611 research outputs found

    Floquet Prethermalization in a Bose-Hubbard System

    No full text
    Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived 'prethermal' regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems

    Subsumption architecture for enabling strategic coordination of robot swarms in a gaming scenario

    Get PDF
    The field of swarm robotics breaks away from traditional research by maximizing the performance of a group - swarm - of limited robots instead of optimizing the intelligence of a single robot. Similar to current-generation strategy video games, the player controls groups of units - squads - instead of the individual participants. These individuals are rather unintelligent robots, capable of little more than navigating and using their weapons. However, clever control of the squads of autonomous robots by the game players can make for intense, strategic matches. The gaming framework presented in this article provides players with strategic coordination of robot squads. The developed swarm intelligence techniques break up complex squad commands into several commands for each robot using robot formations and path finding while avoiding obstacles. These algorithms are validated through a 'Capture the Flag' gaming scenario where a complex squad command is split up into several robot commands in a matter of milliseconds

    Structural and mechanistic consequences of polypeptide binding by GroEL

    Get PDF
    The remarkable ability of the chaperonin GroEL to recognise a diverse range of non-native states of proteins constitutes one of the most fascinating molecular recognition events in protein chemistry. Recent structural studies have revealed a possible model for substrate binding by GroEL and a high-resolution image of the GroEL–GroES folding machinery has provided important new insights into our understanding of the mechanism of action of this chaperonin. Studies with a variety of model substrates reveal that the binding of substrate proteins to GroEL is not just a passive event, but can result in significant changes in the structure and stability of the bound polypeptide. The potential impact of this on the mechanism of chaperonin-assisted folding is not fully understood, but provides exciting scope for further experiment

    Short-term plasticity of neuro-auditory processing induced by musical active listening training

    Get PDF
    Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing

    Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements

    Get PDF
    Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e. extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m−2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm−3. The uncertainty range for this ratio is from 0.87 g m−2 to 2.32 g m−2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km−1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m−3 (0.65 to 1.8 mg m−3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic utilization of high quality lidar and Sun photometer data, in combination with realistic aerosol models, is recommended for improving ash mass concentration retrievals

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Time Scales in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of p-alpha, d-alpha, and t-alpha from spectator decays following Au + Au collisions at 1000 AMeV have been measured with an highly efficient detector hodoscope. The constructed correlation functions indicate a moderate expansion and low breakup densities similar to assumptions made in statistical multifragmentation models. In agreement with a volume breakup rather short time scales were deduced employing directional cuts in proton-proton correlations. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.MnComment: 8 pages, with 5 included figures; To appear in the proceedings of the CRIS 2000 conference; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Realizing distance-selective interactions in a Rydberg-dressed atom array

    Get PDF
    Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.Comment: 5 pages, 4 figures + supplementary informatio

    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe
    corecore