/technical data   Lower Upper Lower Upper 

 

 

1, 2 , 
4, 10, 
11, 13, 
14, 15 

Heat generation capacity MWth 5 - 30              

Electrical power generation  MWel 1 - 15              

Net electrical efficiency % 18 18 19 19 20   17 20 19 22    

degree of fuel utilization accountable to el. Power % 23 23 24 24 24   22 24 23 25  A  

degree of fuel utilization accountable to district heating % 77 77 76 76 76   76 78 75 77  B  

Total degree of utilization, nominal load  % 85 85 85 85 85   80 90 80 90    

Total degree of utilization, annual average % 78 78 78 78 78   
  

     C, D  

Electricity consumption % 2.3 2.2 2.1 2 2   2 3 1.5 2.5  E  

Technical lifetime years 20 25 25 25 30   20 25 25 30    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    o o o o o   o + o +  G  

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data 
 

 
5, 6, 7, 
11, 13 

CO2 g/MJth 170 170 170 170 170   140 200 140 200    

SO2 g/GJth < < < < <   < < < <    

NOX g/GJth 70 70 65 65 60   50 100 40 90    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

J 
1, 3, 8, 
9, 10, 
12 

Quality of estimation   medium    

Nominal investment M€/MWel,max 5.3 5.3 5.1 4.9 4.7   4.3 6.5 3.7 5.8  K, L  

 - of which equipment M€/MWel,max 3.4 3.4 3.2 3.0 3.0   3.0 4.3 2.6 3.9    

 - of which installation M€/MWel,max 1.9 1.9 1.9 1.9 1.7   1.3 2.2 1.1 1.9    

Fixed O&M k€/MWel,max/a 108 108 97 97 86   65 129 43 108  M  

Variable O&M excl. electricity costs €/MWhel,max 4 4 4 4 4   3 6 3 6    

X. Technology specific data    

Cost function M€/MWel Invest(x)=8.77x-0.25  N  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Wien Energie: Biomasse Kraftwerk Simmering 
11 Rechnungshofbericht Wien Energie Bundesforste Biomasse Kraftwerk 
12 Wirtschaftlich effiziente Biomasse-Heizkraftwerke, Rolf Michler 
13 Biomass IGCC at Varnamo, Sweden 
14 Arbeitsgemeinschaft Erneuerbare Energie Dachverband 
15 County Meath, Ireland; B&W Volund 
16 Biomasse Kraftwerk Güssing; Repotec 

 

Notes: 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel.aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.12; Cv=0.27; slightly higher efficiencies estimated. since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.23; Cv=0.49 
H Design case! District heating water temperature 105 °C; Cb=0.3; Cv=0.64 
I District heating water temperature 70 °C; Cb=0.38; Cv=0.81 
J Reference location is Sweden 

K 

Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for 
financial data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment 
(equipment & installation) by appr. 7% 

L Data Correction for different district heating temperatures estimated within error margin 
M Fuel handling / operation is estimated to be less cost intensive in future 
N x… Electrical power generation [1…15 MWel] 
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6.1.6.2 Gasified solid waste fired CHPPs 

Future prospects for parameters are mainly based on a possible further development of 

the solid waste gasification process, on the reduction of auxiliary power and on possible 

small increase of steam turbines’ efficiencies. Combustion efficiency of syngas is 

estimated as constant in future. 

Assumptions for the data in the table below: Syngas from gasified solid waste (LHV appr. 

6.9 MJ/kg) fired subcritical steam generator (combustion eff. approx. 85%; 3% O2 flue 

gas; steam 121 bar, 540 °C) with backpressure steam turbine (performance values are 

reclined on waste-to-energy CHPPs in Ireland and Finland). 
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Table 32: Overview of gasified solid waste fired CHPPs  

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2 , 4, 10, 11, 

13, 14, 15 

Heat generation capacity MWth 50 - 200              

Electrical power generation  MWel 25 - 100              

Net electrical efficiency % 23 23 23 24 24   21 25 22 26    

degree of fuel utilization accountable to el. 
Power 

% 29 29 29 30 30   28 30 29 31 
 

A  

degree of fuel utilization accountable to 
district heating 

% 71 71 71 70 70   70 72 69 711 
 

B  

Total degree of utilization, nominal load  % 85 85 85 85 85   83 87 83 87    

Total degree of utilization, annual average % 78 78 78 78 78   
  

     C, D  

Electricity consumption % 3.5 3.5 3.3 3.1 3.0   2 4 1 3  E  

Technical lifetime years 20 20 25 25 30   20 30 25 35    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    o o o o o   o + o +  G  

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data 
 

 
5, 6, 7, 10, 11, 

12, 14 

CO2 g/MJth 180 180 180 180 180   150 250 150 250    

SO2 g/GJth < < < < <              

NOX g/GJth 100 100 90 80 70   80 120 50 100    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data  J 1, 3, 8, 9, 10 

Quality of estimation   medium    

Nominal investment M€/MWel,max 6.0 6.0 5.7 5.3 5.2   4.3 6.8 3.4 6.8  K, L  

 - of which equipment M€/MWel,max 3.9 3.9 3.6 3.4 3.3   2.9 4.6 2.4 4.6    

 - of which installation M€/MWel,max 2.1 2.1 2.1 1.9 1.9   1.4 2.2 1.0 2.2    

Fixed O&M k€/MWel,max/a 163 163 154 154 154   86 206 86 206    

Variable O&M excl. electricity costs €/MWhel,max 3 3 3 3 3   1 5 1 5    

X. Technology specific data    

Cost function M€/MWel Invest(x)=14.23x-0.2  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for steam turbine SST-400 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Operator’s data (direct): Waste to Energy Plant Niklasdorf 

11 
Umweltbundesamt: Leitfaden zur Umweltverträglichkeitserklärung für Abfallverbrennungsanlagen, thermische Kraftwerke und Feuerungsanlagen; 
Report 0193; 2008 

12 Umweltbundesamt: Stand der Technik bei Abfallverbrennungsanlagen 
13 World Bank Technical Guidance Report – Municipal Solid Waste Incineration 
14 Saacke: Vergasung fester Abfälle; Power Plant Lahti 
15 County Meath, Ireland; B&W Volund 
 

Notes:  

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=0.25; Cv=0.44; slightly higher efficiencies estimated, since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=0.35; Cv=0.60 
H Design case! District heating water temperature 105 °C; Cb=0.42; Cv=0.72 
I District heating water temperature 70 °C; Cb=0.50; Cv=0.85 
J Reference location is Ireland / Finland 

K 
Data is related to a condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power); for financial 
data using a backpressure steam turbine at proper backpressure values for district heating reduce values for nominal investment (equipment & 
installation) by appr. 5% 

L Data Correction for different district heating temperatures estimated within error margin 

M x… Electrical power generation [25…100 MWel] 
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6.1.6.3 Gasified coal fired CHPPs 

Future prospects for parameters are mainly based on a possible further (small) 

development on gas and steam turbines’ electrical efficiencies and a reduction of 

auxiliary power. Further development of coal gasification process is also taken into 

account. Financial trend is taken from extrapolation from former and current data. 

Assumptions for the data in the table below: Syngas from gasified coal (LHV appr. 20 

MJ/kg) fired combined cycle CHPP (IGCC – Integrated Gasification Combined Cycle) with 

SGT5-2000 GT class, appr. 15% O2 flue gas; two-pressure HRSG with supplementary 

firing of syngas; condensing steam turbine with extraction and heat recovery heat 

exchanger / condenser for heat transfer to district heating system). Performance values 

of table below are based on and calculated with gas turbine performance data from “GT 

performance library” and appropriate modelled HRSG /ST- system. Estimated inlet 

district heating temperature is 60 °C. Performance values are reclined on IGCCs in 

Germany and USA. 
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Table 33: Overview of gasified coal fired CHPPs  

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2, 4, 
10, 11, 
12, 13 

Heat generation capacity MWth 100 - 500              

Electrical power generation  MWel 100 - 500              

Net electrical efficiency % 41 41 42 42 42   38 44 39 45    

degree of fuel utilization accountable to el. Power % 54 54 55 55 55   52 56 53 57  A  

degree of fuel utilization accountable to district 
heating 

% 46 46 45 45 45   44 48 43 47 
 

B  

Total degree of utilization, nominal load  % 80 80 80 80 80   75 85 75 85    

Total degree of utilization, annual average % 73 73 73 73 73   
  

     C, D  

Electricity consumption % 4 4 3.5 3.5 3.5   2 5 1.5 4.5  E  

Technical lifetime years 30 30 35 35 35   25 35 30 40    

                           

Steam supply   + + + + +   o ++ o ++  F  

Hot water    o o o o o   o + o +  G  

Warm water    (o) (o) (o) (o) (o)   (o) (o) (o) (o)  H  

Low temperature   - - - - -   - o - o  I  

B. Environmental data 

 

 

5, 6, 7, 

10, 11, 
12, 13 

CO2 g/MJth 200 200 200 200 200   50 300 50 300    

SO2 g/GJth < < < < <              

NOX g/GJth 20 20 18 18 15   15 50 10 45    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth < < < < <              

C. Financial data 
 

J 
1, 3, 8, 
9, 10, 11 

Quality of estimation   medium    

Nominal investment M€/MWel,max 2.5 2.5 2.4 2.4 2.2   2.2 3.7 1.9 3.0  K, L  

 - of which equipment M€/MWel,max 1.6 1.6 1.5 1.5 1.4   1.5 2.6 1.3 2.0    

 - of which installation M€/MWel,max 0.9 0.9 0.9 0.9 0.8   0.7 1.1 0.6 1.0    

Fixed O&M k€/MWel,max/a 6 6 6 6 6   4 7 4 7    

Variable O&M excl. electricity costs €/MWhel,max 5 5 5 5 5   4 7 4 7    

X. Technology specific data    

Cost function M€/MWel Invest(x)=5.88x-0.15  M  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Brochure for gas turbine SGT5-2000E 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015 
11 Power Plant Kemper county 
12 RWE IGCC / CCS Power Plant 
13 Kraftwerke mit Kohle Vergasung; BINE Informationsdienst 
 

Notes:  

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 

F 
District heating steam temperature 185 °C; Cb=1.06; Cv=0.79; slightly higher efficiencies estimated, since steam turbine’s isentropic efficiency 
decreases from high to low pressure. 

G District heating water temperature 135 °C; Cb=1.14; Cv=0.85 
H Design case! District heating water temperature 105 °C; Cb=1.18; Cv=0.88 
I District heating water temperature 70 °C; Cb=1.27; Cv=0.94 
J Reference location is USA / Germany 

K Data is related to a IGCC with condensing steam turbine with extraction at 1.7 bar running in “only electric power mode” (maximum electric power at 
STG); GT is running at ISO conditions; for financial data using a backpressure steam turbine @ proper backpressure values for district heating reduce 
values for nominal investment (equipment & installation) by appr. 2% 

L Data Correction for different district heating temperatures estimated within error margin 
M x… Electrical power generation [100…500 MWel] 
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6.1.7 Organic Rankine Cycle plants 

For CHPPs using Organic Rankine Cycle (ORC) configurations the approach for the 

calculation of thermal power, which can be used for district heating, is at a temperature 

level of 105 °C (“Warm / Hot Water”) and a reasonable value for the exhaust flue gas 

stack temperature depending on the fuel of the thermal oil boiler. Heat for the district 

heating system is recovered in two steps. In the first one heat is used from the ORC 

process itself (e.g. silicon oil cycle) and in the second one from the flue gas of the 

thermal oil boiler. The corresponding electrical power is generated by the ORC turbine 

generator set. ORC plants have a typical thermal power range from 1 – 50 MW. 

The major components of ORC CHPPs are the thermal oil boiler with combustion air 

preheater, flue gas heat recovery section and stack, the ORC cycle including turbine and 

electrical generator plus corresponding heat exchanger / oil condenser for district 

heating. 

Figure 37: CAPEX breakdown of Organic Rankine Cycle CHPs10 

  

6.1.7.1 Biomass fired ORC plants 

Future prospects for parameters are mainly based on an ongoing and likely further 

development on ORC CHPPs. Financial trend is taken from extrapolation of OEM’s budget 

data and literature. 

Assumptions for the data in the table below: Biomass (LHV appr. 14 MJ/kg) fired ORC 

CHPP (appr. 6% O2 flue gas; flue gas stack temperature 135 °C; two-stage district heat 

exchanger). Performance values of table below are based on and calculated with 

performance data from “ORC performance library” and OEM’s typical data sheets. 

Estimated inlet district heating temperature is 60 °C. 

                                           
10 Cost for the district heating connection itself (like net pumps and other auxiliary units) will be in the range of 
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30% 

18% 

8% 

9% 

7% 

18% 

6% 
4% 

Main equipment

Balance of plant

Electrical and I&C supply and installation

Civil and structural

Project indirect

Development

Interconnection

Insurance & Other



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

123 

Table 34: Overview of biomass fired ORC plants 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper   1, 2 

Heat generation capacity MWth 10 - 50              

Electrical power generation  MWel 1 - 8              

Net electrical efficiency % 12.8 13 13.5 14 14   12 14 13 16    

degree of fuel utilization accountable to el. 
Power 

% 17.8 18 18 18.5 18.5   16 20 17 21 
 

A  

degree of fuel utilization accountable to 
district heating 

% 82.2 82 82 81.5 81.5   80 84 79 83 
 

B  

Total degree of utilization. nominal load  % 76.7 77 78 79 80   75 80 75 85    

Total degree of utilization. annual average  % 70 70 71 72 73   
  

     C, D  

Electricity consumption % 1.7 1.7 1.6 1.5 1.5   1 2 1 2  E  

Technical lifetime years 25 25 30 30 30   20 25 25 35    

                           

Steam supply   N/A N/A N/A N/A N/A   N/A N/A N/A N/A  F  

Hot water    o o o o o   o - o -  

G 

 

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o   

Low temperature   o o o o o   o + o +   

B. Environmental data   5, 6, 7 

CO2 g/MJth 130 130 130 125 125   110 150 90 130    

SO2 g/GJth 5 5 4 4 3   4 10 4 10    

NOX g/GJth 100 95 90 90 85   90 120 80 100    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 5 5 5 5 5   3 12 3 12    

C. Financial data 
 

H 
1, 3, 8, 
9, 10, 
11 

Quality of estimation   medium    

Nominal investment M€/MWel.max 4.7 4.7 4.6 4.6 4.5   4 5 3.8 5  I  

 - of which equipment M€/MWel.max 3.53 3.53 3.45 3.45 3.38   3.00 3.75 2.85 3.75    

 - of which installation M€/MWel.max 1.18 1.18 1.15 1.15 1.13   1.00 1.25 0.95 1.25    

Fixed O&M k€/MWel.max/a 45 44 42 42 40   40 50 35 50    

Variable O&M excl. electricity costs €/MWhel.max 8 8 8 8 8   5 10 5 10    

X. Technology specific data    

Cost function M€/MWel Invest(x)=6.65-0.25  J  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Turboden CHP Units – Typical sizes and Performances 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Kraft-Wärme-Kopplung, 4.te Auflage, Springer, Schaumann/Schmitz 
11 Budget Offer: BIOS Bioenergiesysteme GmbH 
 

Notes to table above 

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 
F Low fuel utilization 

G 
Cb factor approximately independent from district heating temperature. Cb mainly connected to ORC process parameters. In this case: Cb=0.22; 
Cv=1.0 

H Reference location is Central Europe 
I Data Correction for different district heating temperatures is insignificant 
J x… Electrical power generation [1…8 MWel] 
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6.1.7.2 Solid waste fired ORC plants 

Future prospects for parameters are mainly based on an ongoing and likely further 

development on ORC CHPPs. Financial trend is taken from extrapolation of OEM’s budget 

data and literature. 

Assumptions for the data in the table below: Solid waste (LHV appr. 13 MJ/kg) fired ORC 

CHPP (appr. 6% O2 flue gas; flue gas stack temperature 160 °C; two-stage district heat 

exchanger). Performance values of table below are based on and calculated with 

performance data from “ORC performance library” and OEM’s typical data sheets. 

Estimated inlet district heating temperature is 60 °C. 



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

126 

Table 35: Overview of solid waste fired ORC plants 

             

  Unit 2015 2020 2030 2040 2050   
Uncertainty 

(2020) 
Uncertainty 

(2050) 
 

Note Ref 

A. Energy/technical data   Lower Upper Lower Upper 
 

 
1, 2 , 4, 10, 

11, 13 

Heat generation capacity MWth 10 - 50              

Electrical power generation  MWel 1 - 8              

Net electrical efficiency % 14.5 14.5 15 15 15   12 15 13 16    

degree of fuel utilization accountable to el. 
Power 

% 17.8 18 18 18.5 18.5   16 20 17 21 
 

A  

degree of fuel utilization accountable to 
district heating 

% 82.2 82 82 81.5 81.5   80 84 79 83 
 

B  

Total degree of utilization, nominal load  % 87 87 88 88 89   75 90 75 90    

Total degree of utilization, annual average % 79 79 80 80 81   
  

     C, D  

Electricity consumption % 1.7 1.7 1.6 1.5 1.5   1 2 1 2  E  

Technical lifetime years 25 25 30 30 30   20 25 25 35    

                           

Steam supply   N/A N/A N/A N/A N/A            F  

Hot water    o o o o o   o - o -  

G 

 

Warm water    (o) (o) (o) (o) (o)   (o) o (o) o   

Low temperature   o o o o o   o + o +   

B. Environmental data 
 

 
5, 6, 7, 10, 

11, 12 

CO2 g/MJth 150 150 145 145 140   130 170 120 160    

SO2 g/GJth 6 6 5 5 4   4 10 4 10    

NOX g/GJth 120 115 110 110 100   90 150 70 130    

CH4 g/GJth < < < < <              

N2O g/GJth < < < < <              

Particles g/GJth 12 11 10 10 8   5 15 5 15    

C. Financial data 
 

H 
1, 3, 8, 9, 
10, 14, 15 

Quality of estimation   medium    

Nominal investment M€/MWel,max 15.9 15.5 15 15 14   10 20 10 20  I  

 - of which equipment M€/MWel,max 9.5 9.3 9.0 9.0 8.4   6 12 6 12    

 - of which installation M€/MWel,max 6.4 6.2 6.0 6.0 5.6   4 8 4 8    

Fixed O&M k€/MWel,max/a 160 150 150 140 140   100 200 100 200    

Variable O&M excl. electricity costs €/MWhel,max 8 8 8 8 8   5 10 5 10    

X. Technology specific data    

Cost function M€/MWel Invest(x)=22.5-0.25  J  
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References: 
1 Energy Technology Reference Indicator, Projections for 2010-2050 

2 
Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; 
Technical Report, ISBN: 978-87-7844-931-3. Danish Energy Agency and Energinet.dk, 2012 

3 
Cost Report- Cost And Performance Data For Power Generation Technologies; Prepared for the National Renewable Energy Laboratory February 2012; 
Black&Veatch Holding Company 2011 

4 Turboden CHP Units – Typical sizes and Performances 
5 Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung, Umweltbundesamt 
6 Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Umwelbundesamt 
7 Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for large combustion plants; 2006 
8 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 
9 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-658-00267-1; 2013 
10 Operator’s data (direct): Waste to Energy Plant Niklasdorf 

11 
Umweltbundesamt: Leitfaden zur Umweltverträglichkeitserklärung für Abfallverbrennungsanlagen, thermische Kraftwerke und Feuerungsanlagen; 
Report 0193; 2008 

12 Umweltbundesamt: Stand der Technik bei Abfallverbrennungsanlagen 
13 World Bank Technical Guidance Report – Municipal Solid Waste Incineration 
14 Kraft-Wärme-Kopplung, 4.te Auflage, Springer, Schaumann/Schmitz 
15 Budget Offer: BIOS Bioenergiesysteme GmbH 
 

Notes:  

A =Pel/(Pel+Pth) in “heat and power mode” 
B =Pth/(Pel+Pth) in “heat and power mode” 
C based on planned availability of 8 000 h/a (DH+GEN) 
D uncertainty depending on (unplanned) maintenance 
E =MWel,aux.pwr/MWth in “heat and power mode” 
F Low fuel utilization 

G 
Cb factor approximately independent from district heating temperature. Cb mainly connected to ORC process parameters. In this case: Cb=0.22; 
Cv=1.0 

H Reference location is Central Europe 
I Data Correction for different district heating temperatures is insignificant 
J x… Electrical power generation [1…8 MWth] 
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6.1.8 References  

OEM references and data sheets 

 Siemens: 

o Brochure for steam turbine SST-400 

(https://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-

400/downloads/sst-400-steam-turbine.pdf) 

o http://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-

400/downloads/sst-400-steam-turbine.pdf 

o Siemens Steam Turbine SST-6000 series 

(https://www.energy.siemens.com/hq/en/fossil-power-generation/steam-turbines/sst-

6000.htm) 

 Clarke Energy: 

(https://www.clarke-energy.com/gas-engines/) 

o Data sheet jenbacher Gas Engines Type 2 to Type 9 / J920 

(https://powergen.gepower.com/products/reciprocating-engines.html) 

 Turboden CHP Units – Typical sizes and Performances 

(www.turboden.it) 

Operators’ data (direct) 

 Wien Energie: Biomasse Kraftwerk Simmering 

(https://www.wienenergie.at/eportal3/ep/channelView.do/pageTypeId/67831/channelId/-48494) 

 EnBW Energie Baden-Württemberg AG: Kohlekraftwerk Heilbronn, Block 7  

 Waste to Energy Plant Niklasdorf 

 Lahti Energia: Power plant technology 

(https://www.lahtigasification.com/power-plant/power-plant-technology) 

Public documents 

 Bezirksregierung Münster: Kohlekraftwerk Datteln 4, Immissionsschutzrechtlicher 

Genehmigungsbescheid 2017 

(http://www.bezreg-

muenster.nrw.de/zentralablage/dokumente/umwelt_und_natur/immissionsschutzrechtliche_genehmig

ungsverfahren/2017/2017-01-19-Uniper_Endfassung-BImSchG-Genehmigung-Kraftwerk-Datteln-

4.pdf) 

 Rechnungshof: Rechnungshofbericht Wien Energie Bundesforste Biomasse Kraftwerk 

(http://www.rechnungshof.gv.at/fileadmin/downloads/2006/berichte/teilberichte/wien/Wien_2006_02/

Wien_2006_02_1.pdf) 

 Österreichisches Umweltbundesamt:  

o Leitfaden zur Umweltverträglichkeitserklärung für Abfallverbrennungsanlagen, thermische 

Kraftwerke und Feuerungsanlagen; Report 0193; 2008 

(http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/UVP/REP01

93.pdf) 

o Stand der Technik bei Abfallverbrennungsanlagen 

(http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/industrie/pdfs/endversion_d

eutsch.pdf) 

o Emissionen aus Verbrennungsvorgängen zur Raumwärmeerzeugung 

(http://www.iwo-

austria.at/fileadmin/user_upload/pdf_2013_1_HJ/EmissionenRaumwaermeEndfassung060904

.pdf) 

o Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff – Inventur, Stand 2003 

(http://www.umweltbundesamt.at/fileadmin/site/publikationen/BE254.pdf) 

 Bayrisches Landesamt für Umweltschutz: Emissionen bayerischer Biomassefeuerungen- Ergebnisse 

einer Grundsatzuntersuchung 

(https://www.lfu.bayern.de/energie/biogene_festbrennstoffe/doc/biomassefeuerungen.pdf) 

 Industrieverband (VDAMA): Abgasgesetzgebung Diesel- und Gasmotoren 

(http://www.vdma.org/documents/266753/782366/Abgasgesetzgebungsbroschuere_2011_de.pdf/a87

19f7f-0d7d-43d6-b73c-53d49c334ba3) 

 Fachagentur Nachwachsende Rohstoffe (FNR) - Daten und Fakten 

(https://biogas.fnr.de/daten-und-fakten/faustzahlen/) 

 Bioenergiesysteme (BIOS): 

https://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-400/downloads/sst-400-steam-turbine.pdf
https://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-400/downloads/sst-400-steam-turbine.pdf
http://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-400/downloads/sst-400-steam-turbine.pdf
http://www.energy.siemens.com/hq/pool/hq/power-generation/steam-turbines/SST-400/downloads/sst-400-steam-turbine.pdf
https://www.energy.siemens.com/hq/en/fossil-power-generation/steam-turbines/sst-6000.htm
https://www.energy.siemens.com/hq/en/fossil-power-generation/steam-turbines/sst-6000.htm
https://www.clarke-energy.com/gas-engines/
https://powergen.gepower.com/products/reciprocating-engines.html
https://www.wienenergie.at/eportal3/ep/channelView.do/pageTypeId/67831/channelId/-48494
https://www.lahtigasification.com/power-plant/power-plant-technology
http://www.bezreg-muenster.nrw.de/zentralablage/dokumente/umwelt_und_natur/immissionsschutzrechtliche_genehmigungsverfahren/2017/2017-01-19-Uniper_Endfassung-BImSchG-Genehmigung-Kraftwerk-Datteln-4.pdf
http://www.bezreg-muenster.nrw.de/zentralablage/dokumente/umwelt_und_natur/immissionsschutzrechtliche_genehmigungsverfahren/2017/2017-01-19-Uniper_Endfassung-BImSchG-Genehmigung-Kraftwerk-Datteln-4.pdf
http://www.bezreg-muenster.nrw.de/zentralablage/dokumente/umwelt_und_natur/immissionsschutzrechtliche_genehmigungsverfahren/2017/2017-01-19-Uniper_Endfassung-BImSchG-Genehmigung-Kraftwerk-Datteln-4.pdf
http://www.bezreg-muenster.nrw.de/zentralablage/dokumente/umwelt_und_natur/immissionsschutzrechtliche_genehmigungsverfahren/2017/2017-01-19-Uniper_Endfassung-BImSchG-Genehmigung-Kraftwerk-Datteln-4.pdf
http://www.rechnungshof.gv.at/fileadmin/downloads/2006/berichte/teilberichte/wien/Wien_2006_02/Wien_2006_02_1.pdf
http://www.rechnungshof.gv.at/fileadmin/downloads/2006/berichte/teilberichte/wien/Wien_2006_02/Wien_2006_02_1.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/UVP/REP0193.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/umweltpolitische/UVP/REP0193.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/industrie/pdfs/endversion_deutsch.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/industrie/pdfs/endversion_deutsch.pdf
http://www.iwo-austria.at/fileadmin/user_upload/pdf_2013_1_HJ/EmissionenRaumwaermeEndfassung060904.pdf
http://www.iwo-austria.at/fileadmin/user_upload/pdf_2013_1_HJ/EmissionenRaumwaermeEndfassung060904.pdf
http://www.iwo-austria.at/fileadmin/user_upload/pdf_2013_1_HJ/EmissionenRaumwaermeEndfassung060904.pdf
http://www.umweltbundesamt.at/fileadmin/site/publikationen/BE254.pdf
https://www.lfu.bayern.de/energie/biogene_festbrennstoffe/doc/biomassefeuerungen.pdf
http://www.vdma.org/documents/266753/782366/Abgasgesetzgebungsbroschuere_2011_de.pdf/a8719f7f-0d7d-43d6-b73c-53d49c334ba3
http://www.vdma.org/documents/266753/782366/Abgasgesetzgebungsbroschuere_2011_de.pdf/a8719f7f-0d7d-43d6-b73c-53d49c334ba3
https://biogas.fnr.de/daten-und-fakten/faustzahlen/
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o Strom aus fester Biomasse – Stand der Technik und künftige Entwicklungen 

(http://www.bios-bioenergy.at/uploads/media/Paper-Obernberger-BM-CHP-development-

2005-01-13.pdf) 

o Stand und Entwicklung der Verbrennungstechnik 

(http://bios-bioenergy.at/uploads/media/Paper-Obernberger-StandVerbrennungstechnik-

1997-05-20.pdf) 

 Agrar Plus: Heizwerte und äquivalente Kennzahlen aus dem Bioenergiebereich 

(http://www.agrarplus.at/heizwerte-aequivalente.html) 

 Wolf: Biomasse Heiztechnik 

(http://www.wolf-heiztechnik.at/download/?file=322) 

 Saacke: Vergasung fester Abfälle 

(http://www.saacke.com/de/aktuelles-referenzen/referenzen/abfallvergasungsanlage-lahti/) 

 Biogas-netzeinspeisung.at: Betriebskosten 

(http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom13

1016.pdf?m=1409315893) 

Reports/Studies 

 European Commission:  

o Energy Technology Reference Indicator, Projections for 2010-2050 

(https://setis.ec.europa.eu/system/files/ETRI_2014.pdf) 

o Integrated Pollution Prevention and Control – Reference Document on BAT teechniques for 

large combustion plants; 2006 

(http://eippcb.jrc.ec.europa.eu/reference/BREF/lcp_bref_0706.pdf) 

 Frauenhofer-Institut für solare Energiesysteme: STROMGESTEHUNGSKOSTEN ERNEUERBARE 

ENERGIEN, STUDIE NOVEMBER 2013 

(https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2013_ISE_Stu

die_Stromgestehungskosten_Erneuerbare_Energien.pdf) 

 Klima- und Energiefonds: Blue Globe Report- Energieeffizienz: Gasmotor der Zukunft; 2008 

(https://www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-

2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf 

https:/www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-

2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf) 

 World Bank Technical Guidance Report – Municipal Solid Waste Incineration 

 Power Generation Engineering and Services Company: El Ain El Sokhna Power Plant 2×650 MW, Egypt 

(http://www.pgesco.com/projects/el-ain-el-sokhna-power-plant-2x650-mw/) 

 MWM: Aufbau von Energieanlagen mit Gasmotor-Antrieb 

(https://www.mwm.net/files/upload/mwm/issuu/Aufbau_von_Energieanlagen_MWM_06-14_DE.pdf) 

University documents 

 Stromerzeugungskosten im Vergleich, Uni Stuttgart, Feb 2008 

(http://www.ier.uni-stuttgart.de/publikationen/arbeitsberichte/downloads/Arbeitsbericht_04.pdf) 

 Kohlekraftwerk Voitsberg; Lecture TU Graz 1997 

 Biomass Kraftwerk Varnamo Sweden 

(http://www.ducente.se/images/content/pdf/stanford_20040427.pdf) 

Books/Brochures 

 Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and 

Energy Carrier Generation and Conversion; Technical Report, ISBN: 978-87-7844-931-3. Danish 

Energy Agency and Energinet.dk, 2012 

(https://www.energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Technology_d

ata_for_energy_plants.pdf) 

 „Projektmanagement im Energiebereich“, Verlag: Springer Gabler; Lau/Dechange/Flegel; ISBN 978-3-

658-00267-1; 2013  

 Gas Turbine World 2014 – 2015 Handbook, Volume 31; 2015  

 Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch - BHKW Kenndaten 

2014 

 Forced Draught Burner Handbook 

(http://www.cfquadrant.ie/wp-content/uploads/2015/02/Riello-Burner-Handbook.pdf)  

 Arbeitsgemeinschaft Erneuerbare Energie Dachverband 

(http://www.aee.at/aee/index.php?option=com_content&view=article&id=525&Itemid=113)  

http://www.bios-bioenergy.at/uploads/media/Paper-Obernberger-BM-CHP-development-2005-01-13.pdf
http://www.bios-bioenergy.at/uploads/media/Paper-Obernberger-BM-CHP-development-2005-01-13.pdf
http://bios-bioenergy.at/uploads/media/Paper-Obernberger-StandVerbrennungstechnik-1997-05-20.pdf
http://bios-bioenergy.at/uploads/media/Paper-Obernberger-StandVerbrennungstechnik-1997-05-20.pdf
http://www.agrarplus.at/heizwerte-aequivalente.html
http://www.wolf-heiztechnik.at/download/?file=322
http://www.saacke.com/de/aktuelles-referenzen/referenzen/abfallvergasungsanlage-lahti/
http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom131016.pdf?m=1409315893
http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom131016.pdf?m=1409315893
https://setis.ec.europa.eu/system/files/ETRI_2014.pdf
http://eippcb.jrc.ec.europa.eu/reference/BREF/lcp_bref_0706.pdf
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2013_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2013_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf%20%20%20https:/www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf
https://www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf%20%20%20https:/www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf
https://www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf%20%20%20https:/www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf
https://www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf%20%20%20https:/www.klimafonds.gv.at/assets/Uploads/Blue-Globe-Reports/Energieeffizienz/2008-2011/BGR12008KB07EZ1F44271EEFFGasmotor.pdf
http://www.pgesco.com/projects/el-ain-el-sokhna-power-plant-2x650-mw/
https://www.mwm.net/files/upload/mwm/issuu/Aufbau_von_Energieanlagen_MWM_06-14_DE.pdf
http://www.ier.uni-stuttgart.de/publikationen/arbeitsberichte/downloads/Arbeitsbericht_04.pdf
https://www.energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Technology_data_for_energy_plants.pdf
https://www.energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Technology_data_for_energy_plants.pdf
http://www.cfquadrant.ie/wp-content/uploads/2015/02/Riello-Burner-Handbook.pdf
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 County Meath, Ireland; B&W Volund;  

http://www.volund.dk/News/2014/01/Newsletter/Ireland_switches_on_waste-powered_electricity 

 Wirtschaftlich effiziente Biomasse-Heizkraftwerke, Rolf Michler 

(http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom13

1016.pdf?m=1409315893 

 Biomasse Kraftwerk Güssing; Repotec 

http://www.repotec.at/index.php/ws-biomassekraftwerk-guessing.html 

 Power Plant Kemper county 

http://www.power-technology.com/projects/kemper-county-integrated-gasification-combined-cycle-

igcc-power-plant-mississippi/ 

 RWE IGCC / CCS Power Plant 

http://www.rwe.com/web/cms/en/2688/rwe/innovation/power-generation/fossil-fired-power-

plants/igcc-ccs-power-plant/ 

 Kraftwerke mit kohle Vergasung; BINE Informationsdienst 

http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/2006/Projekt-Info_09-

2006/projekt_0906internet-x.pdf 

http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom131016.pdf?m=1409315893
http://www.enpros.de/de/download/Media/EPG_WirteffBiomHKW_413001EPS000DF001_00ArtBiom131016.pdf?m=1409315893
http://www.repotec.at/index.php/ws-biomassekraftwerk-guessing.html
http://www.rwe.com/web/cms/en/2688/rwe/innovation/power-generation/fossil-fired-power-plants/igcc-ccs-power-plant/
http://www.rwe.com/web/cms/en/2688/rwe/innovation/power-generation/fossil-fired-power-plants/igcc-ccs-power-plant/
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6.2 Geothermal power plants 

The functional principle of a geothermal power plant is similar to that of any other 

thermal power plant: a turbine is operated by steam and electricity is produced through a 

generator. The exact process depends on the nature of the geothermal power plant. All 

types differ slightly in their operation, but normally all types of power stations use an 

injection and a production well for electricity production. 

As fields of pure natural steam are rather rare, most geothermal plants are based on a 

mixture of steam and hot water requiring single-flash (some use double-flash) systems 

to separate the hot water. In general, high-enthalpy geothermal fields are only available 

in areas with volcanic activity, whereas the rest of the fields are low- or medium-

enthalpy resources. Geothermal power generation is mainly based on steam/flash and 

binary plants. 

The figure below gives an overview of the geothermal resources in Europe. According to 

the picture, Iceland, Tuscany and Turkey has the best geothermal potentials in Europe, 

where both heat and electricity generation is possible. But also other regions have the 

potential for cogeneration, however, with lower efficiency. 

Figure 38: Geothermal resources in Europe. 

 

 Source: EGEC - European Geothermal Energy Council 

With the following figure, the electrical efficiency could be estimated in dependency on 

the production temperature. The curve fits both for binary and flash steam plants. Using 

the next figure, respectively the internet link, modelled temperatures in different depths 

could be identified. Knowing the depth, in which the needed temperature could be found, 

the drilling costs could be calculated. Each technology sheet provides a formula 

therefore. 
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Figure 39: Practically achieved conversion efficiencies of various geothermal production 

installations (left), including both binary and flash systems (right) (after Tester et al., 2006) 

 

Source: Towards more geothermal electricity generation in Europe; EGEC, 2013 

Figure 40: Modelled temperature at 5 km in °C 

 

Source: http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html 

 

6.2.1 Flash plants 

Geothermal flash steam plants operate with large hydrothermal reservoirs at high 

temperature (i.e. over 150 °C). In Europe such reservoirs can be found in Tuscany (Italy) 

and Iceland. Unfortunately, it is very unlikely that new large geothermal reservoirs like 

these will be discovered in Europe. Therefore new projects need to be adapted to smaller 

and cooler resource conditions.  

Geothermal flash plants are used to extract energy from high-enthalpy geothermal 

reservoirs. Water with high temperature at high pressure is brought to surface, where it 

enters a low pressure chamber and steam is obtained from a separation – the flashing - 

process. Then the steam is directed to a turbine, which spins to generate electrical 

http://www.thermogis.nl/geoelec/ThermoGIS_GEOELEC.html
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power. After passing the turbine, the steam is condensated and normally (except for 

condensate evaporated in a wet cooling system) injected back to the underground.  

The high temperature, water at high pressure is brought to surface, where it is enters a 

low pressure chamber and “flashes” into steam. The pressure created by this steam is 

channelled through a turbine, which spins to generate electrical power. Once the steam 

has exited the turbine, it is either released into the atmosphere as water vapour, or it 

cools back into liquid water and is injected back underground. 

The CAPEX breakdown structure listed below differs from the definition of main 

equipment and balance of plant (BOP) to the others. For this technology, the drilling 

effort is taken into account with the balance of plant (BOP) in order to show the 

significant influence of the drilling on the total investment. Note: The presented cost 

distribution can vary widely from one project to another. Especially estimating the 

borehole costs, large uncertainties exist due to the limited availability of drilling rigs, 

changing feedstock prices (e.g. steel), unforeseen technological problems and on-site 

conditions.  

Main equipment: Energy conversion plant with its main components like water/steam 

supply system, flashing/separation units, turbines, condensate treatment system, heat 

exchangers, pumps, filters, etc. 

Balance of plant: Borehole costs are dominating the overall investment costs and consists 

of seismics / preparatory arrangements, set up and recultivation of the drilling site, 

drilling lease (including personnel and energy costs), costs for drilling bits and mud 

(including the disposal of mud and cuttings) as well as logging and borehole completion 

and steam gathering system. 

 Figure 41: CAPEX breakdown of geothermal flash CHP plants 
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Table 36: Overview of geothermal flash CHP plants 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

El. generation capacity MWel 10 - 50   10 70 10 100   A 1, 2, 3 

El. efficiency, nominal load  % 12 - 20   10 23 13 25   B 4 

Electricity consumption %/MWth 10   5 15 5 15   C 1 

Technical lifetime years 30 30 30 30 30   25 >30 25 >30   D 5, 6 

                              

Steam supply   -- -- -- -- --   - -- - --   

E 

  

Hot water   o o o o o   - o - o     

Warm water   (o) (o) (o) (o) (o)   (o) o (o) o     

Low temperature   + + + + +   (+) ++ o ++     

B. Environmental data       

CO2 g/MJth 7.6 7.6 7.6 7.6 7.6             

F 

7, 8 

SO2 g/GJth 3.3 3.3 3.3 3.3 3.3             8 

NOX g/GJth 24 24 24 24 24             8 

CH4 g/GJth 11.6 11.6 11.6 11.6 11.6             8 

N2O g/GJth 7.3 7.3 7.3 7.3 7.3             8 

Particles g/GJth 1.4 1.4 1.4 1.4 1.4             8 

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate % 5 - 15             G 9, 10 

Nominal investment M€/MWel 5.2 5.1 4.8 4.6 4.2   3.5 7.0 2.5 5.0   H 1, 5, 11, 12, 13, 14, 15 

 - of which equipment M€/MWel 1.8 1.8 1.7 1.6 1.5   1.5 2.3 1.3 1.9   
I 

12, 16 

 - of which installation M€/MWel 3.4 3.3 3.1 3.0 2.7   2.8 3.6 2.3 2.9   12, 16 

Fixed O&M k€/MWel/a 75 70 70 65 65   60 85 55 75   J 1, 5, 6, 13, 15, 17 

Variable O&M excl. electricity costs €/MWhel N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=6.73x-0.12   K 6, 12, 18 

Cost function drilling (estimation) €/m CDrilling(Depth) = 0.152 * (Depth) + 785    L 19, 20 

Construction time years 6 6 6 6 6   5 7 5 7   M 21 

Capacity factor  % 95 95 95 95 95   90 97 90 98   N 6, 22 

Production rate l/s 50 - 150             O 1 

Typical drilling depth km 7 7 7 8 10             P 21 

Reservoir temperature °C > 150             Q 8, 21 

Average daily drilling capacity m/day 40   30 - 50   R 20 
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16 Geothermal Power: Issues, Technologies, and Opportunities for Research, Development, Demonstration, and Deployment; EPRI, February 2010 
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22 Power Technologies Energy Data Book (Fourth Edition); NREL, August 2006 

    
Notes: 

A Total plant capacities range from 10 to 50 MW, with most at approximately 31 MWel. 

B The lower value represent a reservoir temperature of 150 °C and the upper 300 °C. Note: In comparison to other energy technologies, geothermal power plants 
have lower electricity efficiency rates (is largely determined by the reservoir temperature) owing to relatively low temperatures of the geothermal fluids. The 
overall efficiency is greatly increased by adding heat exchangers and producing hot water since the conversion factor in a heat exchanger is far greater than 
converting heat to electricity (Ref. 7). 

C The electrical consumption through pumps and auxiliary systems could be assumed with 10 % (including condensing and cooling system) of the geothermal power. 

D Drillings have a long life time period. Individual components must be replaced earlier due to the corrosive properties of the brine. 

E Normally the heat extraction from flash plants is taken from the separator. That means, the heat extraction has no influence on the electricity efficiency but at the 
same time increasing the total efficiency. However, steam extraction significantly influence the plant efficiency. 

F Unlike many renewable technologies, flash geothermal plants produce emissions. 

G The learning rates are expected to be relatively modest, as the technology is far developed. Indeed drillings could have the biggest cost reduction potential. On the 
one hand through faster drilling methods and on the other hand through better exploration (further developed seismic methods could increase the success rate and 
additionally decrease risk and insurance costs). 

H The depth of drilling and the local geological conditions naturally have a high influence on the total investment costs of geothermal power plants. That is why, 
investment costs have a big bandwidth across different studies (Ref. 13 gives an overview of different studies and each listed costs). Note: Drilling represents 30 - 
50 % of the cost of a hydrothermal geothermal electricity project and more than half of the total cost of Enhanced Geothermal System (EGS). The cost reduction is 
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mainly assumed due to better forecasting (reducing the risk and insurance costs) and drilling methods. 

I The installation effort on-site consumes high effort and is dominated by the drilling work. 

J The operation and maintenance (O&M) costs increase significantly when dealing with high mineral content brine resources. 

K Cost function is based on own calculations (GEOELEC Tool) and modified under consideration of project information and given references. x…Heat generation 
capacity. 

L 

The linearized cost function for drilling is based on the given function of Ref. 19 and data of Ref. 20. The function can be seen as valid in the range of 1 000 - 6 000 
m depth. In general, the cost could be estimated with an average value of EUR 1 100/m (1 000 - 3 000 m depth) and EUR 1 500/m (3 000 - 6 000 m depth). The 
lower borderline costs could be assumed with 1 000 €/m. Excessively higher costs (> EUR 2 500/m) could occur through difficult circumstances. Note: The original 
formula is described with a polynomial function based on realized drillings with an R-squared value for the curve of 0.558, which indicates that a variance in drilling 
cost has to be accepted. Due to simplifications, the function was linearized and costs converted into EUR/m (exchange rate: 1 USD ≙ 0,877 EUR). 

M Based on experience, it takes about 5-7 years to bring a geothermal power plant online. The project timeline could be roughly described with: 2 years for 
exploration & test drilling, 2 years for drilling and up to 3 years for engineering & construction. 

N 
Due to the high capital intensity given by high drilling costs, geothermal energy plants should be operated as basic load units in order to achieve high full load 
hours and thus reduce production costs. 

O Higher production rates leads to higher pumping effort which decreases the system efficiency. 

P The maximum drilling depth that is economically feasible with today's technology is 7 km and could be 10 km in 2050. 

Q In general, a flash plant could be economically feasible if the production wells deliver more than 150 °C. The exploitation of hydrothermal resources down to 3‐4 

km depth is a mature commercial technology where temperatures above 180 °C could be reached. Petrothermal resources could be exploited with the quite new 
technology EGS from 3‐6 km depth, while supercritical plants (T>350°C) from 5‐10 km depth will be a future technology. 

R The value is based on a 6 km deep well which could be drilled within approx. 140 days. 
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6.2.2 Binary plants 

Binary plants, also known as Organic Rankine Cycle (ORC) or Kalina Cycle, usually are 

operating with temperatures in the range from 100 to 180 °C. Special configurations 

(working fluid) may allow power production from as low temperatures as 80 °C. Binary 

plants utilize a secondary working fluid, usually an organic fluid (typically n-pentane) 

with lower boiling point and high vapour pressure at low temperatures as compared to 

steam. The hot geothermal water is brought to surface from the reservoir and transfers 

the heat through heat exchangers to the working fluid. After cooling down, the 

geothermal water is re-injected. Due to the specific thermodynamic properties the 

working fluid already vaporizes with less geothermal heat. The vapour of the working 

fluid drives a turbine, then is cooled down and condensed, and the cycle repeats again. 

The uniqueness of a binary system is that it operates with two closed-loops (hence 

binary) and neither the geothermal water nor the working fluids are exposed to the 

environment. That means no emissions occur in a binary geothermal cycle. 

The CAPEX breakdown structure listed below differs from the definition of main 

equipment and balance of plant (BOP) to the others. For this technology, the drilling 

effort is taken into account with the balance of plant (BOP) in order to show the 

significant influence of the drilling on the total investment. Note: The presented cost 

distribution can vary widely from one project to another. Especially estimating the 

borehole costs, large uncertainties exist due to the limited availability of drilling rigs, 

changing feedstock prices (e.g. steel), unforeseen technological problems and on-site 

conditions.  

Main equipment: Energy conversion plant with its main components like working fluid 

circuit, working fluid itself (silicone oil, refrigerant or other gases), expansion machines 

(turbine, screw expander, steam motor / reciprocating piston expander), heat 

exchangers, pumps, filters, etc. 

Balance of plant: Borehole costs are dominating the overall investment costs and consists 

of seismics / preparatory arrangements, set up and recultivation of the drilling site, 

drilling lease (including personnel and energy costs), costs for drilling bits and mud 

(including the disposal of mud and cuttings) as well as logging and borehole completion 

and thermal water cycle. 

 Figure 42: CAPEX breakdown of geothermal binary CHP plants 

 

35% 

35% 

10% 

7% 

5% 
5% 3% 

Main equipment

Balance of plant

Electrical and I&C supply and installation

Civil and structural works

Development costs

Interconnection costs

Insurance costs



European Commission 
Long term (2050) projections of techno-economic performance of 

large- scale heating and cooling in the EU  

 

138 

Table 37: Overview of geothermal binary CHP plants 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

El. generation capacity MWel 1 - 30   <1 50 <1 75   A 1, 2, 3 

El. efficiency, nominal load  % 7 - 14   5 15 7 16   B 4, 5 

Electricity consumption %/MWth 3   2 5 2 5   C 1, 5 

Technical lifetime years 30 30 30 30 30   25 >30 25 >30   D 6, 7 

                              

Steam supply   N/A N/A N/A N/A N/A             
E 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water   -- -- -- -- --   - -- - --   
F 

  

Low temperature   (o) (o) (o) (o) (o)   (o) (+) (o) +     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

G 

8, 9 

SO2 g/GJth 0 0 0 0 0             8, 9 

NOX g/GJth 0 0 0 0 0             8, 9 

H2S g/GJth 0 0 0 0 0             8, 9 

CO2 g/GJth 0 0 0 0 0             8, 9 

VOC g/GJth 0 0 0 0 0             8, 9 

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate % 5 - 15             H 10, 11 

Nominal investment M€/MWel 7.0 6.6 6.2 5.9 5.6   6.0 8.0 5.0 6.0   I 1, 5, 12, 13, 14, 15, 16 

 - of which equipment M€/MWel 2.9 2.7 2.5 2.4 2.3   2.0 3.3 1.7 2.8   
J 

13, 17 

 - of which installation M€/MWel 4.1 3.9 3.7 3.5 3.3   3.3 4.6 2.8 3.9   13, 17 

Fixed O&M k€/MWel/a 150 145 143 142 140   120 180 110 170   K 1, 5, 7, 14, 16, 18, 19 

Variable O&M excl. electricity costs €/MWhel N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=12.15x-0.24   L 7, 13, 20 

Cost function drilling (estimation) €/m CDrilling(Depth) = 0.152 * Depth (m) + 785    M 21, 22 

Construction time years 6 6 6 6 6   5 7 5 7   N 23 

Capacity factor  % 95 95 95 95 95   90 97 90 98   O 7, 24 

Production rate l/s 50 - 150             P 1 

Maximum depth km 7 7 7 8 10             Q 23 

Reservoir temperature °C > 80             R 11, 17 

Average daily drilling capacity m/day 40   30 - 50   S 22 
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References: 

1 Energy Technology Reference Indicator projections for 2010-2050; JRC, 2014 

2 Renewable Energy in Europe - Markets, Trends and Technologies; EREC, 2010 

3 Stand und Perspektiven geothermischer Stromerzeugung; H. Spliethoff, May 2012 

4 Level of typical efficiencies for electricity generation of geothermal plants; R. Bertani, June 2016 

5 Input from ORC manufacturers; 2017 

6 Geothermal Handbook: Planning and Financing Power Generation; ESMAP, 2012 

7 Geothermal Energy Status Report - Technology, market and economic aspects of geothermal energy in Europe; JRC, 2015 

8 Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact; R. DiPippo, 2012 

9 Renewable Energy Cost of Generation Update; KEMA, August 2009 

10 Annual Energy Outlook 2012 with Projections to 2035; EIA, June 2012 

11 Modelling Technology Learning for Electricity Supply Technologies; E. Rubin et al., May 2013 

12 Renewables for Heating and Cooling - Untapped Potential; OECD/IEA, 2007 

13 Geothermal Investment Guide; GEOELEC, 2013 

14 Current and Prospective Costs of Electricity Generation until 2050; DIW, 2013 

15 Cost and Performance Data for Power Generation technologies; NREL, 2012 

16 Financing Geothermal Energy; EGEC, July 2013 

17 Geothermal Power: Issues, Technologies, and Opportunities for Research, Development, Demonstration, and Deployment; EPRI, February 2010 

18 Factors Affecting Costs of Geothermal Power Development; Geothermal Energy Association, August 2005 

19 Power Plants: Characteristics and Costs; S. Kaplan, November 2008 

20 Renewable Energy Systems; M. Kaltschmitt et al., 2013 © Springer Science+Business Media New York 

21 New Geothermal Site Identification and Qualification; GeothermEx, April 2004 

22 Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report; Sandia Report, December 2008 

23 Towards more Geothermal Electricity Generation in Europe; GEOELEC, 2013 

24 Power Technologies Energy Data Book (Fourth Edition); NREL, August 2006 

    

Notes: 

A Binary plant capacities range from 1 to 30 MW, with most at approximately 4 MWel. ORC units are typically produced in very small sizes (0.1 - 5 MW) and container 
module units allow modular design. Due to high specific investment costs, the electrical power should be greater than 500 kW and water temperatures higher than 
100 - 120 °C. 

B The lower value represents a reservoir temperature of 80 °C and the upper 180 °C. Note: In comparison to other energy technologies, geothermal power plants 
have lower electricity efficiency rates (is largely determined by the reservoir temperature) owing to relatively low temperatures of the geothermal fluids. The 
overall efficiency is greatly increased by adding heat exchangers and producing hot water since the conversion factor in a heat exchanger is far greater than 
converting heat to electricity (Ref. 8). 

C The electrical consumption through pumps and auxiliary systems could be assumed with 3 % of the geothermal power. 

D Drillings have a long life time period. Individual components must be replaced earlier due to the corrosive properties of the brine or special requirements of the 
binary system. 

E Binary plants are used for CHP applications driven by low temperatures. Therefore, high temperature applications for district heating should be avoided as the CHP 
unit will be shut down and the geothermal energy will be used directly. 

F High supply temperatures affect the (already low) electrical efficiency and could jeopardize the economic viability of a geothermal plant. That is why, low 
temperature applications should be preferred. 
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G Closed loop binary plants emit no gaseous emissions during operation. 

H The learning rates are expected to be relatively modest. Indeed drillings could have the biggest cost reduction potential. On the one hand through faster drilling 
methods and on the other hand through better exploration (further developed seismic methods could increase the success rate and additionally decrease risk and 
insurance costs). 

I Binary plants are more expensive than flash plants due to the ORC unit. The specific investment cost of an ORC unit could be counted with around MEUR 1.5/MWel. 
The depth of drilling and the local geological conditions naturally have a high influence on the total investment costs of geothermal power plants. That is why, 
investment costs have a big bandwidth across different studies (Ref. 14 gives an overview of different studies and each listed costs). Drilling represents 30 - 50 % 

of the cost of a hydrothermal geothermal electricity project and more than half of the total cost of Enhanced Geothermal System (EGS). The cost reduction is 
mainly assumed due to better forecasting (reducing the risk and insurance costs) and drilling methods. 

J Binary plants consume a little bit less installation effort in comparison to flash plants (e.g. the ORC plant could be delivered prefabricated). 

K In comparison to flash plants, binary plants consume higher O&M costs. Some ORC manufacturer offers O&M packages for some thousands Euro per plant and 
year. Note: The operation and maintenance (O&M) costs increase significantly when dealing with high mineral content brine resources.  

L Cost function is based on own calculations (GEOELEC Tool) and modified under consideration of project information and given references. x…Heat generation 
capacity. 

M The linearized cost function for drilling is based on the given function of Ref. 21 and data of Ref. 22. The function can be seen as valid in the range of 1 000 - 6 000 
m depth. In general, the cost could be estimated with an average value of EUR 1 100/m (1 000 - 3 000 m depth) and EUR 1 500/m (3 000 - 6 000 m depth). The 
lower borderline costs could be assumed with 1 000 €/m. Excessively higher costs (> EUR 2 500/m) could occur through difficult circumstances. Note: The original 
formula is described with a polynomial function based on realized drillings with an R-squared value for the curve of 0.558, which indicates that a variance in drilling 
cost has to be accepted. Due to simplifications, the function was linearized and costs converted into EUR/m (exchange rate: 1 USD ≙ 0,877 EUR). 

N Based on experience, it takes about 5-7 years to bring a geothermal power plant online. The project timeline could be roughly described with: 2 years for 
exploration & test drilling, 2 years for drilling and up to 3 years for engineering & construction. 

O Due to the high capital intensity given by high drilling costs, geothermal energy plants should be operated as basic load units in order to achieve high full load 
hours and thus reduce production costs. 

P Higher production rates leads to higher pumping effort which decreases the system efficiency. 

Q The maximum drilling depth that is economically feasible with today's technology is 7 km and will be 10 km in 2050. 

R In general, a geothermal binary plant could be economically feasible if the production wells deliver more than 100 °C. The exploitation of hydrothermal resources 
down to 3‐4 km depth is a mature commercial technology where temperatures above 180 °C could be reached. Petrothermal resources could be exploited with the 

quite new technology EGS from 3‐6 km depth but with higher development costs. 

S The value is based on a 6 km deep well which could be drilled within approx. 140 days. 
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6.3 Fuel Cells 

6.3.1 Polymer electrolyte membrane fuel cells 

The proton exchange membrane fuel cell (PEMFC) exist in low (~ 80 °C) and high 

temperature (~ 180 - 200 °C) varieties, and use proton conducting ionomer (ionic 

polymer) electrolytes. PEMFC systems currently achieve relatively long lifetimes with 

good tolerance to thermal cycling, but face challenges in long-term cost reduction. 

Electrical efficiencies in the range of 30 - 40 % and total (heat + power) efficiencies up to 

90 % in CHP mode could be reached. A stationary heat supply application with a 

temperature level up to 80 °C is possible, wherein heat and electricity could be 

generated in approximately equal proportions. 

Most PEMFC systems rely on platinum catalysts to ensure adequate reaction kinetics and 

thus power density. These materials are expensive and effective substitutes are scarce. 

However, good progress has been made to reduce platinum loadings. As the reactions 

take place at relatively low temperatures (60 - 120 °C), very pure hydrogen is required 

to fuel the stack, and certain impurities in the fuel can cause rapid degradation in 

performance. Especially the low tolerance to carbon monoxide (CO) and sulphur is a 

problem. Ongoing R&D is to increase the CO tolerance of the membranes. Another 

approach is the development of high-temperature PEMFCs operating at up to 200 °C. 

Due to the higher temperatures, the impact of some of these issues can be reduced but 

not removed. Moreover, a suitable ionomer for this temperature range is presently also 

problematic. 

Key challenges for R&D activities are design simplification and efficiency improvement of 

the fuel processing stages, which will improve the system performance by reducing 

parasitic loads and reducing thermal losses. 

 

At the moment not so many PEMFC applications in DH systems exist. Especially in Europe 

there are just only few plants, mostly with demonstration character. That means the 

given CAPEX breakdown structure could vary, particular when the costs for the fuel cells 

decrease with higher market penetration. 

 

Figure 43: CAPEX breakdown of polymer electrolyte membrane fuel cells 
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Table 38: Overview of polymer electrolyte membrane fuel cells 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Typical capacity size MWel 0.001 - 0.1             A 1 

Electrical efficiency @peak electrical load 
% 

36 37 38 39 39             

B 

2 

25 % load 32 33 33 33 34             3 

Thermal efficiency @peak thermal load % 52 52 52 52 52             2 

Electricity consumption %/MWth 1 1 1 1 1   0.8 1.5 0.7 1.3   C 4 

Technical lifetime years 5 6 10 12 15   3 8 10 20   D 5, 6 

                              

Steam supply   N/A N/A N/A N/A N/A             
E 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water   -- -- -- -- --   -- -- -- -       

Low temperature   (o) (o) (o) (o) (o)   - (+) - +   F   

B. Environmental data (fuel: hydrogen)       

CO2 g/MJth 0 0 0 0 0             

G 

5 

SO2 g/GJth 0 0 0 0 0             5 

NOX g/GJth 0 0 0 0 0             5 

CH4 g/GJth 0 0 0 0 0             5 

N2O g/GJth 0 0 0 0 0             5 

Particles g/GJth 0 0 0 0 0             5 

C. Financial data                                        

Quality of CAPEX estimation   Low       

Learning rate % 15 - 18             H 7 

Nominal investment M€/MWel 45 18 13 10 5   15 20 5 10   I 2, 6, 7, 8 

 - of which equipment M€/MWel 32 13 9 7 3   11 14 3 4     9, 10, 11, 12 

 - of which installation M€/MWel 13 5 4 3 30   4 7 1 2     9, 10, 11, 12 

Fixed O&M k€/MWel/a N/A N/A N/A N/A N/A             J 9 

Variable O&M excl. el. and fuel costs €/MWhel 100 80 60 40 20             K 2, 3, 9, 13 

X. Technology specific data       

Heat to power ratio 1 1.4 1.4 1.4 1.3 1.3               2 

Fuel to cell   Hydrogen   L 5 

Working temperature °C 70 80 80 - 100 90 - 140 100 - 180             M 1, 3, 14 

Construction time months 8 6 5 4 4   5 8 3 5     13 

Start time min 20 15 10 8 5             N 15 

Availability % 98 99 99 99 99               15 

Degradation with cycling %/1 000 h <0.3 <0.2 <0.1 <0.1 <0.05               15 
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References: 
1 Fuel Cells for Stationary Applications; IEA ETSAP, January 2013 

2 Energy Technology Reference Indicator projections for 2010-2050; JRC, 2014 

3 Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; Energinet.dk, 
May 2012 

4 Stationäre Brennstoffzellen (Projektergebnisse der ARGE-Brennstoffzelle, Advanced Fuel Cell Workshop); H. Wilk, September 2006 

5 FUEL CELLS - Impact and consequences of Fuel Cells technology on sustainable development; D. Oertel and T. Fleischer, March 2003 

6 Technology Roadmap - Hydrogen and Fuel Cells; OECD/IEA, 2015 

7 The cost of domestic fuel cell micro-CHP systems; Staffell and Green, 2012 

8 Best available technologies for the heat and cooling market in the European Union; JRC, 2012 

9 Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants; U.S. Energy Information Administration (EIA), April 2013 

10 Technology Data for Energy Plants - Individual Heating Plants and Energy Transport; Energinet.dk, May 2012 

11 Fuel Cells (Presentation); E. Allen, 2012 

12 Fuel Cells - Selected Entries from the Encyclopedia of Sustainability Science and Technology; K.-D. Kreuer, 2013 © Springer Science+Business Media New York 

13 Levelized Cost of Energy Analysis; Lazard, 2014 

14 The role of hydrogen and fuel cells in providing affordable, secure low-carbon heat; H2FC SUPERGEN, 2014 

15 1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential; NREL, May 2010 

    

Notes: 
A Fuel cells are modular in nature. Therefore, systems can be connected together to create larger installations. This type of FC is primarily focused on smaller 

stationary applications. 
B Based on lower heating value (LHV). 

C Measured operational data from the PEMFC heating device in Dietachdorf, Austria. 

D Lifetime is calculated with 8 000 operation hours per year. End of operating time is defined until > 20 % net power degradation is reached. 

E Temperature resistance of the membrane is a limiting factor. 

F Low temperature applications are suitable for the use of PEMFC technology. Such developments were also carried out by heating equipment manufacturers (e.g. 
Vaillant, Viessmann, etc.) and also tested in the field. 

G Emissions based on fuel consumption (that means if a fossil fuel is reformed to hydrogen, the emissions from reforming process have to be considered). No 
emissions occur if the fuel cell is operated on pure hydrogen by electrolysis. 

H Ref. 13 notes that the prices offered by several manufacturers are falling by 15 - 18 % for each doubling of cumulative systems shipped. 

I Fuel treatment (e.g. methane reformer / electrolyser) is included but no building. Most PEMFC systems are based on platinum catalysts (ensures adequate reaction 
kinetics and thus power density) which makes this FC-type expensive (effective substitutes are scarce). 

J According to Ref. 9, most FC operators do not treat O&M on a fixed basis, and consequently, all O&M expenses are shown on a variable basis. 

K Mainly caused by service and maintenance (e.g. change of filters, fuel cell stacks, etc.). Recommended service is comprised of routine short interval 
inspections/adjustments and periodic replacement of filters (projected at intervals of 2 000 to 4 000 hours). 

L This technology needs hydrogen as fuel as internal reforming is not possible. If another primary fuel should be used, it needs to be reformed into hydrogen in an 
external reformer in advance. However, a variant of the LT PEM can operate directly on diluted methanol. Notice: Especially LT PEMFCs are sensitive to carbon 
monoxide in the fuel gas. LT PEMFC only operates on very clean hydrogen (CO < 50 - 100 ppm). HT PEMFC is more tolerant (CO of appr. 1 % is accepted) (Ref. 3).  

M PEMFC systems exist in low (LT PEM: up to 80 °C) and high temperature (HT PEM: up to 200 °C) varieties, and use proton conducting ionomer (ionic polymer) 
electrolytes in modern cells (Ref. 1). 

N Start-up time from 20 °C ambient temperature. Transient response (10 - 90 % rated power) will be lower than 1 minute. 
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6.3.2 Solid oxide fuel cells 

The solid oxide fuel cell (SOFC) is a high-temperature fuel cell with high operating 

temperatures of 650 – 1 000 °C. The electrolyte of this cell type consists of a solid 

ceramic material, which is capable of conducting oxygen ions, but is nevertheless 

insulating for electrons. Many solid oxide fuel cell projects are still under development, 

but some are already on the market. The SOFC application is particularly interesting for 

the power-to-gas process, which has only relatively low efficiencies with conventional 

technology. With reversibly operated solid oxide fuel cells, on the other hand, current-to-

current efficiencies of up to about 70 % are possible, whereby the efficiency is roughly 

comparable to pumped-storage power plants. 

Electrodes, cathode and anode are mounted on both sides of the electrolyte layer. They 

are gas-permeable electrical conductors. The oxygen-ion-conducting electrolyte is 

provided as a thin membrane in order to be able to transport the oxygen ions with little 

energy. This only works at high temperatures. The outer side of the cathode facing away 

from the electrolyte is surrounded by air, the outer anode side of the fuel gas. Unused air 

and unused fuel gas as well as combustion products are suctioned off. 

Due to the high application temperature, it is possible to use less noble (more cost-

effective) materials, than the PEMFC and simultaneously achieve high power densities 

and high efficiencies. However, the high operating temperature is also the reason for 

almost all technical challenges. Mechanical stresses in operation have their origin mainly 

in temperature differences in the cell and by different thermal expansion coefficients of 

the materials. In addition there is the increased tendency to creep or oxidation processes 

or high-temperature corrosion. 

 

At the moment not so many SOFC applications in DH systems exist. Especially in Europe 

there are just only few plants, mostly with demonstration character. That means the 

given CAPEX breakdown structure could vary, particular when the costs for the fuel cells 

decrease with higher market penetration. 

 

Figure 44: CAPEX breakdown of solid oxide fuel cells  
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Table 39: Overview of solid oxide fuel cells 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Typical capacity size MWel 0.1 - 0.5             A 1 

Electrical efficiency @peak electrical 
load % 

53 53 55 59 61             

B 

2 

25 % load 45 50 52 53 55             3 

Thermal efficiency @peak thermal load % 32 32 32 34 34             2 

Electricity consumption %/MWth 4 4 3.5 3.5 3   3 5 2 4   C 4 

Technical lifetime years 5 6 10 12 15   3 8 10 20   D 5, 6 

                              

Steam supply   - - - - -    -- (-)  -- (-)        

Hot water   (-) (-) (-) (-) (-)    - o - o       

Warm water   (o) (o) (o) (o) (o)    o (+) o  +       

Low temperature   + + + + +   (+)   ++ (+)  ++       

B. Environmental data (fuel: natural gas)       

CO2 g/MJth 170 170 170 170 170             

E 

5 

SO2 g/GJth 0 0 0 0 0             5 

NOX g/GJth 3.7 3.7 3.7 3.7 3.7             5 

CH4 g/GJth 25 25 25 25 25             5 

N2O g/GJth < < < < <             5 

Particles g/GJth negligible             5 

C. Financial data                                        

Quality of CAPEX estimation   low       

Learning rate % 15 - 18             F 7 

Nominal investment M€/MWel 15 8 4 3 2   6 15 1.5 5   G 2, 6, 7, 8 

 - of which equipment M€/MWel 12 6 2.8 2 1.2   4.5 6.5 1.0 1.4     9, 10, 11, 12 

 - of which installation M€/MWel 3 2 1.2 1 0.8   1.5 3.5 0.6 1.0     9, 10, 11, 12 

Fixed O&M k€/MWel/a N/A N/A N/A N/A N/A             H 9 

Variable O&M excl. el. and fuel costs €/MWhel 50 40 30 20 10             I 2, 3, 9, 13 
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X. Technology specific data       

Heat to power ratio 1 0.6 0.6 0.58 0.57 0.56               2 

Fuel to cell   Hydrogen, Natural gas, biogas, coal gas   J 5 

Working temperature °C 750 750 650 650 650   500 1 100 400 800   K 1, 3, 14 

Construction time months 10 8 6 5 4   5 10 3 5     13 

Start time min 45 30 25 20 15   20 50 15 60   L 15 

Availability % 98 99 99 99 99               15 

Degradation with cycling %/1 000 h <0.5 <0.3 <0.2 <0.2 <0.1               15 

 

References: 
1 Fuel Cells for Stationary Applications; IEA ETSAP, January 2013 

2 Energy Technology Reference Indicator projections for 2010-2050; JRC, 2014 

3 Technology Data for Energy Plants - Generation of Electricity and District Heating, Energy Storage and Energy Carrier Generation and Conversion; Energinet.dk, 
May 2012 

4 Stationäre Brennstoffzellen (Projektergebnisse der ARGE-Brennstoffzelle, Advanced Fuel Cell Workshop); H. Wilk, September 2006 

5 FUEL CELLS - Impact and consequences of Fuel Cells technology on sustainable development; D. Oertel and T. Fleischer, March 2003 

6 Technology Roadmap - Hydrogen and Fuel Cells; OECD/IEA, 2015 

7 The cost of domestic fuel cell micro-CHP systems; Staffell and Green, 2012 

8 Best available technologies for the heat and cooling market in the European Union; JRC, 2012 

9 Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants; U.S. Energy Information Administration (EIA), April 2013 

10 Technology Data for Energy Plants - Individual Heating Plants and Energy Transport; Energinet.dk, May 2012 

11 Fuel Cells (Presentation); E. Allen, 2012 

12 Fuel Cells - Selected Entries from the Encyclopedia of Sustainability Science and Technology; K.-D. Kreuer, 2013 © Springer Science+Business Media New York 

13 Levelized Cost of Energy Analysis; Lazard, 2014 

14 The role of hydrogen and fuel cells in providing affordable, secure low-carbon heat; H2FC SUPERGEN, 2014 

15 1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential; NREL, May 2010 

    

Notes: 
A Fuel cells are modular in nature. Therefore, systems can be connected together to create large installations (to the range of megawatt capacities). 

B Based on lower heating value (LHV). 

C Measured operational data from the SOFC System in Attnang-Puchheim, Austria. 

D Lifetime is calculated with 8 000 operation hours per year. End of operating time is defined until > 20 % net power degradation is reached. 

E Emissions based on fuel consumption. None of the listed emissions occurs if fuel cell is operated on pure hydrogen by electrolysis. 

F Ref. 13 notes that the prices offered by several manufacturers are falling by 15 - 18 % for each doubling of cumulative systems shipped. 

G Fuel treatment (e.g. methane reformer / electrolyser) is included but no building. At the moment fuel cells have high investment costs, but relevant stakeholder 
(e.g. Department of Energy (DoE), USA; Japanese ministry METI/NEDO) projects long term capital cost for larger systems below MEUR 3/MWel till 2050. Small-
scale fuel cells are projected between MEUR 3 - 5/MWel. 

H According to Ref. 9, most FC operators do not treat O&M on a fixed basis, and consequently, all O&M expenses are shown on a variable basis. 

I Mainly caused by service and maintenance (e.g. change of filters, fuel cell stacks, etc.). Recommended service is comprised of routine short interval 
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inspections/adjustments and periodic replacement of filters (projected at intervals of 2 000 to 4 000 hours). 

J Coal gas: internal reforming in the fuel cells is possible. 

K Depending on the design, SOFCs operates at temperatures between 500 and 1 000 °C. High operating temperature allows cheaper catalysts (like nickel and 
lanthanum to be used in place of platinum), but means that all components must be able to withstand extreme thermal stresses. Ignoble catalysts are more 
tolerant to impurities, so fuel processing is simpler, and in some cases the fuel cell can use sulphur-free methane (CH4) directly as a fuel. Fundamental research 
has been aimed at improving durability and material fatigue. Moreover, there is a trend moving operating intermediate temperature towards 500 – 750 °C. This 
allows a wider range of materials to be used, lowering costs and improving dynamic performance (Ref. 14). 

L Start-up time from 20 °C ambient temperature. Transient response (10 - 90 % rated power) will be between 1 - 3 minutes. 
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7 Other / Auxiliary Systems 

7.1 District heating substations 

A DH substation is a technical device which transfers the heat of a district heating 

network to the customer's heat distribution system (also known as secondary side), 

thereby setting the supply temperature desired by the customer in his distribution 

system. Substations can be operated on the primary side with steam or hot water. 

Depending on the application, there are different requirements for a substation. For 

example, each building has a specific heating requirement, each district heating company 

has specific technical requirements to the connections and each customer individual 

heating habits. These factors influence the selection of the stations for the heat 

distribution in buildings and places or in small and large district heating networks. 

The size of a station is determined by the heat demand of the customer to be supplied. 

Temperature and pressure of the primary power supply determine whether a station 

should be operated directly or indirectly. 

In addition, many district heating networks define special technical connection conditions, 

which require special components / solutions. Finally, the number and type of heating 

circuits as well as the type of drinking water heating influence the selection of the 

required appliances. 

Stations in the power range of 10 up to 500 kW are standard products. These can be 

designed for direct or indirect operation, with one or more heating circuits. Furthermore, 

hot water preparation solutions are offered in various variants. 

Substations mainly consist of heat exchangers, side strainers (primary and secondary), 

control valve, heat meter and other small devices. 

Main tasks of substations are: 

— Measuring the heat consumption of the customer by the heat meter 

— Controlling the primary differential pressure 

— Limitation of the flow rate of the district heating water to its contract performance 

— Hydraulic separation of the district heating system to the house installation by heat 

exchanger 

— The limitation of the secondary return temperature by means of a temperature sensor 

arranged in the secondary circuit (customer circuit) which automatically resets the 

heating power or sets the flow temperature of the customer higher than the flow 

temperature dependent on the outside temperature 

— Limitation of the supply temperature by a safety temperature regulator 

— Hot water preparation 
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The following CAPEX breakdown structure is based on small-scale substations for single-/ 

multifamily houses. The substation itself has the highest, as it is assumed that enough 

space is available at the installation site and therefore just small installation effort is 

necessary 

Figure 45: CAPEX breakdown of small-scale substations for single-/ multifamily houses 
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Figure 46: CAPEX breakdown of large-scale substations for apartment block / industrial purposes 
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Table 40: Overview of small-scale substations for single-/ multifamily houses 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 0.01 - 0.5             A 1, 2 

Total efficiency, nominal load  % 98 98 98 98 98   97 99 97 99   B 1, 2, 3 

Total efficiency, annual average % 95 95 95 95 95   93 99 93 99   C 1, 2, 3 

Electricity consumption %/MWhth negligible             D 1, 2 

Technical lifetime years 20 20 20 20 20   20 >20 20 >20     1, 2, 3, 4 

                              

Steam supply    N/A N/A N/A N/A N/A             E   

Hot water   (-) (-) (-) (-) (-)   - o - o   

F 

  

Warm water   (o) (o) (o) (o) (o)   o o o o     

Low temperature   (+) (+) (+) (+) (+)   o + o +     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0                 

SO2 g/GJth 0 0 0 0 0                 

NOX g/GJth 0 0 0 0 0                 

CH4 g/GJth 0 0 0 0 0                 

N2O g/GJth 0 0 0 0 0                 

Particles g/GJth 0 0 0 0 0                 

C. Financial data                                        

Quality of CAPEX estimation   high       

Learning rate %                       G   

Nominal investment M€/MWth 0.076 0.074 0.073 0.072 0.070   0.035 0.210 0.030 0.200   H 1, 2, 5, 6 

 - of which equipment M€/MWth 0.060 0.059 0.059 0.058 0.056   0.055 0.065 0.050 0.060     1, 2 

 - of which installation M€/MWth 0.016 0.015 0.014 0.014 0.014   0.009 0.019 0.010 0.020   I 1, 2 

Fixed O&M k€/MWth/a 0.125 0.125 0.125 0.125 0.125   0.10 0.15 0.10 0.15   J 1, 2 

Variable O&M excl. electricity costs €/MWhth 0 0 0 0 0             K 1, 2, 3 

X. Technology specific data       

Cost function (estimation) M€/MWth Invest(x)=0.026x-0.46   L 7 

Construction time days 1 1 1 1 1   0.5 >2 0.5 >2   M 1, 2 
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Notes: 

A Given sizes are typical for one-family houses up to multy-family houses (small apartment complex). 

B The losses of DH substations depend on the quality of insulation and could be counted to 1 - 2 %, resulting in 98 - 99 % efficiency. 

C Due to part load operation the annual efficiency could be lower as the losses increases in relation. 

D The electrical consumption of DH substations through the control is negligibly small. Typically the actuator has a consumption of appr. 5 - 10 W but is not often in 
operation (should be lower than 10 minutes a day - if it is more frequently in operation, this indicates a poor adjustment). Pump is not included because it depends 
on the situation of the secondary side installation. 

E Steam application is not any more state of the art for DH customers (especially for residential buildings). 

F DH substation could be used for a broad temperature range. The technical configuration depends essentially on the temperature levels and differences. 

G No high learning rates are seen for this technology as standardized and well developed components are used. 

H Given CAPEX estimation (2015-2050) is based on a 100 kWth DH substation. For other thermal power ranges the given cost function could be used. Note: The cost 

estimation assumes that enough space is available at the installation site. That means the highest costs are caused by the substation itself. 
I Installation effort to connect DH substation on primary side: 4 - 8 h x 2 persons in the range of 10 - 500 kWth depending on-site conditions. 

J Note, that the fixed O&M costs stay constant independent of the substation size. Manufacturers recommend maintenance (leak test, checking strainer, function 
check, ...) every two years. Maintenance effort will be estimated to 2 h every second year (manufacturers estimate the effort with EUR 250 incl. travel lump sum 
which equals EUR 125 per year). 

K Except electricity, no variable O&M costs occur. 

L Cost function is based on the given reference and adjusted to prices from manufacturers and replicates full costs. x…Heat generation capacity [10 kWth … 500 kWth] 

M Includes only interconnection on site. Construction time respectively necessary man hours could rapidly increase with difficult accessable locations (this must be 
considered specifically). 
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Table 41: Overview of large-scale substations for apartment block / industrial purposes 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat generation capacity MWth 1 - 20             A 1, 2 

Total efficiency, nominal load  % 99 99 99 99 99   98 100 98 100   B 1, 2, 3 

Total efficiency, annual average % 98 98 98 98 98   95 100 95 100   C 1, 2, 3 

Electricity consumption %/MWhth negligible             D 1, 2 

Technical lifetime years 20 20 20 20 20   20 >20 20 >20     1, 2, 3, 4 

                              

Steam supply   - - - - -   -- (-) -- (-)   E   

Hot water (up to 140 °C)   (-) (-) (-) (-) (-)   - o - o   

F 

  

Warm water (up to 105 °C)   (o) (o) (o) (o) (o)   o o o o     

Low temperature (up to 70 °C)   (+) (+) (+) (+) (+)   o + o +     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0                 

SO2 g/GJth 0 0 0 0 0                 

NOX g/GJth 0 0 0 0 0                 

CH4 g/GJth 0 0 0 0 0                 

N2O g/GJth 0 0 0 0 0                 

Particles g/GJth 0 0 0 0 0                 

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate %                       G   

Nominal investment M€/MWth 0.100 0.099 0.098 0.097 0.095   0.085 0.150 0.080 0.130   H 1, 2, 5, 6 

 - of which equipment M€/MWth 0.030 0.029 0.029 0.029 0.028   0.02 0.04 0.019 0.038     1, 2 

 - of which installation M€/MWth 0.070 0.070 0.069 0.068 0.067   0.06 0.08 0.057 0.076     1, 2 

Fixed O&M k€/MWth/a 0.5 0.5 0.5 0.5 0.5   0.3 0.7 0.3 0.7   I 1, 2 

Variable O&M excl. electricity costs €/MWhth 0 0 0 0 0             J 1, 2, 3 

X. Technology specific data       

Construction time months 0.5 0.5 0.5 0.5 0.5   0.3 1 0.3 1   K   
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Notes: 

A Given sizes are used for big apartment complex and industrial purposes. 

B The losses of DH substations depend on the quality of insulation and could be counted to 1 %, resulting in 99 % efficiency. 

C Due to part load operation the annual efficiency could be lowered as the losses increases in relation. 

D The electrical consumption of DH substations through the control is negligibly small. Typically the actuator has a consumption of appr. 15 - 20 W but is not often in 
operation (should be lower than 10 minutes a day - if it is more frequently in operation, this indicates a poor adjustment). Pump is not included because it depends 
on the situation of the secondary side installation. 

E Steam applications could significantly increase the investment costs due to special requirements. 

F DH substation could be used for a broad temperature range. The technical configuration depends essentially on the temperature levels and differences. 

G Equal to small DH substations, no high learning rates are seen for this technology as standardized and well developed components are used. The future development 

of raw material prices (especially steel price) will have the strongest influence. 
H Given cost estimation is based on a 10 MWth DH substation. Note: Substations of these sizes are mainly individual customized products. That means, that in large-

scale applications the substation itself is only a small part of the investment cost. Most costs are dedicated through the given conditions on-site, especially when an 
own building or adaptions are needed. 

I Maintenance check (leak test, checking strainer, fuction check, etc.) will be done every year and the effort will be a little bit higher in comparison to small DH 
substations. 

J Except electricity, no variable O&M costs occur. 

K Construction time for large-scale substations is very on-site specific and could have a high spread. 
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7.2 District heating piping networks 

District heating (DH) systems provide heat for space heating and hot water to residential, 

commercial and service buildings, and to industrial users. Heat is generated centrally or 

derived from an existing heat source and distributed to consumers by pipelines. As the first 

systems were mainly operated by steam (also known as 1st Generation DH systems), these 

days hot water used.  

Until about 40 years ago, district heating pipes were installed almost exclusively in concrete 

ducts. This type of laying is found in new discoveries because of the high costs only in 

special cases. Nowadays, ground-buried plastic sheath pipes are used as district heating 

pipes. Typically, the pipes consist of the steel medium pipe, the polyurethane thermal 

insulation and the plastic sheath. In most cases, sensors are also installed for a leak 

warning system. At high load, e.g. crossing roads, steel mantle pipes are also used. For 

local heating networks with low flow temperatures, flexible plastic medium pipes are 

increasingly used. 

Most heating water networks are designed for a maximum supply temperature of 130 °C. 

This is due to the highest temperature that the polyurethane heat protection of today's 

most widely used plastic sheathed pipes can withstand in continuous operation. This 

temperature, however, is only required for high heat demand peaks in winter. As a rule, the 

feed temperature is moved slidingly between 70 °C and 130 °C as a function of the ambient 

air temperature. The lowest supply temperature of 70 °C is necessary to ensure domestic 

hot water preparation at 60 °C. The return temperature is normally designed to be below 

70 °C. Low water temperatures in both the supply and return line are energetically 

advantageous because the district heat extraction can be carried out in CHP plants at lower 

pressures and thus a higher current yield is achieved. This also makes heat production costs 

more favourable. Furthermore, a lower water temperature also reduces the heat losses in 

the network. In modern grids, a constant return temperature of 50 °C is also aimed in 

addition to the sliding temperature control in the supply line. 

Indicators such as connection density (connections per km²) and linear heat density 

(MWh/(m.a)) are indicators for the first assessment of the economic viability of the district 

heating supply of potential supply areas or consumers. 

Since prices for materials and work are constantly changing and the planning process 

between a pre-study and implementation of district heating systems can take several years, 

any adjustments to the costs must be taken into account during implementation. Seasonal 

differences are also possible, in particular, for civil engineering work. Compared to 

favourable conditions, additional costs can arise due to specific situations, in particular due 

to the high complexity of the line management (for example cobblestone pavements, river 

crossings, motorways, railway tracks). 

Guideline values for laying costs of district heating pipes as a function of diameter are 

shown in the following CAPEX breakdown structure. Civil engineering works costs account 

between 40 to 50 %. However, they are strongly dependent on the soil structure and the 

degree of difficulty of the laying. In the inner city area, the laying costs can therefore be 

considerably above the specified bandwidth. The other major costs are caused by the pipes 

themselves.  
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Figure 47: CAPEX breakdown of DH piping networks 

  

 

Estimating DH piping costs on macro-scale 

With the following approach the piping costs for a DH supply area could be estimated. This 

method allows to go from Euro per rout meter (rm) to the macro-scale. Therefore, the 

building density “e11” [m²GFA
12/m²Landarea] and the specific heat demand [kWh/m²GFA.a] has 

to be known.  

Example 

The DH piping cost for a supplying area has to be estimated. The building density “e” is 

assumed to be 0.4 (equals outer city area) and the specific heat demand with 

150 kWh/(m²GFA.a). 

                                           
11 Typical values are: Inner city areas: e ≥ 0.5 | Outer city areas: 0.3 ≤ e < 0.5 | Park areas: 0 ≤ e < 0.3 
12 GFA … Gross floor area 
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Figure 48: Route meter per land area as a function of the building density 

 

Source: Heat distribution and the future competitiveness of district heating, U. Persson and S. Werner, 2011 
(modified) 

Using the graphic above, a value of 14.1 kmrm/km²Landarea could be figured out. With the 

next figure the linear heat density could be determined, which is 4.3 MWh/(rm.a) in this 

case. 

Figure 49: Linear heat densitiy of DH networks as a function of the building density “e” and the 
specific heat demand per ground floor area (GFA) 

Source: Heat distribution and the future competitiveness of district heating, U. Persson and S. Werner, 2011 
(modified) 

Knowing the linear heat density, the average pipe dimension could be calculated with the 

given function “Average pipe dimension”. Furthermore, the costs per route meter could be 

estimated through the given cost function (formulas see in the technology). Multiplying the 

specific costs (EUR/rm) by the route meters per supplied land (first figure) the DH piping 
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network costs could be calculated on macro-scale. The benefit of the given cost function is 

the higher accuracy on macro-scale due to the consideration of different conditions.  

For the given example, the average pipe dimension will be DN 133 and the costs are 

calculated to EUR 563 per route meter. The total DH piping costs on macro-scale could be 

estimated to approx. 8 million Euro. 

Adding the costs for DH substations (cost function is given in the appropriate technology 

table), the total investment costs for a DH piping system could be calculated. 
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Table 42: Overview of DH piping networks 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Linear heat density MWh/(m.a) 1 - 5   1 >5 1 >5   A 1, 2, 3 

Net loss % 10 10 10 10 10   5 20 5 20   B 3, 5 

Electricity consumption %/MWhth 1 1 1 1 1   0.5 1.5 0.4 1.5   C 3, 4 

Technical lifetime years 30 30 35 35 35   25 40 30 45   D 4, 5, 6 

                              

Steam supply   -- -- -- -- --   -- - -- -   E   

Hot water   - - - - -   -- (-) -- (-)   

F 

  

Warm water   (o) (o) (o) (o) (o)   o (+) o (+)     

Low temperature   + + + + +   o ++ o ++     

B. Environmental data       

CO2 g/MJth 0 0 0 0 0               7 

SO2 g/GJth 0 0 0 0 0               7 

NOX g/GJth 0 0 0 0 0               7 

CH4 g/GJth 0 0 0 0 0               7 

N2O g/GJth 0 0 0 0 0               7 

Particles g/GJth 0 0 0 0 0               7 

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate %                       G 8 

Nominal investment €/rm 500 498 496 494 490   300 800 270 750   H 5, 9, 10, 11 

 - of which equipment €/rm 200 199 198 197 196   150 249 147 245     10, 11 

 - of which installation €/rm 300 299 298 297 294   249 348 245 343     10, 11 

Fixed O&M %/CAPEX/a 1 1 1 1 1             I 4, 6, 7, 12 

Variable O&M excl. electricity costs €/MWh N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) €/rm CDH-Pipenetwork(DN) = (270 + 2.2*DN) * (1+fGroundCondition) * (1+fPipingSystem)   J 11, 13, 14 

Average pipe dimension DN DN = 48.6 * ln (linear heat density [MWh/(rm.a)]) + 63   K 4, 13, 15, 16 

Typically pipe dimension DN 20 - 300   L 10 

Suggested flow velocity m/s v.flow = 0.14 * DN^(0.5)   M 14 

Maximum pressure drop Pa/m <200 - 300   N 17, 18 

Temperature differences K 30 - 60   O 3, 9 
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Notes: 

A The linear heat density describes the annual sold heat quantity per trench length. Experience has shown that DH networks should have a linear heat density above 
0.9 MWh/(m.a) in order to be economic feasible. Typical linear heat density values are: rural = 0.9 - 1.7; sub urban = 1 - 2; urban = 1 - >5 MWh/(m.a). 

B The heat losses depend on factors such as linear heat density, distribution temperatures, piping insulation material and average pipe diameter. Heat losses could 
range from 5 - 8 % in densely populated cities up to 25 - 30 % in low heat density areas. 

C Including pumping and MCR effort. The pumping energy required by the distribution system depends on the size and complexity of the network. Typically, pumping 
effort is about 5 - 10 kWhel per MWhth of delivered heat. E.g. For a typical annual temperature difference between supply and return pipes of 35 K and a total 
pressure drop of 6 bar, the relative pumping electricity demand is approx. 0.5 % of the delivered heat. 

D DH networks have long lifetimes over 30 years. For economic assessment calculations a period over 30 years is common. 

E Some distribution networks for industrial plants are supplied with steam at a high temperature level for process heat. Nevertheless, DH systems with steam for 
only heating applications are unusual these days and existing ones are converted to water systems. Disadvantages for steam DH systems are higher investment 
costs and less good controllability. 

F The heat distribution is largely made with plastic casing pipes which limit the continuous operating temperatures to 120 - 140 °C. Note: Higher operating 
temperatures need higher requirements (pressure resistance, steal jacket pipe, etc.) which influence the investment costs. 

G Learning rate is seen as quite low as it is a mature technology. The greatest cost reduction potential is seen in new and faster laying procedures. 

H Given CAPEX estimation (2015 - 2050) is based on a DN 100 piping network. The lower and upper cost estimates are based on realised projects with different pipe 
dimensions (range see "typically pipe dimension" below) and provided by a DH network operator. According to this information, the prices are between EUR 330 - 
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600/rm for unsurfaced areas and between EUR 400 - 750/rm for city areas. Note: As prices for materials and labour are constantly changing and the planning 
process between pre-studies and implementation of district heating systems can take several years, any adjustments to the costs must be taken into account 
during implementation. Seasonal differences are also possible, in particular, for civil engineering work (especially the excavation consumes a high effort and the 
prices are influenced a lot through the respective capacity utilization of the construction companies). Compared to favourable conditions, additional costs can arise 
due to specific situations, in particular due to high complexity of piping routing (for example cobblestone pavements, river crossings, motorways, railway tracks). 

I The annual operation and maintenance costs are often considered to be about 1 % of the total capital investment cost or about 10 - 15 % of the (annual) DH 
distribution costs. 

J The given formula should represent a simplified approach to predict the costs of DH piping networks in EUR per route meters considering pipe diameter, pipe 
material and construction area. The formula is built on published cost data from the listed references. The ground formula is based on a plastic casing pipe with 
ground condition "outer city area". The given factors fGroundCondition and fPipingSystem describes correction factors which should replicate different construction areas and 
pipe materials. Considering different applications the factors have to be adapted as follow fGroundCondition: Construction areas = -50 %; Green areas = -25 %; Outer 
city areas = 0 %; Inner city areas = +25 % | fPipingSystem: Concrete pipe = +75 %; Steel jacket pipe = +40 %; Plastic casing pipe = 0%; Free terrain pipe = -20 %. 
Note: As the formula intends to generalize costs for different circumstances, deviations must be accepted. 

K Formula is based on an investigation of 134 Swedish DH networks or section of networks and shows that, on average, higher linear heat densities require greater 
pipes. Combining the above the formula values indicates systems of high flow designed for low temperature differences between supply and return line. Note: 
Accurate diameter dimensioning is very important because oversizing will lead to much higher investment costs. 

L Most common pipe diameters in DH networks range from DN 20 - 300. Pipe diameters above DN 300 are mostly needed for transport pipes and therefore special 
requirements may apply and also the cost estimation could have a higher spread. 

M The formula is based on indications for flow velocities in district heating pipes (according to the given reference) and depends of the nominal diameter (DN). Flow 
velocities for steam applications in medium and low pressure pipes are commonly between 30 - 50 m/s. 

N 
Different plant planning guides and pipe manufacturers recommend that the pressure drop should not exceed 300 Pa/m. Typical values for planning DH piping 
networks are 90 - 150 Pa/m. 

O Typical supply temperature levels are up to 90 °C for small (rural) and above 130 °C for large (e.g. big cities) DH systems.  
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7.3 Thermal heat storages 

7.3.1 Pit thermal energy storages 

The technology of large-volume seasonal heat storage has been explored in Europe since 

the mid-1970s. The first test facility was implemented in Sweden in late 1970 in the course 

of a national research program. Denmark, in particular, increasingly relies on large-volume 

seasonal storage in combination with appropriately dimensioned solar collectors to supply 

the solar heat produced during the summer months, and in winter for heating purposes. At 

the same time, there are also plans in other countries to implement seasonal storage that 

go beyond the pilot stage. For example, the "Big Solar Graz" project in Austria provides for 

international attention. 

The use of long-term heat storage makes it possible to replace fossil fuels with renewable 

energy sources. In addition, this technology is suitable to use industrial waste heat, to 

reduce peak loads and to create a degree of freedom between electricity and heat 

generation. In this work, the two types pit thermal energy storage (PTES) and Aquifer 

thermal energy storage (ATES) are considered. 

Seasonal storage is used mainly in solar-assisted local heating systems to increase the solar 

coverage of heat demand. Some plants in Denmark reach solar coverage levels of up to 50 

percent. Most of the long-term heat storages are run as a PTES. Due to the pressureless 

design, the maximum usable temperature level is below 100 °C, most of which are charged 

up to 85 °C in practice. The lower usable temperature range is determined by the return 

temperature of the coupled heating network. For most plants in Denmark this is about 

40 °C (which is comparatively low). In order to increase the thermal heat capacity, heat 

pumps are increasingly used. 

The choice for the appropriate storage concept must be explicitly considered for each 

system. Local geological conditions, system integration, required storage capacity, 

performance and temperature levels, number of cycles per year, legal framework must be 

considered. For geothermal heaters and aquifer heat accumulators, higher administrative 

requirements usually apply, especially with regard to water regulations. Ultimately, the 

economic feasibility, taking into account all the full costs, plays a decisive factor. The costs 

are also heavily influenced by local land prices. In the plant concepts of ATES, buffer 

storages are also usually provided to be independent of the limiting effect due to maximum 

loading capacities. 

For implementing long-term storages, it is important to consider that the storages 

(depending on the storage type) require some time to be settled and fully operational. For 

ATES, this can take 2 till up to 5 years. During this phase, the adjacent soil is heated, which 

means that heat losses are also higher. 

The economics of systems with long-term heat storage is determined not only by the costs 

but also depends on the performance of the storage itself and on the system configuration. 

Therefore, no general statement can be made as to which type of memory is most 

economical. Rather, every system has to be examined for itself with regard to the full costs 

(investment, maintenance and operation). Scale effects have the effect that the specific 

investment costs decrease with increasing storage size, and a minimum size of 2 000 m³ of 

water equivalent (WE) is recommended. 

The figure below can be used as a first estimation of the storage size. But especially for 

large solar fractions - and if combined with other technologies - the storage size should be 

carefully optimized with detailed calculations/simulations. 
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Figure 50: First rough estimation of optimal ratio between storage volume and collector area as 

function of solar fraction 

 

Source: Solar district heating guidelines 

PTES are normally built without static construction. They are mainly built by excavation on 

site and are equipped with a heat-insulating cover and a waterproof film. As a heat storage 

medium pure water as well as gravel / sand / rock in combination with water is possible. 

The largest storages with up to 100 000 m³ are located in Denmark. 

Relative to the specific investment costs per m³ (water equivalent), PTES storage is 

somewhat more expensive than ATES. However, the former have advantages in terms of 

thermodynamic properties and are less dependent on the geological conditions. The sealing 

and film lining is a major cost factor. Requirements of the materials to be used are the 

temperature, humidity and pressure resistance as well as a long service life. 

Figure 51: Construction concept of pit thermal energy storages (PTES) 

 

Source: Solites 

The predominant cost components of PTES are the foil liner and the thermal insulation 

(share approx. 50/50 of the main equipment costs). The category “Civil and structural 

works” in the CAPEX breakdown structure includes the excavation works. 
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Figure 52: CAPEX breakdown of pit thermal energy storages (PTES)  
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Table 43: Overview of pit thermal energy storages (PTES) 

         

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat storage volume (water 
equivalent) 

m³WE 20 000 - 200 000             A 1, 2, 3 

Storage capacity kWh/m³WE 60 - 80   50 85 50 90   B 3, 4, 5 

Efficiency, annual average % 50 - 90   40 90 45 95   C 3, 5, 6 

Electricity consumption %/MWhth 1 1 1 1 1   0.8 1.2 0.8 1.2   D 3, 5 

Technical lifetime years 20 20 25 25 25   17 >25 20 >25   E 3, 5 

                              

Steam supply   N/A N/A N/A N/A N/A             
F 

  

Hot water   N/A N/A N/A N/A N/A               

Warm water (up to 90 °C)   o o o o o   o (+) o (+)   G   

Low temperature   + + + + +   (+) ++ (+) ++       

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

H 

  

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   medium       

Learning rate %                       I   

Nominal investment M€/MWth 0.43 0.4 0.38 0.36 0.34   0.30 0.70 0.25 0.60   J 7, 8, 9, 10 

 - of which equipment M€/MWth 0.13 0.12 0.11 0.11 0.10   0.08 0.2 0.07 0.17     11, 12 

 - of which installation M€/MWth 0.30 0.28 0.27 0.26 0.24   0.2 0.32 0.17 0.27     11, 12 

Fixed O&M k€/MWth/a 4.3 4 3.6 3.4 3.2   3.2 4.8 2.4 3.7   K 4, 5, 12, 13 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A                 

X. Technology specific data       

Cost function (estimation) €/m³WE CPTES(VStorage) = 1 900 * Vstorage
-0.33   L 4 

Cost function (estimation) M€/MWth CPTES(Q.th) = 0.909 * Q.th
-0.33   M 4 

Construction time months 9 9 8 8 8   7 12 6 12   N 7, 8 
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References: 

1 Ranking List of European Large Scale Solar Heating Plants; Solar District Heating (SDH), December 2016 (http://solar-district-
heating.eu/ServicesTools/Plantdatabase.aspx) 

2 Solarheatdata; Solarheatdata.eu, July 2017 (http://solarheatdata.eu/) 

3 Saisonalspeicher.de - Das Wissensportal für die saisonale Wärmespeicherung; Solites (Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische 
Energiesysteme), 2016 (http://www.saisonalspeicher.de/) 

4 Technology and Demonstrators - Technical Report Subtask C - Part C1; IEA SHC Task 52 Solar Heat and Energy Economics in Urban Environments, January 2016 

5 Seasonal thermal energy storage; IEA SHC Task 45 Large Systems, June 2015 

6 Solar district heating guidelines - Storage; SDH, August 2012 (http://solar-district-heating.eu/) 

7 Dronninglund Fjernvarme - Seit 2014 solarthermische Deckungsrate von 41 %; Article in the magazine "Wärmewende-Info", June 2015 

8 Entwicklung der großen Solarthermie in Dänemark; Article in the magazine "Wärmewende-Info", February 2015 

9 Thermal Energy Storage - Technology Brief; IEA-ETSAP and IRENA, January 2013 

10 Technology Data for Energy Plants; Danish Energy Agency and Energinet.dk, May 2012 

11 Solar district heating guidelines - Storage; Solites, August 2012 

12 Technisch-wirtschaftliche Analyse und Weiterentwicklung der solaren Langzeit-Wärmespeicherung; Solites, 2012 

13 SDH Online-Rechner (Online calculator for a quick feasibility study of solar district heating including seasonal storage); Solites (Steinbeis Forschungsinstitut für 
solare und zukunftsfähige thermische Energiesysteme), 2013 (http://www.sdh-online.solites.de/) 

    

Notes: 

A Storage sizes are not limited (e.g. planned Storage for "Big Solar Graz") and depends mostly on requirements like area, cover ratio, etc. Recommended minimum 
(due to losses) size is: 2 000 m³ (Ref. 2). 

B The specific storage capacity depends on the achieved temperature differences (supply minus return). The value 60 kWh/m³ equals 50 K and 80 kWh/m³ 60 K 
(delta T). Higher specific storage capacities up to 90 kWh/m³ could be reached through further down cooling (e.g. heat pump). Given values are valid for water 
filled PTES. Using gravel-water capacity will be reduced to 30 - 50 kWh/m³ (the storage volume for 1 m³ water equivalent is appr. 1.3 - 2 m³). 

C Efficiency depends on storage period (h,d,w,m). Heat pumps could be used for further discharging (cooling down the storage medium) which increase the storage 
capacity/efficiency. 

D Calculated on monitoring data of the year 2015. 

E Depending on temperature levels and operating conditions (weak point is the foil; some manufacturers give warranties till 90 °C; Lifetime could be extended by 
replacing a new cover). 

F As these systems are non-pressurized, maximum operation temperatures results to be lower than 100 °C. 

G Although the systems could be designed below 100 °C, in practice they are usually operated between 85 and 90 °C. 

H This technology could help to save emissions. 

I Based on existing cost developments, a reduction of 10 - 20 % (2020 - 2050), caused by replication of pits, pipes, pumps, heat exchangers and control system, 
could be estimated. Nevertheless, no resilient learning rate is known. 

J Given CAPEX estimation (2015-2050) is based on a 100 000 m³WE (≙ 10 MWth) PTES and considers the storage incl. interconnection. According to Ref. 11, no 

significant economy-of-scale for store volumes above 50 000 m³ is seen. The marginal investment cost for increasing the volume is approximately 20 EUR/m³.  
K Data of Solites as there exists no explicit monitoring of fixed and variable O&M costs for pilot plants. Numbers are valid for the operating time after commissioning 

and the adjustment and initial optimization of the process control and instrumentation technology. 
L Formula is based on given reference and adjusted with costs of realised storages. The cost function could be used in the range from 10 000 to 200 000 m³WE. 

M Given cost formula is converted from EUR/m³WE in MEUR/MWth assuming a specific heat capacity of 70 kWh/m³WE and a dis-/charging duration of 700 h (MW = 70 
kWh/m³WE * m³WE / 700 h / 1 000). Conversion factors are chosen based on the Marstal storage. 

N Construction time could be reduced through local conditions (existing excavations e.g. abandoned gravel/sand pit). 
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7.3.2 Hot water tank storages 

Tank storages are mainly used for buffering daily peaks. Moreover they allow to optimize 

CHP units by decoupling the electric and thermal demand.  

Hot water tank storages can be separated into 3 major types: 

— Unpressurized storages (max. temperature ~ 98 °C) 

— 2-zone storages (max. temperature ~ 120 °C) 

— Pressurized storages (max. temperature ~ 150 °C) 

Relevant for temperature and pressure levels of the storage are the temperature of the 

main source and the pressure level of the district heating network. 

A good empirical formular for designing a heat storage is 50 m³/MW peak load of thermal 

output. Moreover heat storages are designed for a storage capacity of 5 to 12 h. 

The cost components included in the CAPEX estimate for shown below are: 

Figure 53: CAPEX breakdown of hot water tank storages 

 

 

Main equipment consists of the steel tank, the insulation and additional steel structures for 

O&M (staircases, roof platform) 

Balance of plant consists mainly of the compensating reservoir (pressure tanks) or the 

steam system (2-zone storages or pressurized tanks) and additional piping or charge 

pumps. 
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Table 44: Overview of hot water tank storages 

          

  Unit 2015 2020 2030 2040 2050   Uncertainty (2020)   Note Ref 

A. Energy/technical data   Lower Upper       

Heat storage volume m³ 100 – 50 000         A 4, 5 

Heat generation capacity MW 0.4 - 190         B   

Net Storage capacity MWh 3 – 1 500         C   

Total efficiency, nominal load  % 98 98 98 98 98   97 99   D   

Total efficiency, annual average % 92 92 92 92 92   91 96   E 2 

Electricity consumption %/MWth 1 1 1 1 1   0 1       

Technical lifetime years 25 25 25 25 25   20 50       

                          

Steam supply   NA NA NA NA NA   NA NA       

Hot water    (o) (o) (o) (o) (o)   (o) o   F   

Warm water   o o o o o   o o       

Low temperature   o o o o o   o o       

B. Environmental data       

CO2 g/MJ                   G   

SO2 g/GJ                   G   

NOX g/GJ                   G   

CH4 g/GJ                   G   

N2O g/GJ                   G   

Particles g/GJ                   G   

C. Financial data                        

Quality of CAPEX estimation   medium       

Nominal investment per power output M€/MWth 0.088 0.088 0.088 0.088 0.088   0.072 0.144   H, I 1,3, 4, 5 

 - of which equipment M€/MWth 0.032 0.032 0.032 0.032 0.032   0.024 0.072     3 

 - of which installation M€/MWth 0.056 0.056 0.056 0.056 0.056   0.048 0.072     3 

Fixed O&M k€/MWth/a 0.4 0.4 0.36 0.36 0.36   0.16 0.8   I, J   

Variable O&M per MWh €/MWh NA NA NA NA NA   NA NA   K   

X. Technology specific data                        

Cost function per thermal power output(estimation) M€/MWth Invest(x)=(-64*x+184 000)*10-6  M  

Cost function per storage capacity (estimation) M€/MWhth Invest(x)=(-8.0*x+23 000)*10-6   L  

Nominal investment per storage capacity M€/MWh 0.011 0.011 0.011 0.011 0.011   0.009 0.018   H, I 1,3, 4, 5 

 - of which equipment M€/MWh 0.004 0.004 0.004 0.004 0.004   0.003 0.009     3 

 - of which installation M€/MWh 0.007 0.007 0.007 0.007 0.007   0.006 0.009     3 

Fixed O&M per storage capacity k€/MWh/a 0.05 0.05 0.045 0.045 0.045   0.02 0.10   I, J   
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References: 

1 Technology Data for Energy Plants, Danish Energy Agency , 2012 & 2016 

2 
Beitrag zur thermodynamischen Analyse und Bewertung von Wasserwärmespeichern in 
Energieumwandlungsketten, Huhn 2006 

3 Construction company information 

4 
Projects: presurized heat storage Wien Simmering, two zone storages in Nuremberg (33 Tm³), Duisburg (43 
Tm³), Potsdam (40 Tm³) 

5 Project information 3 000 m³ pressurized, Germany, 2016 

 

Notes: 

A 
Biggest known pressure storage tanks are around 6 000 m³, unpressurized and 2-zone tanks are able of much 
higher volumes.  

B Assumptions: 30 K temperature difference, 12,5% change in total volume per hour 

C 
Assumptions: 30 K temperature difference, 15% unused storage volume (separation layer, volume below 
(above) inlet diffusors) 

D 
External heat losses ~ 2% (calculation in accordance to AGFW FW 313 and translated with the following 
assumption: storage cycle ones a day, 90/60 °C, outdoor temperature 10 °C) 

E 
Also includes internal heat losses ~ 5% (exegetic losses due to temperature movement in the separation layer 
or external losses within the compensating reservoir (when having a pressure storage)) 

F 
Higher temperature difference in this systems will lead to higher capacities but due an higher overpressure and 
following 2014/68/EU requirements investment cost are much higher 

G Environmental impacts depends on how the used thermal power was produced 

H 
Price basis net storage capacity. Valid for unpressurized and 2-zone storages, additional invest for pressurized 
storages: +20 to 40% (depending on pressure level, 40% appr. at + 10 bar) 

I Cost basis relates to bigger tanks (30 Tm³), smaller tanks (100 m³) apr. 200% higher 

J Pressurized tanks need periodic test from testing authorities, costs of apr. 10 T€/storage/a are not included 

K Variable O&M mainly depending on temperature losses/ cost of stored thermal energy 

L x…Heat storage capacity [3 MWhth … 1 500 MWhth] 

M 
x…Heat storage output [1 MWth … 200 MWth]. Conversion between storage heat capacity and power output: full 
discharge of the storage in 8 h 
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7.3.3 Aquifer thermal energy storages 

Some locations have geologically good conditions to use aquifers to store thermal energy. 

An aquifer thermal energy storage (ATES) is an underground thermal energy storage 

(UTES) technology which could be used as a temporary or as a seasonal storage of cold and 

heat. Generally this thermal energy storage performs at very low temperatures and the 

thermal energy accumulated cannot be used directly. The aquifer is accessed by at least two 

wells (an injection and extraction, or hot and cold well) or multiples of two wells (typically) 

and screened in the same groundwater aquifer. There is no groundwater consumption as it 

circulates in a loop. ATES systems have start-up times of 2 to 5 years to reach the normal 

operating conditions. During this time the underground around the seasonal storage has to 

be heated up, which causes higher losses than in the long-time operation. That means, that 

the system efficiency is lower in the first years of plant operation than after. 

Although there exist some temporary ATES systems for heat / cool utilizations, only one 

ATES is designed as a seasonal storage for a district heating system. This plant is located in 

Rostock, Germany and was built in 2000 as a pilot project. The maximum temperature of 

the storage is limited to 50 °C as higher temperatures may cause a change of the ground 

water chemistry. Such storage types cannot be thermally insulated against the 

surroundings. Hence, heat storage at high temperatures (> 50 °C) is normally only efficient 

for large storage volumes (more than 20 000 m³ of ground volume) with a favourable 

surface to volume ratio. The concept of Rostock uses also a heat pump with the storage as 

source. As the ATES is limited for charging/discharging capacities, a buffer storage as 

hydraulic separation is used which allows different flows. Furthermore, these storage types 

are subject to higher requirements for the local subsoil as well as to the approval 

procedures. 

Figure 54: Construction concept of aquifer thermal energy storages (ATES) 

 

Source: Solites 

The cost structure is based on the ATES of Rostock, Germany. The category “Main 

equipment” includes the drilling, the expansion of the wells, the well construction, etc. BOP 

mainly consists of the charging/discharging devices which includes the protective gas 

system as well as the underground pipelines and the system technology of the storage 

circuit in the heating station. As special requirements for materials and installations occur 

due to the thermal water circuit, the connecting pipes to the heating station and the plant 

engineering in the heating station are included in the aquifer heat storage, although they 

are not directly connected to the storage structure. 
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Figure 55: CAPEX breakdown of aquifer thermal energy storages (ATES) 
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Table 45: Overview of aquifer thermal energy storages (ATES) 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Heat storage volume (water 
equivalent) 

m³WE 1 000 - 20 000             A 1 

Storage capacity kWh/m³ 30 - 40   60 80 60 80   B 2, 3 

Efficiency, annual average % 40 - 60   30 70 35 75   C 2, 4, 5, 6 

Electricity consumption %/MWhth 3 3 3 3 3   2 5 2 5   D   

Technical lifetime years 35 35 40 40 45   30 40 35 >45   E 7 

                              

Steam supply   N/A N/A N/A N/A N/A             

F 8 Hot water   N/A N/A N/A N/A N/A             

Warm water   N/A N/A N/A N/A N/A             

Low temperature (up to 50 °C)   o o o o o   o (+) o (+)   G 9 

B. Environmental data       

CO2 g/MJth 0 0 0 0 0             

H 

  

SO2 g/GJth 0 0 0 0 0               

NOX g/GJth 0 0 0 0 0               

CH4 g/GJth 0 0 0 0 0               

N2O g/GJth 0 0 0 0 0               

Particles g/GJth 0 0 0 0 0               

C. Financial data                                        

Quality of CAPEX estimation   low       

Learning rate %                       I 2, 10 

Nominal investment M€/MWth 1.8 1.8 1.76 1.72 1.70   1.0 4.0 0.8 3.5   J 1, 10, 11 

 - of which equipment M€/MWth 0.54 0.54 0.53 0.52 0.50   0.36 0.72 0.34 0.68   
K 

11 

 - of which installation M€/MWth 1.26 1.26 1.23 1.20 1.20   1.08 1.44 1.02 1.36   11 

Fixed O&M k€/MWth/a 1.8 1.8 1.7 1.7 1.7   1.3 3.6 1.2 3.5   
L 

11 

Variable O&M excl. electricity costs €/MWhth N/A N/A N/A N/A N/A             11 

X. Technology specific data       

Cost function (estimation) €/m³WE CATES(VStorage) = 9 747 * Vstorag
-0.57   M 11 

Cost function (estimation) M€/MWth CATES(Q.th) = 0.744 * Q.th
-0.57   N 11 

Construction time months 4 4 3 3 3   3 8 2 5   O 1 
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References: 
1 Saisonalspeicher.de - Das Wissensportal für die saisonale Wärmespeicherung; online available: http://www.saisonalspeicher.de/ 

2 Seasonal thermal energy storage; IEA SHC Task 45 Large Systems, June 2015 

3 Seasonal Ground Solar Thermal Energy Storage - Review of Systems and Applications; Pavlov, G. K., & Olesen, B. W., 2011 

4 Thermal Energy Storage - Technology Brief; IEA-ETSAP and IRENA, January 2013 

5 A Life Cycle Cost Analysis of Large-scale Thermal Energy Storage Technologies for Buildings using Combined Heat and Power; K. Gaine, A. Duffy, July 2010 

6 Underground Thermal Energy Storage; Kun Sang Lee, 2013 (© Springer-Verlag London) 

7 The Central Solar Heating Plant with Aquifer Thermal Energy Store in Rostock - Results after four years of operation; Solites, June 2004 

8 Status and recommendations for RD&D on energy storage technologies in a Danish context; Danish Energy Authority (EUDP and Green Labs DK), Energinet.dk 
(ForskEL and ForskVE), Danish Council for Strategic Research, Danish Energy Association (ELFORSK), February 2014 

9 Solar district heating guidelines - Storage; Solites, August 2012 

10 Technology Data for Energy Plants; Danish Energy Agency and Energinet.dk, May 2012 

11 Technisch-wirtschaftliche Analyse und Weiterentwicklung der solaren Langzeit-Wärmespeicherung; Solites, 2012 

    

Notes: 
A Plant of Rostock (DE) with 20 000 m³ soil accumulation (equals 5 000 m³ water equivalent) and two well drillings with each 30 m depth. The aquifer layer is 

situated in a depth of 15 – 30 m below ground surface and the fountain productivity in each case is 15 m³/h. Storage sizes are not limited itself and depends 
mostly on requirements like geothermal and ground conditions, cover ratio, etc. Recommended minimum (due to losses) size is: 1 000 m³ (Ref.2). Geological 
requirements are: Natural aquifer layer, high hydraulic conductivity, confining layers on top and below, no or low natural ground water flow, suitable water 
chemistry at high temperatures (Ref. 3). 

B Storage volume for 1 m³ water equivalent: 2 - 3 m³. 

C Efficiency depends very on geological structure and temperature levels. Heat pumps could be used for further discharging (cooling down the storage medium) 
which increase the storage capacity/efficiency. Storing higher temperatures, thermal losses through the bedrock, the sides and the top soil become more 
significant. 

D Assumed electrical consumption including pumping effort for the drillings. 

E Life time for the ATES in Rostock was assumed with 40 years. Attention: life time depends very on time-limited permits from authorities. Life time of other 
components (e.g. pumps, piping, etc.) is very depending on the groundwater chemistry. 

F According to Ref. 8, ATES-systems above 50 °C operating temperatures are named HT-UTES (high-temperature underground thermal energy storage). For high 
temperature storage, above 100 °C, deeper wells of over 200 m are needed in order to reduce heat losses. This has a significant impact on the cost of the project 
and needs to be examined closely (Ref. 5). In Europe, only one demonstration project with HT-UTES in a deep reservoir (> 1 000 m) is known at Neubrandenburg 
(DE). In this plant, HT-UTES is performed in the approx. 1 250 m deep Upper Postera sandstone reservoir. The project was initiated in 2004, and hot water of 80 
°C is stored in the reservoir which has a virgin temperature of 55 °C. Worldwide, only one other commercial HT-UTES project with storage temperatures > 60 °C 
exist at the "Reichstag" building in Germany (Ref. 8). 

G ATES storages are designed for a maximum temperature of 50 °C in order to reduce the heat losses and to avoid water treatment. The storage in Rostock is 
designed for 50 °C supply and 30 °C return temperature. Although, monitoring values from 2002 that shown that the design values were not reached (supply: 44 
°C, return: 36 °C). 

H This technology could help to save emissions. 

I Based on existing cost developments, a reduction of 5 - 20 % (2020 - 2050), caused by replication of exploitation, pipes, pumps, heat exchangers and control 
system, could be estimated. Nevertheless, no resilient learning rate is known. 

J CAPEX estimation is done for a 5 000 m³WE (≙ 0.21 MWth) ATES based on the combined cost curve for BTES & ATES (€/m³) given in Ref. 11. Cost estimation is 

converted from €/m³WE in MEUR/MWth based on an assumed specific heat capacity of 30 kWh/m³WE (planned value of the plant in Rostock) and a dis-/charging 

duration of 700 h (same assumption like PTES) (kW = 30 kWh/m³WE * m³ / 700 h). 
K Cost allocation is done based on the ATES plant in Rostock. 
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L Data of Solites as there exists no explicit monitoring of fixed and variable O&M costs for pilot plants. Numbers are valid for the operating time after commissioning 
and the adjustment and initial optimization of the process control and instrumentation technology. 

M Formula is adapted of the given reference. The cost function could be used in the range from 1 000 to 20 000 m³WE. 

N 
Given cost formula is converted from EUR/m³WE in MEUR/MWth assuming a specific heat capacity of 30 kWh/m³WE and a dis-/charging duration of 700 h (MW = 70 
kWh/m³WE * m³WE / 700 h / 1 000).  

O 
Construction time depends mostly on geological conditions and needed drilling effort. Geological survey and official approvals could be estimated with extra 6 - 8 
months in advance. 
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7.3.4 Phase change material storages 

Phase change material (PCM) storages (also known as latent heat storages) utilize the 

enthalpy of thermodynamic changes of a medium. The principle most frequently used is the 

utilization of the phase transition solid-liquid and vice versa. 

The advantage of latent heat storage as opposed to sensitive heat storage is its high 

storage density by storage and removal at the same temperature level. Further advantage 

is the wide range of melting temperatures as well as the higher storage capacity. Latent 

heat storage systems therefore require significantly less space. On the contrary, in most 

cases, the PCM has a very poor thermal conductivity in the liquid as well as the solid state. 

For the improvement of heat transport, e.g. Aluminium ribs are used. Comparatively high 

costs are the biggest disadvantage. 

Depending on the utilization, different storage designs and materials are required. For DH 

applications, most promising materials are HDPE (high-density polyethylene) and paraffins. 

Whereas the HDPE (melting point at 110 – 130 °C) could be an alternative to pressurized 

water storages and parrafins for applications between 40 – 90 °C. In DH systems the PCM 

stores can be used for smoothing load peaks, network expansions and having smaller 

storage in substations. 

At the moment no PCM storage in a DH grid is known, but some pilot activities are ongoing 

(e.g. one DH operator in Austria is thinking about to install one but the decision is still 

open). That is why, the given figures below have low accuracy and mostly depend on 

estimations and expectations.  

The given cost breakdown structure below is also based on own estimations. The biggest 

costs occur through the storage itself. The main equipment consists of material for the 

shell-and-tube heat exchanger, the thermal oil and the PCM. The shell-and-tube heat 

exchanger consists of steel tubes containing the PCM, the container and the baffles. The 

minor costs will occur due to installation on-site. 

Figure 56: CAPEX breakdown of phase change material storages 
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Table 46: Overview of phase change material storages 

          

  
Unit 2015 2020 2030 2040 2050   

Uncertainty 
(2020) 

Uncertainty 
(2050) 

  Note Ref 

A. Energy/technical data   Lower Upper Lower Upper       

Thermal power MWth 0.001 >>                     A 1, 2 

Efficiency % >95                     B 1, 2, 3 

Electricity consumption %/MWhth 1                     C   

Technical lifetime years 10 - 30+                     D 1 

                              

Steam supply   possible                     

E 4 
Hot water   possible                     

Warm water   possible                     

Low temperature   possible                     

B. Environmental data       

CO2 g/MJth 0                     

F 

  

SO2 g/GJth 0                       

NOX g/GJth 0                       

CH4 g/GJth 0                       

N2O g/GJth 0                       

Particles g/GJth 0                       

C. Financial data                                        

Quality of CAPEX estimation   low   G   

Learning rate %                       H   

Nominal investment M€/MWth <0.1 - 1>                     I 1, 5, 6, 7 

 - of which equipment M€/MWth 0.8                     
J 

  

 - of which installation M€/MWth 0.2                       

Fixed O&M k€/MWth/a N/A                      
K 1, 5 

Variable O&M excl. electricity costs €/MWhth  N/A                     

X. Technology specific data       

Storage capacity kWhth/t 50 - 150                     L 1, 2, 4, 8 

Storage period h, d, w, m h - w                     M 1, 2, 8 

Operating temperature °C -50 - >1 000                     N 3, 4 
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Notes: 
A Due to modular design, almost every size is possible (depends only on the requirements; e.g. like batteries). 

B The technology is characterized by low losses, which mostly depends on the insulation (which has no significant influence on the investment costs). The mobile 
latent heat storage has losses of approx. 0.5 %/24h.  

C Pumping, control and regulation cause electricity consumption which is assumed to be low at 1 % (mostly influenced by pumping effort, which depends on the 
storage design). 

D Depending very much on storage design/materials, cycles, temperature and operating conditions. 

E Each heat carrier fluid is possible (air too) and therefore a broad bandwidth of temperature applications. 

F Depending on the system design, PCM storages could help to save/reduce emissions. 

G Cost estimation is very low, as no PCM storage in a DH system is known at the moment. 

H Figures could not be provided, but if there is an adequate market need, high cost reductions could happen. 

I No resilient investment costs could be provided at the moment as PCM storages are still in the pilot phase. The costs mainly occur through the shell and-tube heat 
exchanger, the thermal oil and the PCM. Ref. 7: The general trend shows that the material costs per kilowatt-hour decrease upon increasing the tube diameter 
independent of the ratio of PCM to thermal oil. Furthermore, the cost reduction is larger for storage configurations with larger PCM fractions. Also, increasing the 
share of PCM reduces material costs per kilowatt-hour which reflects the higher energy density of the PCM. Ref. 5 allows a more detailed view on costs of different 
phase change materials (like Organic, Inorganic, Salt Hydrates, Biobased and Shape-Stabilized). Ref. 6 includes a table of selected thermal energy storages with 
specifications of usage, materials and costs. 

J Own estimation because no accurate data are known.  

K Currently it is not possible to provide reliable information. Nevertheless, the given references quotes operational costs (fixed and variable) of kEUR 230/MWth/a - but 
this value has to be handled carefully. 

L The storage density is approximately twice as large as for water storages. 

M PCM storages should be preferred used as short term utilizations as the economical feasibility increases with each dis-/charging process. 
N A lot of different materials exist for PCM storage usage. Therefore, the temperature range is very big and could be chosen individually for each case (e.g. very low 

temperatures in space applications to very high temperatures above 1 000 °C in concentrating solar power plants). In Ref. 3 thermophysical properties are listed for 
some selected solid to liquid phase-change materials. 
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