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INTCAL09 AND MARINE09 RADIOCARBON AGE CALIBRATION CURVES, 
0–50,000 YEARS CAL BP
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ABSTRACT. The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is
here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets
that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in
both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves
were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04
and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available
in the Supplemental Material at www.radiocarbon.org.
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INTRODUCTION

Radiocarbon calibration is essential for comparing 14C ages with records dated by other means, such
as uranium series, ice-core annual layers, tree rings, and historical records, or for investigating rates
of change within a single record. This is because the calculation of a conventional 14C age assumes
that the 14C content of the atmospheric has been constant (Stuiver and Polach 1977). However, past
atmospheric 14C variations were observed soon after the development of the method (de Vries 1958,
1959) and 14C measurements of known-age tree-ring samples were being suggested as a way to cor-
rect (or calibrate) 14C ages (Suess 1965; Stuiver and Suess 1966; Walton and Baxter 1968). Since
then, numerous calibration curves have been constructed based on absolutely dated tree-ring chro-
nologies and other archives (Klein et al. 1982; Stuiver 1982; Pearson and Stuiver 1986, 1993;
Stuiver and Becker 1986, 1993; Stuiver et al. 1998). But beyond the end of the absolutely dated tree-
ring chronologies, 14C calibration has been difficult and contentious (Bronk Ramsey et al. 2006;
Mellars 2006a,b; Turney et al. 2006; Blockley and Housley 2009).

In recent years, there has been a proliferation of curves used for calibration (Reimer et al. 2004;
Fairbanks et al. 2005; Hughen et al. 2006; Weninger and Jöris 2008); furthermore, the CalPal soft-
ware (Jöris and Weninger 1998; Weninger and Jöris 2004) provides a “build your own” calendar-age
curve construction capability. While no one “owns time” (van Andel 2005), it is also true that not all
reconstructed timescales are equal, and a quality controlled, statistically robust consensus calibra-
tion curve is very useful (as van Andel agrees) since it allows studies by different researchers to be
compared directly and timescales to be constructed consistently. The International Calibration
(IntCal) curves are intended to provide a comprehensive summary of the current state of knowledge
of past variation in 14C, where consensus can be reached. The IntCal Working Group (IWG)
includes members who have detailed knowledge of the primary data that go into the calibration
curves and appropriate statistical approaches that can be used to summarize the data and associated
uncertainties. Whether authors choose to use IntCal09 or alternative curves (including single data
sets), it is important that they clearly state exactly which curve or data set has been used (as opposed
to the computer software package alone), and the reasons for any choices made, since this makes
direct comparison between different studies easier. However, regardless of whether IntCal09 or an
alternative curve is used, we urge all authors to include or cite their original uncalibrated 14C data to
permit proper comparison and possible re-evaluation of calibrated ages reported in different studies.

In the strictest sense, a bona fide calibration archive must have obtained carbon directly from the
reservoir of interest (e.g. the atmosphere) and the calendar age must be known absolutely (e.g. den-
drochronologically dated). However, there are at present few such archives of purely atmospheric
14C prior to the European tree-ring chronologies spanning the last 12,594 yr (Friedrich et al. 2004b;
Schaub et al. 2008a,b).

Dendrochronologically dated records provide a direct measure of atmospheric 14C content on an
absolute timescale. At present, however, those records linked to the present day are restricted to the
past 12.59 cal kBP (Friedrich et al. 2004b). Importantly, however, the European tree-ring floating
chronologies are likely to be linked in the near future, providing a calibration record back to about
14 cal kBP (Friedrich et al. 2004a; Schaub et al. 2008a,b), while an important wiggle-matched
Southern Hemisphere data set is available spanning the early Younger Dryas (YD) period from work
on Huon pine (Hua et al. 2009). Beyond this range, the floating New Zealand kauri tree-ring chro-
nologies show considerable promise to extend across the full 14C range (Hogg et al. 2006; Palmer
et al. 2006; Turney et al. 2007), while subfossil finds in North America may also one day offer scope
for pre-Holocene time series (e.g. Griggs and Kromer 2008; Stambaugh and Guyette 2009).
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In an attempt to go beyond the currently limited range of dendrochronologically dated records,
recourse has been made to dating terrestrial macrofossils from continuous varved lake sediments,
potentially providing important contributions to calibration data sets. Unfortunately, early work on
some key records (e.g. Swedish varves, Lake of the Clouds, and Lake Suigetsu) encountered prob-
lems with missing varves and/or hiatuses in the sediment cores (Stuiver 1971; Kitagawa and van der
Plicht 1998, 2000; Wohlfarth and Possnert 2000). Significant progress is being made on some of
these important records. For instance, “missing” varves in the Lake Suigetsu sequence are now
being identified in the Lake Suigetsu 2006 Project by overlapping multiple cores and improved
varve counting techniques, but further work remains before a continuous 14C calibration record is
generated (Bronk Ramsey et al. 2008; Staff et al. 2009).

Numerous other records including marine archives (corals and planktonic foraminifera) and highly
resolved speleothems come close to being bona fide calibration archives. Yet, marine archives and
speleothems reflect 14C in local dissolved inorganic carbon (DIC) instead of in atmospheric CO2.
Since DIC 14C is determined by exchange with atmospheric CO2 and admixture of 14C-depleted car-
bon from the deep ocean (corals, foraminifera) and soil carbonates (speleothems), atmospheric 14C
values have to be calculated from these archives by considering carbon reservoir exchange and
removing admixtures. U-Th dating can provide accurate and independent timescales for corals and
speleothems and foraminifera in varved sediments can sometimes be dated accurately by varve
counting, but all have reservoir (or dead carbon fraction) correction issues. Marine archives, such as
corals and planktonic foraminifera, can provide a regional record of the surface ocean 14C, but short-
term fluctuations in atmospheric 14C are attenuated and may be overprinted by ocean circulation
changes, which complicates the reconstruction of atmospheric 14C values (Stuiver et al. 1986). Spe-
leothems have a similar amplitude attenuation as a result of 14C-free carbon (from the host or bed-
rock) and potentially old soil carbon being incorporated into the speleothem carbonate, which
causes an apparent 14C age offset on the order of several thousand years (Genty et al. 1998). This
addition, which may vary with time, is termed the “dead carbon fraction” (DCF) or dead carbon pro-
portion (dcp). DCF has been estimated from comparison to pre-bomb atmospheric 14C, overlap with
tree rings or other calibration data, and modeled using δ13C. A number of studies have found the
variability in DCF to contribute about 250–300 yr to the 14C uncertainty for the intervals compared
(Genty et al. 1999; Beck et al. 2001; Weyhenmeyer et al. 2003). The question of variability of the
DCF over time has caused the IWG to be cautious about incorporation of these records. However,
the 2 Bahamas speleothem 14C records (GB89-24-1 and GB89-25-3) agree very well in the 40–44
ka period using DCF values of 1450 ± 235 14C yr and 2075 ± 270 14C yr calculated from the 11–15
ka overlaps with tree rings and IntCal04, respectively, giving some confidence in the relatively con-
stant nature of the DCF in this case (Hoffmann et al. 2010). These records, which were not published
in time for the IntCal09 curve construction, are likely to be included in future calibration curves.

Additional marine and terrestrial data sets are available that have timescales transferred through cli-
matic correlation with an independently dated record (such as δ18O of ice cores or U-Th dated spe-
leothems) and/or tie-points, such as independently dated tephra. Although transferred timescales are
not ideal, high-resolution records of this type can provide important contributions to the calibration
curve, provided there is a physical mechanism linking the proxy climate signals in the records (ide-
ally with the event synchronicity independently tested [cf. Blaauw et al. 2009; Austin and Abbott,
in press) and all known sources of uncertainty are taken into consideration. IntCal09 includes the
non-varved Cariaco Basin (Hughen et al. 2006) and the Iberian Margin (Bard et al. 2004b,c; Shack-
leton et al. 2004) marine sediment records, as well as independently dated coral records, with an
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assumed constant reservoir age pending quantification of their actual—possibly large—reservoir
age changes over time.

At the time of the release of the Marine04 and IntCal04 calibration curves in 2004 (Hughen et al.
2004b; Reimer et al. 2004), the IWG deemed the discrepancy among even the most robust data sets
too large to make a reliable 14C calibration curve beyond 26 cal kBP. The degree of discrepancy of
a number of data sets was highlighted by the offsets from the modeled NotCal curve, which was not
intended for use in calibration (van der Plicht et al. 2004; cf. Mellars 2006b). Major discrepancies
between the data sets used in NotCal appear to have been resolved, especially with the new Bahamas
speleothem record (Hoffmann et al. 2010) and preliminary data from the Lake Suigetsu 2006 project
(Bronk Ramsey et al. 2008; Staff et al. 2009). These records, although not available in time to be
included in the IntCal09 curve construction, provide confidence that the selected data sets allow a
reconstruction of atmospheric 14C concentrations suitable for 14C calibration beyond 26 cal kBP.
However, anomalously large changes in 14C ages have been observed in other records (Voelker et al.
2000; Giaccio et al. 2006; Sarnthein et al. 2007), possibly related to changes in oceanic circulation
(Heinrich events) or Earth magnetic field intensity (Laschamp and Mono Lake events), which could
indicate that the shape of the present calibration may still change and become more structured when
more calibration data become available. With this caveat, the IWG has generated a new calibration
curve back to 50 cal kBP, which was recommended and ratified at the 20th International Radiocar-
bon Conference.

DATA SET SELECTION CRITERIA 

In 2002, the IWG stated a “preference for future marine records to be developed from oceanograph-
ically ‘simple’ regions to minimize reservoir age uncertainty” (Reimer et al. 2002). Since then, a
great deal more has been learned about marine reservoir variability and changes over time, particu-
larly at high latitudes (Björck et al. 2003; Eíriksson et al. 2004; Sarnthein et al. 2007; Ascough et al.
2009), restricted basins (Sarnthein et al. 2007), upwelling regions (Fontugne et al. 2004; Soares and
Dias 2006; Taylor et al. 2007), and other regions of complex oceanography (Paterne et al. 2004;
Druffel et al. 2008; McGregor et al. 2008; Burr et al. 2009). The criterion for minimal past reservoir
variability is difficult to uphold. The appropriate quantification of the reservoir uncertainty is there-
fore extremely important. In some cases, portions of data sets have been omitted in IntCal09 for this
reason as discussed in the following section.

One of the criteria used to help establish whether corals have undergone post-depositional alteration
and exchange of 14C, U, and Th with the environment is the δ234Uinitial value. In 2002, the IWG cri-
terion was that the δ234Uinitial of fossil corals should be within ±5‰ of the accepted modern seawater
value. This was based on the understanding at the time, that δ234U in seawater was constant over the
last 30 ka. Several recent studies have reported precise δ234U values of ~147‰ for modern and
recent corals (Cheng et al. 2000; Delanghe et al. 2002; Robinson et al. 2004a) In addition, however,
there is evidence of seawater δ234Uinitial 7–10‰ lower during the last glacial period (Esat and
Yokoyama 2006; Robinson et al. 2004b). Thus, using the modern seawater δ234U value as a screen-
ing criterion is likely to exclude pristine corals. The corals currently in the IntCal database have sat-
isfied the criteria established in 2002, i.e. they have a site-specific reservoir age with a “reasonable”
error (<±200 14C yr if younger than 12,540 cal BP based on a tree-ring comparison [Table 1],
unknown beyond 12.54 cal ka); <1% calcite as determined by X-ray diffraction; precise U-Th ages
(uncertainties on the order or less than that of the 14C age of the same sample), which fall in strati-
graphic order; and concordant protactinium ages where feasible. Comparing δ234Uinitial of these cor-
als in the IntCal database, we found the initial δ234U values were clustered in 2 groups with an obvi-
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ous increase from the Last Glacial Maximum (LGM) to the deglacial and Holocene samples
(Figure 1). The average δ234Uinitial for corals younger than 17 ka is 145.6 ± 2.4‰ and for corals older
than 17.0 ka it is 141.7 ± 2.6‰. Using an envelope of 2 standard deviations (s.d.) around the mean
δ234Uinitial of the corals older than 17 ka as the selection criterion would have resulted in 4 Barbados
coral samples and 1 New Guinea coral sample being excluded. One of these Barbados corals had
also been analyzed for 231Pa/235U, resulting in concordant U-Th and protactinium ages that suggests
a closed system with minimal or no diagenesis (Mortlock et al. 2005). Because the actual variability
during the glacial period is unknown, we have taken a pragmatically wide envelope of 3 standard
deviations around the mean of the corals older than 17 ka as the screening criteria, i.e. 141.7 ± 7.8‰.
The δ234Uinitial values for the corals younger than 17 cal kBP trended towards higher values for the
more recent corals. We therefore chose to use the value for modern and recent corals of 147 ± 7‰
(3 s.d.). The new criteria did not cause any coral data to be excluded that had been included in
Marine04, but there was not enough new coral data to determine if these criteria filtered the records
effectively. Note also that U-Th ages and δ234Uinitial values were recalculated, where necessary,
using the currently accepted 234U and 230Th half-lives (Cheng et al. 2000).

Table 1 New and previously published data-set- and site-specific marine reservoir age corrections.
The age range and number of points N in the overlap with the tree-ring data set that was used to
calculate the offsets are also given. References to the data sets are given for those locations where
there are 2 separate records. All others are given in the Appendix.

Location Overlap cal BP

Reservoir
correction
(14C yr) N

Previously published
reservoir correction
(14C yr)

Barbados 
(Bard et al. 1998, 
2004a)

770–12,245 420 ± 100 9 400a

Barbados 
(Fairbanks et al. 2005)

7290–12,304 320 ± 110 22 365 ± 60 (n = 21)b

Cariaco Basin—
varved sediment

10,502–12,540 430 ± 50 194 420c

Kirimati 8825–12,299 335 ± 100 25 350 ± 55b (n = 4)
Iberian Margin n/a n/a 500 ± 100d,e

Mururoa No overlap Same as Tahiti
Papua New Guinea 1780–12,369 495 ± 155 15 407f

Tahiti 8570–12,005 235 ± 110 14 300a

Vanuatu 
Tasmaloum 

(Burr et al. 1998)

11,830–12,300 475 ± 65 27 494g

Vanuatu    
Tasmaloum 

(Cutler et al. 2004)

11,045–12,246 480 ± 100 5 500g,h

Vanuatu
Urelapa

6150–11,697 350 ± 105 14 400h

Vanuatu
Araki 

Data not available n/a n/a 365 ± 140 (n = 9)b

aBard et al. 1998; bFairbanks et al. 2005; cHughen et al. 1996; dBard et al. 2004a; eShackleton et al. 2004; fEdwards
et al. 1993; gBurr et al. 1998; hCutler et al. 2004.
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OTHER NEW DEVELOPMENTS

There is growing evidence that the western subtropical Atlantic reservoir age was much less than the
modern ~420-yr offset during the early Younger Dryas (~12,550–12,900 cal BP) (Kromer et al.
2004; Muscheler et al. 2008; Singarayer et al. 2008). This is consistent with model results showing
the response of the ocean surface age to a reduction or shutdown of North Atlantic Deep Water for-
mation (Meissner 2007; Ritz et al. 2008; Singarayer et al. 2008). Most recently, Hua et al. (2009)
used a 14C wiggle-match between the absolutely dated tree rings and the Huon pine chronology with
a Southern Hemisphere offset of 40 14C yr to derive a timescale for the floating European chronolo-
gies (Schaub et al. 2008a). Using this derived timescale for the floating tree rings, the subtropical
Atlantic coral (Fairbanks et al. 2005) and foraminifera data (Hughen et al. 2004a) with an assumed
constant reservoir age are too young in the period ~12,550–12,900 cal BP, whereas the Pacific corals
agree with the wiggle-matched tree-ring data. While we could, in theory, calculate a time-dependent
reservoir correction for the marine data, it was decided instead to exclude the western subtropical
Atlantic marine data for the early Younger Dryas period ~12,550–12,900 cal BP. Similar shifts in
reservoir ages may have occurred during Heinrich events and the cold, stadial phases of the Dans-
gaard-Oeschger events (Bond and Lotti 1995; Clark et al. 2002). Indeed, the Bahamas speleothem
record (Beck et al. 2001) and reservoir-corrected Cariaco data appear to disagree in the interval 16–
17 ka BP, within Heinrich event 1, although other effects such as DCF changes (Bahamas) or prob-
lems with the correlation to Hulu (Cariaco) could also contribute to this offset. A reservoir age dis-
crepancy within Heinrich event 1 is also suggested by foraminifera data from the Iberian and Paki-
stan Margin cores (Bard et al. 2004c, 2009). Thus, it is prudent to treat calibration during Heinrich
and Dansgaard-Oeschger events with caution until further information becomes available.

Figure 1 δ234Uinitial of coral samples in the IntCal09 database with the mean values (dashed lines) and 3 standard deviations
(dot-dashed lines) shown for the 2 periods.
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INTCAL09 DATA SETS

A full list of the IntCal09 data sets and references is given in the Appendix. New data and changes
to some of the data sets are discussed below.

Tree-Ring Data Sets (0–12.55 cal kBP)

The tree-ring data sets are unchanged from the IntCal04 data for the period from 0–12,550 cal BP.
Laboratory error multipliers were applied as described in the IntCal04 publication (Reimer et al.
2004). The Stuttgart-Hohenheim absolute pine chronology has been extended with pines from Swit-
zerland to 12,594 cal BP (Friedrich et al. 2004b; Schaub et al. 2008a,b). New 14C measurements on
those trees back to 12,556 (Hua et al. 2009) have been included in the IntCal09 curve. When adjoin-
ing the absolute tree-ring extension to the database, a data-handling error in the calendar age of 19 yr
was discovered for 2 of the 3 oldest German pines in the IntCal 2004 tree-ring data set. The cor-
rected data are included in the IntCal09 curve. The tree-ring data sets will be augmented in the next
revision of the IntCal calibration curve with measurements of Irish oak from AD 395–485 and AD
735–805 (McCormac et al. 2008) and German oak from the 2nd and 1st millennia BC (Kromer et
al. 2009), as well as other potentially suitable data sets.

Marine Data Sets (12.55–50 cal kBP)

Coral data sets are the same as used in IntCal04 with a few exceptions. Western subtropical Atlantic
data (i.e. Barbados) in the early YD have been omitted due to uncertain reservoir ages, as discussed
previously. New data are included from Araki and Kiritimati in the Pacific and Barbados in the
Atlantic (Fairbanks et al. 2005). Three measurements from the Cutler et al. (2004) New Guinea
record in the period from 24–29 ka cal BP have been omitted as outliers because they have 14C ages
between 1140 and 2160 yr younger than any of the other calibration data that fall within their cal-
endar age uncertainty (2 s.d.). These corals are thought to have been affected by a freshwater lens.
Foraminifera from the Cariaco Basin varved sediments (Hughen et al. 2004a) were used as in
IntCal04 with the exception of measurements from 12,552–12,944 cal BP, which are likely to be
affected by marine surface reservoir age changes associated with the onset of the Younger Dryas as
previously discussed. The timescale for the non-varved sediments of Cariaco Basin is derived from
correlation with the Hulu Cave speleothems δ18O (Wang et al. 2001). The total uncertainty was
based on the combined uncertainties associated with the Hulu Cave U-Th ages, the sampling reso-
lution of the records, and the time-varying correlation coefficients between the speleothem δ18O and
the Cariaco Basin gray scale as described in Hughen et al. (2006). The Hulu Cave timescale for the
non-varved sediments of Cariaco Basin is unlikely to be the final word in the chronology because
the Hulu record itself is in the process of further refinement and the possibility remains of correlat-
ing the Cariaco data to other records.

The first set of 14C measurements of foraminifera from the Iberian Margin core MD952042, taken
75 km off the coast of Portugal in a water depth of 3146 m, was reported in Bard et al. (2004b,c), and
a set of 12 ages was later published by Shackleton et al. (2004). A compilation of the previous data
sets with additional measurements was published late in 2004 (Bard et al. 2004a) and some addi-
tional results added since are included in the IntCal09 database for a total of 43 measurements. The
chronology for the core was originally tuned to the δ18O records from the Greenland ice cores
(GISP2 [Grootes et al. 1993] and GRIP [Dansgaard et al. 1993]) and more recently to the Hulu Cave
speleothem timescale following the same method for uncertainty estimates as for the Cariaco Basin
non-varved sediments. MD952042 is far from the high-latitude zones where marine reservoir ages
may be large and variable (Bard et al. 2004a) and a chemical oceanography transect measured at the
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same latitude indicate that the site of core MD952042 presently lies outside the coastal upwelling
anomaly characterized by low sea-surface temperature and high surface chlorophyll concentrations
(Coste et al. 1986; Bard et al. 2004a). Yet, high reservoir ages and variability have been noted from
known-age mollusks and contemporaneous marine-terrestrial pairs from archaeological excavations
from the Portugal coast through the Holocene (Monge Soares 1993; Soares and Dias 2006), biolog-
ical productivity proxies measured in cores from this zone show large variability during the last gla-
cial period (Abrantes 2000; Pailler and Bard 2002) and Salguerio et al. (in press) document large
changes in oceanography (summer export productivity) for MD952042 during the last 150 ka. Skin-
ner (2008) notes, in a stratigraphic comparison of the Cariaco Basin and Iberian Margin records
tuned to various absolute chronologies (GICC05, SFCP04, and Hulu Cave), an increase of the res-
ervoir age for the Iberian Margin data (+400 14C yr for ages beyond 22 cal kBP), but assumes a con-
stant reservoir age for the Cariaco Basin record. However, such an assumption leads to circular rea-
soning and we prefer not to use one record to correct the other. For IntCal09, we use the previously
published reservoir age value (500 ± 100 14C yr, Bard et al. 2004a; Shackleton et al. 2004), but rec-
ognize that the uncertainty may be an underestimate because glacial oceanographic variability is not
adequately considered. However, it should be stressed that for IntCal09, both marine records were
tuned independently to the very same target curve of the Hulu Cave δ18O record and examination of
the IntCal09 data sets (Figure 2) shows that the Iberian Margin data generally agree within 2 stan-
dard deviations with the Cariaco data and other calibration data. The only notable discrepancy
occurs between 15–17.5 cal kBP, corresponding to the Heinrich 1 climatic event. This systematic
difference could be suppressed by assuming a larger reservoir age for the Iberian Margin. However,
such ad hoc corrections may not apply since available data measured on other archives (the few cor-
als in Figure 2 and Bahamas speleothem by Hoffmann et al. [2010]) support the Iberian Margin
record. Like the Cariaco record, the present MD952042 chronology must be considered a work in
progress awaiting refinement by correlation with more independent data from other archives (corals,
speleothems, and marine cores from other oceans).

For most of the other data sets, regional reservoir corrections were calculated from the weighted
mean offset of the marine data set with the tree-ring portion of the data where possible (Table 1).
Because laboratory error multipliers for 14C measurements were not available for all the marine data
sets, the reservoir corrections and uncertainties were calculated on a per data set basis. For the Araki
corals, the data overlapping with the tree rings are not published, so the reservoir correction calcu-
lated by Fairbanks et al. (2005) of 365 ± 140 14C yr (n = 9) was used. No overlapping data are avail-
able for the non-varved Cariaco Basin, so the reservoir correction calculated for the varved data was
used but the uncertainty was set to ±100 14C yr. As stated above, these tree-ring-based uncertainty
estimates may not reflect the effects of glacial and deglacial oceanographic changes.

INTCAL09 CURVE CONSTRUCTION 

For IntCal09, the underlying calibration curve is modeled using the same random walk prior as in
IntCal04 (Buck and Blackwell 2004). This takes the form of independent increments from one cal-
endar year to the next drawn from a Gaussian distribution. The collected data are then assumed to
represent observations of this random walk subject to possible error in both the calendar dating and
the 14C determination. We update our random walk prior in light of this calibration data to generate
a posterior distribution for the curve. However, as opposed to IntCal04 where the posterior of this ran-
dom walk was calculated point-wise, for IntCal09 a Markov chain Monte Carlo (MCMC) approach
was used to generate posterior realizations of the complete calibration curve simultaneously.
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Details of the MCMC approach used can be found in the accompanying paper by Heaton, Black-
well, and Buck (this issue). Intuitively, the method, which extends that proposed in Blackwell and
Buck (2008b), aims to establish which realizations of the set of all possible random walks from the
prior are supported by the observed data. It offers significant advantages over the point-wise
approach taken for IntCal04 due to its additional flexibility and its ability to represent complete real-
izations of plausible calibration curves. In particular, we are able to calculate covariances between
the values of the curve at differing points and incorporate exactly any known ordering constraints
within the data. Neither of these was possible using the methodology of IntCal04. We also hope that
in the future our MCMC approach will enable more accurate modeling of the complex structures
within the data that, to date, we have not been able to incorporate fully.

As explained above, providing complete realizations from the posterior of the calibration curve
enables us to record much greater information about its properties, including possible covariance
between values at neighboring points. Blackwell and Buck (2008b) show that this additional infor-
mation can be of importance when performing calibration, particularly when comparing calibrated
dates of multiple samples; the magnitude of the effect is further discussed in Millard (2008) and
Blackwell and Buck (2008a). To take advantage of this information, one should calibrate with the
set of realizations of the complete walk and not simply record the values of the curve on a fixed grid
assuming them to be independent. However, the former approach is not yet feasible for most end-
users, as current publicly available calibration packages can only use calibration curve estimates that
take the form of posterior means and variances at such grid values. They are not able to incorporate
further information on, say, covariance. As a consequence, for the purposes of IntCal09, the poste-
rior realizations were determined on a preselected grid where point-wise means and variances were
then calculated. This produced the form of output required for current calibration packages, but pos-
sible covariance information between grid points was lost. The IntCal09 calibration curve was cal-
culated at intervals of 10 yr for the range 12–15 cal kBP, 20 yr for 15–25 cal kBP, 50 yr for 25–40
cal kBP, and 100 yr for 40–50 cal kBP from the tree-ring data set and the reservoir-age-corrected
marine data set (constant correction: minus 405 14C yr).

THE INTCAL09 CURVE

The IntCal09 data and curves from 12–50 cal kBP are shown in Figure 2 (p 1120–1138). The cred-
ible interval band plotted should not be interpreted as aiming to incorporate a certain percentage of
the observed data points, but rather to plot a region where it is probable that the true value of the cal-
ibration curve lies. The data points have been modeled as noisy observations of this true value and
one should instead consider the proportion of the data error bars (accounting for the combined cal-
endar date and 14C uncertainties) that overlap the band. Furthermore, when comparing the plotted
curve with the calibration data, the reader should be aware that the curve is required to take a value
such that all the observed data are feasible observations. As such, there may be sections where the
majority of the data lie above the curve with a smaller number lying below it, or vice versa. In such
instances, a curve which took values through the majority of the data may make the smaller group
of data extremely improbable to observe and hence the data as a whole very unlikely. Instead, a
curve with values that lie between the 2 groups may act as a compromise whereby none of the
observed data is so highly unlikely and, as a consequence, the likelihood of the complete set of data
can be increased. Such situations can be particularly expected to occur if observations possess cal-
endar error that is not independent between observations in that data set or there is a disparity in the
size of errors between the groups above and below the curve.



1120 P J Reimer et al.

Figure 2 IntCal09 terrestrial calibration curve (1-standard deviation envelope) and data with 1-standard deviation uncertainty
in the 14C and calendar ages. Complete references to the data sets are given in the Appendix.
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 2 (Continued).
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The difference between IntCal04 and IntCal09 varies between –552 and +409 yr from 12–26 cal
kBP (Figure 3). The IntCal04 curve did not extend beyond 26 cal kBP. From 0–12 cal kBP, the
IntCal09 curve is taken directly from IntCal04 (Reimer et al. 2004) as calculated using the RWM
described in Buck and Blackwell (2004). The relatively large differences between IntCal04 and
IntCal09 between 16–18 ka and 21–22 ka are due primarily to the addition of the non-varved Cari-
aco Basin data (Hughen et al. 2006) where there was previously little or no data available. The entire
IntCal09 curve and age-corrected Δ14C and uncertainty calculated from it are shown in Figure 4.

Figure 3 IntCal09 and IntCal04 calibration curves with differences from 12–26 cal kBP

Figure 4 IntCal09 calibration curve and age-corrected Δ14C (‰) with 1-standard deviation envelopes
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THE MARINE09 CURVE

Because of the large variability of marine reservoir corrections in some regions of the world’s
oceans, it might be questioned whether a marine calibration curve should be provided at all prior to
the Holocene. Indeed, in the high-latitude North Atlantic, “tuning” to the Greenland ice cores and
using tephra and paleomagnetic tie-points may provide a more meaningful timescale than calibrated
14C ages (Austin et al. 2004; Davies et al. 2008; Singer et al. 2009). The IWG have decided, however,
to construct a “general” marine calibration curve assuming constant reservoir corrections, but to
impart a strong warning that the user must decide whether large reservoir age changes are likely to
affect their chronology and provide their own estimates of reservoir age changes and uncertainties.

The marine 14C curve for the period of 0–12.5 cal kBP is taken from the Marine04 curve, which is
calculated with the ocean-atmosphere box diffusion model (Oeschger et al. 1975; Stuiver and Bra-
ziunas 1993) as described in Hughen et al. (2004b). More complex models are available for calcu-
lating the surface ocean 14C age (Butzin et al. 2005; Franke et al. 2008), but they require estimation
of many parameters and at present do not agree with measurements of known-age marine samples
from coastal regions (www.calib.org/marine). For the purpose of providing a global estimate to be
used with regional reservoir corrections in calibration, a simple model has some merits. We have
recently investigated the performance of the model for capturing the changes in atmospheric 14C
levels using the nuclear weapons testing spike in atmospheric 14C levels. A comparison of the model
with the current parameters used in Marine04 against a number of marine coral records is shown in
Figure 5. Changes in the pre-industrial atmospheric pCO2 level within the magnitude of variations

Figure 5 Comparison of the model marine mixed-layer age-corrected Δ14C from the ocean-atmosphere box model with
the range of parameters used in Marine04 with coral Δ14C from Rarotonga (Guilderson et al. 2000), Hawaii (Roark et al.
2009), Florida and Bermuda (Druffel 1989).
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found in the Taylor Dome Antarctic ice cores for the Holocene (Indermuhle et al. 1999) made no
significant difference to the model output. The full output of the box model, which includes produc-
tion rate and mixed layer, thermocline and deep ocean Δ14C, is available in the supplemental infor-
mation. From 12.5–50 cal kBP, Marine09 is simply the atmospheric IntCal09 curve, which was
derived from marine records, plus the questionable constant reservoir correction of 405 yr.

CONCLUSIONS AND FUTURE WORK

Curves and data sets included in IntCal09 and Marine09 are available in the supplemental material
on the Radiocarbon Web site at www.radiocarbon.org. The BCal, CALIB, and OxCal software
packages have been modified to use the new curves and are available at http://bcal.shef.ac.uk/,
www.calib.org, and http://c14.arch.ox.ac.uk, respectively.

The new calibration curves, ratified by the 20th International Radiocarbon Conference, are replace-
ments for IntCal04 and Marine04 and should provide improved 14C calibration from 12–50 cal kBP.
We realize that the assumption of a constant reservoir offset for the marine data is an oversimplifi-
cation, but at present this is the only feasible option. It is also important to recognize that portions
of the IntCal09 and Marine09 curves from 14.5–50 cal kBP rely heavily on the non-varved Cariaco
Basin data set. The calibration framework is an ongoing, incrementally improving process over time
as data are acquired and improved, so it must be realized that these new curves are not definitive but
will be a significant improvement for samples older than ~12 cal kBP. More importantly, it provides
a widely agreed curve, which is urgently needed for many fields of study. 

A further update of IntCal09 and Marine09 is aimed for 2011 that will include new tree-ring, fora-
minifera, and coral measurements, among others. All of the data selection criteria will be revisited
prior to the next IntCal calibration curve update. Further consideration of the marine model and
parameters will be undertaken for the next calibration curve release. Other data sets will be consid-
ered by the IntCal Working Group and the IntCal Oversight Committee. An update of the Southern
Hemisphere calibration curve SHCal04 (McCormac et al. 2004) is also underway. An online search-
able database is under construction for all the IntCal calibration data sets and it is expected that the
calibration curve construction software will be made available at the next calibration curve release.
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APPENDIX 

A summary of the 14C data sets used for IntCal09 and Marine09 is given below with references to
the original data sets. These are cataloged by the institute where the 14C measurements were made
in some cases and in others by the first author on the publications. Data set number is a historical
construct and makes no reflection on the date of publication. Lab codes can be found on the Radio-
carbon Web site at www.radiocarbon.org.

TREE RINGS

University of Washington

Tree rings from Pacific Northwest Douglas fir, Californian Sequoia, Alaskan Sitka Spruce, and from
the German oak and Irish oak chronologies.

Lab code: QL

Data set number: 1

Stuiver M, Braziunas T. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and
spectral relationships. The Holocene 3(4):289–305.

Stuiver M, Reimer PJ, Braziunas TF. 1998. High-precision radiocarbon age calibration for terrestrial and
marine samples. Radiocarbon 40(3):1127–1151.

Note: IntCal04 (Reimer et al. 2004) included updates to the calendar age of the German pine mea-
surements and some reinstated tree rings from German oaks affected by beetles, which previously
could not be dendrodated (cf. Friedrich et al. 2004).

Queen’s University Belfast

Tree rings from Irish oak and German oak chronologies.

Lab code: UB

Data set number: 2

Pearson GW, Pilcher JR, Baillie MGL, Corbett DM, Qua F. 1986. High-precision 14C measurement of
Irish oaks to show the natural 14C variations from AD 1840 to 5210 BC. Radiocarbon 28(2B):911–934.
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McCormac FG, Hogg AG, Higham TFG, Lynch-Stieglitz J, Broecker WS, Baillie MGL, Palmer J, Xiong
L, Pilcher JR, Brown D, Hoper ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophys-
ical Research Letters 25(9):1321–1324.

Hogg AG, McCormac FG, Higham TFG, Reimer PJ, Baillie MGL, Palmer JG. 2002. High-precision radio-
carbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand:
AD 1850–950. Radiocarbon 44(3):633–640.

McCormac FG, Bayliss A, Baillie MGL, Brown DM. 2004. Radiocarbon calibration in the Anglo-Saxon
period: AD 495–725. Radiocarbon 46(3):1123–1125.

Pearson GW, Becker B, Qua F. 1993. High-precision 14C measurement of German and Irish oaks to show
the natural 14C variations from 7890 to 5000 BC. Radiocarbon 35(1):93–104.

University of Waikato 

Tree rings from Irish oak chronology.

Lab code: Wk

Data set number: 3

McCormac FG, Hogg AG, Higham TFG, Lynch-Stieglitz J, Broecker WS, Baillie MGL, Palmer J, Xiong
L, Pilcher JR, Brown D, Hoper ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophys-
ical Research Letters 25(9):1321–1324.

Hogg AG, McCormac FG, Higham TFG, Reimer PJ, Baillie MGL, Palmer JG. 2002. High-precision radio-
carbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand:
AD 1850–950. Radiocarbon 44(3):633–640.

University of Groningen

Tree rings from German oak chronology.

Lab Code: GrN

Data set number: 4

de Jong AFM, Becker B, Mook WG. 1986. High-precision calibration of the radiocarbon time scale,
3930–3230 cal BC. Radiocarbon 28(2B):939–941.

de Jong AFM, Becker B, Mook WG. 1989. Corrected calibration of the radiocarbon time scale, 3904–3203
cal BC. Radiocarbon 31(2):201–210.

Vogel JC, van der Plicht J. 1993. Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon
35(1):87–91.

Heidelberger Akademie der Wissenschaften

Tree rings from German oak and pine chronology.

Lab code: Hd

Data set number: 5

Kromer B, Becker B. 1993. German oak and pine 14C calibration, 7200–9439 BC. Radiocarbon 35(1):
125–135.

Kromer B, Spurk M. 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9200–
11,855 cal BP. Radiocarbon 40(3):1117–1125.
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Kromer B, Manning SW, Kuniholm PI, Newton MW, Spurk M, Levin I. 2001. Regional 14CO2 offsets in
the troposphere: magnitude, mechanisms, and consequences. Science 294(5551):2529–2532.

Hua Q, Barbetti M, Fink D, Kaiser KF, Friedrich M, Kromer B, Levchenko VA, Zoppi U, Smith AM, Ber-
tuch F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quater-
nary Science Reviews 28(25–26):2982–90.

Note: IntCal04 (Reimer et al. 2004) included updates to the calendar age of the German pine mea-
surements and some reinstated tree rings from German oaks affected by beetles, which previously
could not be dendrodated (cf. Friedrich et al. 2004) as well as previously unpublished data (some of
which from the East Mediterranean Radiocarbon Comparison Project is included in Kromer et al.
2009).

CSIR, Pretoria

Lab code: Pta

Tree rings from German oak chronology.

Data set number: 6

Vogel JC, van der Plicht J. 1993. Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon
35(1):87–91.

Center for Accelerator Mass Spectrometry

Tree rings from Irish oak chronology.

Lab code: CAMS

Data set number: 7

Three decadal measurements of Belfast Irish oak processed to cellulose at Queen’s University Bel-
fast were included in the IntCal04 data set. Results are from multiple AMS targets with the error
taken as the larger of the standard deviation in the mean and square root of the variance.

CORALS AND FORAMINIFERA

E. Bard et al.

Corals from Barbados, Tahiti, Mururoa, and New Guinea

Lab code: GifA

Data set number: 10 

Bard E, Hamelin B, Fairbanks RG, Zindler A. 1990. Calibration of the 14C timescale over the past 30,000
years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–410.

Bard E, Arnold M, Hamelin B, Tisnerat-Laborde N, Cabioch G. 1998. Radiocarbon calibration by means
of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Bar-
bados, Mururoa and Tahiti. Radiocarbon 40(3):1085–1092. 

Bard E, Ménot-Combes G, Rostek F. 2004. Present status of radiocarbon calibration and comparison
records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–1202.
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R.G. Fairbanks et al.

Corals from Araki, Barbados, and Kirimati.

Lab codes: CAMS, Gif, and KIA

Data set number: 11

Fairbanks RG, Mortlock RA, Chiu T-C, Cao L, Kaplan A, Guilderson TP, Fairbanks TW, Bloom AL,
Grootes PM, Nadeau M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on
paired 230Th/ 234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–
1796.

R. L. Edwards et al.

Corals from Huon Peninsula, Papua New Guinea.

Lab codes: AA and WHOI 

Data set number: 12

Edwards RL, Beck JW, Burr GS, Donahue DJ, Chappell JMA, Bloom AL, Druffel ERM, Taylor FW.
1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with
230Th ages of corals. Science 260(5110):962–968.

G.S. Burr et al.

Corals from Vanuatu and Papua New Guinea.

Lab code: AA

Data set number: 13

Burr GS, Beck JW, Taylor FW, Récy J, Edwards RL, Cabioch G, Corrège T, Donahue DJ, O’Malley JM.
1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived
from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–1105.

Burr GS, Galang C, Taylor FW, Gallup CD, Edwards RL, Cutler KB, Quirk B. 2004. Radiocarbon results
from a 13-kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 46(3):1211–1224

K. B. Cutler et al.

Corals from Vanuatu and Papua New Guinea

Lab code: not given

Data set number: 14

Cutler KB, Gray SC, Burr GS, Edwards RL, Taylor FW, Cabioch G, Beck JW, Cheng H, Moore J. 2004.
Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua
New Guinea. Radiocarbon 46(3):1127–1160.

K. A. Hughen et al.

Foraminifera from Cariaco Basin varved sediments.

Lab code: CAMS
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Data set number: 15

Hughen KA, Southon JR, Bertrand CJH, Frantz B, Zermeño P. 2004. Cariaco Basin calibration update:
revisions to calendar and 14C chronologies for core PL07-58PC. Radiocarbon 46(3):1161–1187.

Hughen KA, Lehman S, Southon J, Overpeck J, Marchal O, Herring C, Turnbull J. 2004. 14C activity and
global carbon cycle changes over the past 50,000 years. Science 303(5655):202–207.

Hughen KA, Southon JR, Lehman SJ, Overpeck JT. 2000. Synchronous radiocarbon and climate shifts
during the last deglaciation. Science 290(5498):1951–1954.

Cariaco Basin-Hulu Timescale

Foraminifera from Cariaco Basin non-varved sediments.

Lab codes: CAMS, NSRL, and UCIAMS

Data set number: 20

Hughen K, Southon J, Lehman S, Bertrand C, Turnbull J. 2006. Marine-derived 14C calibration and activ-
ity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–
24):3216–3227.

Iberian Margin-Hulu Timescale

Foraminifera from Iberian Margin non-varved sediments.

Lab codes: KIA, GifA, and OS

Data set number: 21

Bard E, Rostek F, Ménot-Combes G. 2004. A better radiocarbon clock. Science 303(5655):178–179.

Bard E, Rostek F, Ménot-Combes G. 2004. Radiocarbon calibration beyond 20,000 14C yr B.P. by means
of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–214.

Shackleton NJ, Fairbanks RG, Chiu T-C, Parrenin F. 2004. Absolute calibration of the Greenland time
scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23(14–15):1513–
1522.

Additional References:

Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M. 2004b. The
12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record
for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–1122.

Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS,
Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA,
Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M,
Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE. 2004. IntCal04 terrestrial radiocarbon age cal-
ibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–1058.
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