82 research outputs found

    The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications

    Get PDF
    The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases

    Ungewöhnliche Probleme bei der 14C-Datierung organischer Komponenten und Fraktionen fluviatiler Sedimente aus der Aue der Weißen Elster bei Leipzig

    Get PDF
    Aus Paläorinnensedimenten und fossilen Bodenhorizonten in der Weißen Elsteraue wurden konventionelle und AMS 14C-Altersbestimmungen der organischen Substanz durchgeführt. Die Ergebnisse liefern z.T. sehr große Altersdifferenzen der verschiedenen Komponenten einer Probe bis über 20.000 14C-Jahre, die der Beimischung von umgelagertem tertiären Material zuzuschreiben ist. Die Resultate belegen, dass bei der Interpretation von 14C-Altersbestimmungen an organischem Material aus fluviatilen Sedimenten große Vorsicht geboten ist, wenn nicht die Altershomogenität des Probenmaterials bewiesen werden kann oder weitere Absicherungen durch unabhängige absolute Datierungsmethoden vorliegen.researc

    The Dominion Range Ice Core, Queen Maud Montains, Antarctica - General Site and Core Characteristics with Implications

    Get PDF
    The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases

    The Dominion Range Ice Core, Queen Maud Mountains, Antarctica—General Site and Core Characteristics with Implications

    Get PDF
    The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases

    IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000yeats cal BP

    Get PDF
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org

    IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP

    Get PDF
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0-12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeye

    Marine20—the marine radiocarbon age calibration curve (0 – 55,000 cal BP)

    Get PDF
    T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”. M Butzin is supported by the German Federal Ministry of Education and Research (BMBF), as Research for Sustainability initiative (FONA); www.fona.de through the PalMod project (grant numbers: 01LP1505B, 01LP1919A). E. Bard is supported by EQUIPEX ASTER-CEREGE and ANR CARBOTRYDH. Meetings of the IntCal Marine Focus group have been supported by Collège de France.The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.Publisher PDFPeer reviewe

    Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)

    Get PDF
    The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data bas

    Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover

    Get PDF
    On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84–85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong
    corecore