348 research outputs found

    Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    Get PDF
    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density

    Height and clonality traits determine plant community responses to fertilization

    Get PDF
    Fertilization via agricultural inputs and nutrient deposition is one of the major threats to global terrestrial plant richness, yet we still do not fully understand the mechanisms by which fertilization decreases plant richness. Tall clonal species have recently been proposed to cause declines in plant species richness by increasing in abundance in response to fertilization and competing strongly with other species. We tested this hypothesis in a fertilization experiment in a low productivity grassland by using a novel experimental manipulation of the presence vs. absence of clonal species and by examining the role of height within these treatments. We found that fertilization decreased species richness more in the presence than absence of clonal species. We also found that only tall species increased in biomass in response to fertilization. In the absence of clonal species, fertilization increased biomass of tall non clonal species. However, in the presence of clonal species, fertilization decreased tall non clonal biomass and only tall clonal biomass increased. Fertilization caused almost all short species to be lost in the presence, but not the absence, of clonal species and caused greater declines in the mean and variance of light levels in the presence of clonal species. These results show that the traits of species in a community can determine the magnitude of species loss due to fertilization. The strongly negative effect of tall clonals on species richness in fertilized plots is likely a result of their capacity to decrease light levels to a greater extent and more uniformly than non clonal species, and thereby drive the exclusion of short species. These results help clarify the mechanisms whereby fertilization decreases grassland plant species richness and suggest that efforts to prevent the loss of species under fertilized conditions may be most effective when they focus on controlling the biomass of tall clonal species

    Linking Ecology and Economics for Ecosystem Management

    Get PDF
    This article outlines an approach, based on ecosystem services, for assessing the trade-offs inherent in managing humans embedded in ecological systems. Evaluating these trade-offs requires an understanding of the biophysical magnitudes of the changes in ecosystem services that result from human actions, and of the impact of these changes on human welfare.We summarize the state of the art of ecosystem services?based management and the information needs for applying it. Three case studies of Long Term Ecological Research (LTER) sites?coastal, urban, and agricultural? illustrate the usefulness, information needs, quantification possibilities, and methods for this approach. One example of the application of this approach, with rigorously established service changes and valuations taken from the literature, is used to illustrate the potential for full economic valuation of several agricultural landscape management options, including managing for water quality, biodiversity, and crop productivity

    Factors that Influence Enrollment in Syringe Services Programs in Rural Areas: A Qualitative Study among Program Clients in Appalachian Kentucky

    Get PDF
    BACKGROUND: Enrolling sufficient number of people who inject drugs (PWID) into syringe services programs (SSP) is important to curtail outbreaks of drug-related harms. Still, little is known about barriers and facilitators to SSP enrollment in rural areas with no history of such programs. This study\u27s purpose was to develop a grounded theory of the role of the risk environment and individual characteristics of PWID in shaping SSP enrollment in rural Kentucky. METHODS: We conducted one-on-one semi-structured interviews with 41 clients of 5 SSPs that were established in rural counties in Appalachian Kentucky in 2017-2018. Interviews covered PWID needs, the process of becoming aware of SSPs, and barriers and facilitators to SSP enrollment. Applying constructivist grounded theory methods and guided by the Intersectional Risk Environment Framework (IREF), we applied open, axial and selective coding to develop the grounded theory. RESULTS: Stigma, a feature of IREF\u27s meso-level social domain, is the main factor hampering SSP enrollment. PWID hesitated to visit SSPs because of internalized stigma and because of anticipated stigma from police, friends, family and healthcare providers. Fear of stigma was often mitigated or amplified by a constellation of meso-level environmental factors related to healthcare (e.g., SSPs) and social (PWID networks) domains and by PWID\u27s individual characteristics. SSPs mitigated stigma as a barrier to enrollment by providing low threshold services in a friendly atmosphere, and by offering their clients program IDs to protect them from paraphernalia charges. SSP clients spread positive information about the program within PWID networks and helped their hesitant peers to enroll by accompanying them to SSPs. Individual characteristics, including child custody, employment or high social status, made certain PWID more susceptible to drug-related stigma and hence more likely to delay SSP enrollment. CONCLUSIONS: Features of the social and healthcare environments operating at the meso-level, as well as PWID\u27s individual characteristics, appear to enhance or mitigate the effect of stigma as a barrier to SSP enrollment. SSPs opening in locations with high stigma against PWID need to ensure low threshold and friendly services, protect their clients from police and mobilize PWID networks to promote enrollment

    A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes.

    Get PDF
    In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.This work was supported by the BBSRC (grants BB/K009753/1, BB/K010220/1, and BB/K009885/1), the EPSRC (EP/H00338X/2; PhD studentship to Emma Ainsworth), the Christian Doppler Research Association and the OMV Group. The authors appreciate Dr. Liang Shi (PNNL) and Dr. Marcus Edwards (UEA) for providing the S. oneidensis strain and the protocol allowing for purification of MtrC.This is the final published version of the article. It was originally published in Advanced Functional Materials (Hwang ET, Sheikh K, Orchard KL, Hojo D, Radu V, Lee C-Y, Ainsworth E, Lockwood C, Gross MA, Adschiri T, Reisner E, Butt JN, Jeuken LJC, Advanced Functional Materials 2015, 25, 2308–2315, doi: 10.1002/adfm.201404541) http://dx.doi.org/10.1002/adfm.201404541

    Platelet PECAM-1 Inhibits Thrombus Formation In Vivo

    Get PDF
    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell surface glycoprotein receptor expressed on a range of blood cells including platelets, and is also on vascular endothelial cells. PECAM-1 possesses adhesive and signalling properties, the latter being mediated by an Immunoreceptor Tyrosine-based Inhibitory Motif present on the cytoplasmic tail of the protein. Recent studies in vitro have demonstrated that PECAM-1 signalling inhibits the aggregation of platelets. In the present study we have utilised PECAM-1 deficient mice and radiation chimeras to investigate the function of this receptor in the regulation of thrombus formation. Using intravital microscopy and laser induced injury to cremaster muscle arterioles, we show that thrombi formed in PECAM-1 deficient mice were larger, formed more rapidly than in control mice and were more stable. Larger thrombi were also formed in control mice transplanted with PECAM-1 deficient bone marrow, in comparison to control-transplanted mice. A ferric chloride model of thrombosis was used to investigate thrombus formation in carotid arteries. In PECAM-1 deficient mice the time to 75% vessel occlusion was significantly shorter than in control mice. These data provide evidence for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation

    Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA

    Get PDF
    HIV-infected individuals are living longer on antiretro-viral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First,we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across \u3e80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA).We find that decreased HLA methylation is predictive of lower CD4/CD8T cell ratio, linking molecular aging, epigenetic regulation, and disease progression

    Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    Get PDF
    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services

    Dye-sensitised semiconductors modified with molecular catalysts for light-driven H<sub>2</sub> production

    Get PDF
    This is the final version of the article. It was first available from RSC via http://dx.doi.org/10.1039/C5CS00733JThe development of synthetic systems for the conversion of solar energy into chemical fuels is a research goal that continues to attract growing interest owing to its potential to provide renewable and storable energy in the form of a ?solar fuel?. Dye-sensitised photocatalysis (DSP) with molecular catalysts is a relatively new approach to convert sunlight into a fuel such as H? and is based on the self-assembly of a molecular dye and electrocatalyst on a semiconductor nanoparticle. DSP systems combine advantages of both homogenous and heterogeneous photocatalysis, with the molecular components providing an excellent platform for tuning activity and understanding performance at defined catalytic sites, whereas the semiconductor bridge ensures favourable multi-electron transfer kinetics between the dye and the fuel-forming electrocatalyst. In this tutorial review, strategies and challenges for the assembly of functional molecular DSP systems and experimental techniques for their evaluation are explained. Current understanding of the factors governing electron transfer across inorganic-molecular interfaces is described and future directions and challenges for this field are outlined.This work was supported by the EPSRC (EP/H00338X/2 to E.R.; DTG scholarship to E.P.), the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development; E.R. and J.W.), the OMV Group (E.R. and J.W.), the Advanced Institute for Materials ResearchCambridge Joint Research Centre (K.O.), European Commission Marie Curie CIG (303650 to A.R.) and the ERC (291482 to J.D.)
    • …
    corecore