106 research outputs found
The stress transmission universality classes of periodic granular arrays
The transmission of stress is analysed for static periodic arrays of rigid grains, with perfect and zero friction. For minimal coordination number (which is sensitive to friction, sphericity and dimensionality), the stress distribution is soluble without reference to the corresponding displacement fields. In non-degenerate cases, the constitutive equations are found to be simple linear in the stress components. The corresponding coefficients depend crucially upon geometrical disorder of the grain contacts
Statistical Mechanics of Stress Transmission in Disordered Granular Arrays
We give a statistical-mechanical theory of stress transmission in disordered
arrays of rigid grains with perfect friction. Starting from the equations of
microscopic force and torque balance we derive the fundamental equations of
stress equilibrium. We illustrate the validity of our approach by solving the
stress distribution of a homogeneous and isotropic array.Comment: 4 pages, to be published in PR
Statistical Mechanics of Vibration-Induced Compaction of Powders
We propose a theory which describes the density relaxation of loosely packed,
cohesionless granular material under mechanical tapping. Using the compactivity
concept we develope a formalism of statistical mechanics which allows us to
calculate the density of a powder as a function of time and compactivity. A
simple fluctuation-dissipation relation which relates compactivity to the
amplitude and frequency of a tapping is proposed. Experimental data of
E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of
initially deposited in a fluffy state powder evolves under carefully controlled
tapping towards a random close packing (RCP) density. Ramping the vibration
amplitude repeatedly up and back down again reveals the existence of reversible
and irreversible branches in the response. In the framework of our approach the
reversible branch (along which the RCP density is obtained) corresponds to the
steady state solution of the Fokker-Planck equation whereas the irreversible
one is represented by a superposition of "excited states" eigenfunctions. These
two regimes of response are analyzed theoretically and a qualitative
explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex
Experimental and computational studies of jamming
Jamming is a common feature of out of equilibrium systems showing slow
relaxation dynamics. Here we review our efforts in understanding jamming in
granular materials using experiments and computer simulations. We first obtain
an estimation of an effective temperature for a slowly sheared granular
material very close to jamming. The measurement of the effective temperature is
realized in the laboratory by slowly shearing a closely-packed ensemble of
spherical beads confined by an external pressure in a Couette geometry. All the
probe particles, independent of their characteristic features, equilibrate at
the same temperature, given by the packing density of the system. This suggests
that the effective temperature is a state variable for the nearly jammed
system. Then we investigate numerically whether the effective temperature can
be obtained from a flat average over the jammed configuration at a given energy
in the granular packing, as postulated by the thermodynamic approach to grains.Comment: 20 pages, 9 figure
Dislocation of the ozurdex implant into the anterior chamber (case of reposition)
The purpose of the study is to report a case of migration of the dexamethasone Ozurdex implant into the anterior chamber in a patient with pseudophakia and avitria and the method of reposition.Цель исследования – cообщить о случае миграции имплантата дексаметазона Озурдекс в переднюю камеру у пациента с артифакией и авитрией и способе репозиции
Gene Expression Analysis in the Thalamus and Cerebrum of Horses Experimentally Infected with West Nile Virus
Gene expression associated with West Nile virus (WNV) infection was profiled in the central nervous system of horses. Pyrosequencing and library annotation was performed on pooled RNA from the CNS and lymphoid tissues on horses experimentally infected with WNV (vaccinated and naïve) and non-exposed controls. These sequences were used to create a custom microarray enriched for neurological and immunological sequences to quantitate gene expression in the thalamus and cerebrum of three experimentally infected groups of horses (naïve/WNV exposed, vaccinated/WNV exposed, and normal)
Design, performance, and calibration of CMS forward calorimeter wedges
We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3 <= vertical bar eta vertical bar <= 5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h approximate to 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/root E circle plus b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges
Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%
Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS
- …