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Abstract

The transmission of stress is analysed for static periodic arrays of rigid grains, with
perfect and zero friction. For minimal coordination number (which is sensitive to fric-
tion, sphericity and dimensionality), the stress distribution is soluble without reference
to the corresponding displacement fields. In non-degenerate cases, the constitutive
equations are found to be simple linear in the stress components. The corresponding
coefficients depend crucially upon geometrical disorder of the grain contacts.

1 Introduction

Granular media present a fascinating array of physical problems [1] and are key to a num-
ber of important technologies [2]. Distribution of stress and statistics of force fluctuations
in static granular arrays show puzzling properties [3]. For instance, photoelastic visualiza-
tion experiments [4] show that stresses in granular media concentrate along ”stress paths”
or ”force chains”. These are filamentary configurations of grains which carry dispropor-
tionally large amount of the total force and give rise to the phenomenon of jamming [5].
The intergranular contact forces determine the bulk properties (e.g. the load bearing capa-
bility) of granular materials [6]. Recent experiments [7] and computer simulations [8] show
that the distribution of forces where forces above the mean decay exponentiallly is a robust
property of static granular media. Despite recent theoretical attempts [9, 10, 11] and a
vast engineering literature [12, 13] the transmission of stress and statistical properties of
contact force distribution in granular media are still poorly understood at a fundamental
level. This paper is concerned with a static granular material idealised as an assembly
of rigid grains, not in general spherical and with either zero or perfect (in the sense of
infinite) friction. Whilst practical applications in soil mechanics and powder technology
evidently depend on much greater levels of detail considered in the engineering literature,
the rigid grain paradigm provides a crucial starting point from which to appreciate the
theoretical physics of the problem. We show below that for minimal coordination number
there exists an analysis of stress which is independent of the analysis of strain which would
be implied by slight relaxation of the rigid grain assumption. In consequence our results
may also have bearing on many computer simulations of quasi-static interacting particles,
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such as applied to colloids [15] or soils [16], and suggest that the detail of conservative
repulsive force laws used may not always be significant.

2 The Model

Consider a static assembly of rigid grains of average coordination number z, in dimension
d. The microscopic version of stress analysis consists of determining all of the intergranu-
lar forces, given the geometrical arrangement of grains and their contacts and the applied
force and torque loadings on each grain. The number of unknowns per grain is zd′/2,
where d′ = d for grains with friction and d′ = 1 for grains without, and the required force
and torque give d + (d2 − d)/2 constraints. The minimal coordination number, at which

the equations of force balance are directly soluble, is thus given by zm = d2+d
d′

. Without
friction this gives zm = 6, 12 in d = 2, 3 respectively. With friction it gives rather low
values zm = 3, 4 respectively. If we admit that grains have some compliance then the
intergranular forces calculated from Newton’s equationsmust also be consistent with being
calculated from the displacements of grains. This implies zd′ constraints on the parti-
cle displacements, which at minimal coordination is precisely consistent with determining
the center displacement and rotation of each particle. This situation is analogous to lin-
ear elasticity in two dimensions, where stress can be analysed independent of the elastic
moduli for an isotropic material; subsequently the displacement field can be recovered
(using the moduli) and of course this may be relevant for boundary conditions [17]. For
the granular material, no assumption of linearity or isotropy is involved. Equivalent argu-
ments, without consideration of torques and rotations, go through for frictionless spherical
grains. They exhibit minimal coordination number equal to twice the dimension of space.
In this paper we will elaborate in detail the constraint equations satisfied by the stress
tensor supported by simple periodic granular arrays. Here we argue how the key result,
of simple linear equations of constraint, can be anticipated on quite general grounds. We
consider a periodic array with M grains per unit cell and correspondingly Mzm/2 inter-
granular contacts. The number of strictly periodic (k = 0) solutions for the intergranular
forces dictates how many linearly independent stress components the powder can support
macroscopically. The general stress field of our periodic array will be decomposable over
Bloch wave solutions ∝ eik.r, and within these it is the periodic solutions with wavevector
k = 0 which correspond to macroscopically uniform stress. For a periodic solution the
intergranular forces will be constrained by (M −1)d equations of force balance rather than
Md, because no intergranular force can apply a net force to the whole assembly. Unless
there is accidental degeneracy (see end of this section) there will be no such mitigation of
the number of torque constraints at M(d + (d2 − d)/2). The general result is then that at
minimal coordination we have precisely d degrees of freedom corresponding to macroscop-
ically uniform stress, to be determined macroscopically by the d macroscopic (continuum)
equations of force balance ∇.σ = 0, where σ is the stress tensor. The number of equations
restricting the form of macroscopic stress supported, equivalent to a constitutive equa-
tion, is (d2 − d)/2, equivalent to one in d = 2 and three in d = 3. These equations will
be developed explicitly for special cases below. The anomalous case is, unfortunately, the
one case previously considered [14]: minimal periodic lattices of spherical grains with fric-
tion. These are the honeycomb and diamond lattices in d = 2, 3 dimensions respectively,
which have two grains per unit cell related to each other by a reflection symmetry. The
reflection symmetry means that if the torque on one particle is balanced, then so it must
also be on the other. As there is no corresponding reduction in the number of indepen-
dent inter-particle forces, the number of degrees of freedom for solutions corresponding to
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macroscopic stress is increased to (d2+d)/2, corresponding to a full set of symmetric stress
tensors. As shown in Ref.[14], the constitutive equation then takes differential form and
has to be found from leading k-dependent behaviour. In three dimensions (and higher) the
existence of intermediate classes of behaviour can be conjectured, where some but not all
of the constitutive equations are differential in form. Candidate geometries include simple
arrays of ellipsoids, but will not be presented here.

3 Frictionless aspherical grains in d = 2

Consider a periodic triangular array of smooth grains with the geometry of the contacts
and their normals as shown in Figure 1. Contact 1 is at positition u1 relative to the grain
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Figure 1: Normal forces nφ and −nφ′ at the points of contact

center, with surface outward normal n1 subject to a force φ1n1. Note that periodicity
requires what would be contact 4 to have normal −n1, to which end we have labelled it 1′,
and similarly for the other opposed pairs of contacts. Balance of force around the grain,
subject to external force F, requires:

F + (φ1 − φ′

1)n1 + (φ2 − φ′

2)n2 + (φ3 − φ′

3)n3 = 0 (1)

and the (tensorial) force moment around the grain is given by:

S = (φ1u1 − φ′

1u
′

1)n1 + (φ2u2 − φ′

2u
′

2)n2 + (φ3u3 − φ′

3u
′

3)n3 (2)

In terms of S, the balance of torque on the grain requires that S be symmetric, and the
macroscopic stress tensor is given by:

σ =
1

V

∑

g∈V

Sg (3)

For Bloch wave solutions of wavevector k we have φ′

1 = φ1e
ik.(u1

′
−u1) and similarly for φ′

2

and φ′

3. Then to leading order in k we obtain:

S = φ1a1n1 + φ2a2n2 + φ3a3n3 + order k (4)
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where a1 = u1 − u
′

1 etc. are the lattice vectors, and:

F + ik.S + order k2 = 0 (5)

This last equation is just macroscopic force balance, equivalent to ∇.σ + f = 0, where f is
the external force per unit volume. The expression for S together with the constraint that
it be symmetric restricts the form of the stress tensor. It is readily verified that the lattice
vectors satisfy a triangle equality a1 + a2 + a3 = 0, and we can without loss of generality
rescale the lengths of the normals to obtain a further triangle of vectors m1+m2+m3 = 0,
where m1 ∝ n1 etc. Then it is not difficult to check that a1 × S × m2 = a2 × S × m1;
the two further identities that this appears to offer by changing numerical labels are easily
shown to be equivalent to it. Thus the constitutive equation restricting the stress tensor
can be written explicitly as:

Trace (P.S) = 0 (6)

governed by an order parameter P given by:

P = R.m2R.a1 − R.m1R.a2 (7)

where R is a rotation through π/2. It is interesting that the order parameter P is in-
trinsically chiral, with its sign sensitive to how we index contacts round the grain. If
the isotropic part of P happens to vanish, then our constitutive equation reduces to Fixed
Principal Axes (FPA) ansatz [9]. However as all the vectors a1, a2, m1, m2 are in principle
independent of each other, there is no reason to expect:

TraceP = m2.a1 − m1.a2 = 0 (8)

and FPA ansatz remains a special case.

4 Frictionless aspherical grains in d = 3

The simplest regular array to consider here is (affinely distorted) face-center cubic, duly
giving the minimal coordination number of 12. Opposing pairs of contacts are mutually
constrained as in the two dimensional case, and as wavevector k approaches zero we find
the force moment tensor given by a sum over the six pairs as:

S =

6∑

i=1

φiaini (9)

Making S symmetric determines three of the φi, so that we are left with just three degrees
of freedom for the symmetric stress, as expected. The connectivity of the lattice ensures
that the six lattice vectors span the edges of a tetrahedron, and there is one normal vector
corresponding to each edge. Although it is not in general possible to scale the normals
to fit the edges of a tetrahedron, we can scale them in usefully analogous way. The three
lattice vectors meeting at any vertex have, given appropriate ordering conventions, the
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property that a.a′ × a” = 6V , where the constant V is the volume of the tetrahedron.
The six normal vectors can be rescaled as mi ∝ ni so that any corresponding set of
three obeys the analogous result m.m′ × m” = 1. Given the above conventions it is not
difficult to see that if edges 1,2,3,4 form a circuit enclosing triangles 1,2,5 and 3,4,5 then
(a1 × a2).S.(m3 × m4) = (a3 × a4).S.(m1 × m2) as both sides are equal to 6V φ6 with
appropriate scale factor. In this way we can obtain six constraint equations of the form:

(a1 × a2 m3 × m4 − a3 × a4 m1 × m2) : S = 0 (10)

of which only three are linearly independent of each other. For frictionless spheres the
simplest periodic lattice of minimal coordination number, 2d, is a cubic array, sheared over
in the general case. For this arrangement it is obvious that the system can support only
normal stresses along the symmetry axes. When these are at right angles this corresponds
to Fixed Principle Axis behaviour, but not otherwise.

5 Grains with friction

For grains with friction, the simplest periodic arrays require at least two grains per unit cell
because of the relativley low minimal coordination number. The honeycomb and diamond
lattices (for two and three dimensions respectively) have already been discused in [14], but
with an assumption of symmetry between the two grains of the unit cell: this is that the
intracell grain contact lies at the centroid of the intercell grain contacts. Here we show that
if the intracell contact is displaced by a vector c, a simple linear rather than differential
constitutive equation results. Working for simpicity in two dimensions and focussing on
k = 0 solutions, the force moment (proportional to stress tensor) of the unit cell can be
written as:

S = a1f1 + a2f2 (11)

where fi is the force across the intercell contacts spanned by lattice vector ai. From this
we can find the fi in terms of S and hence expressions for the torque applied to each grain
in the unit cell. The sum of these torques vanishes when S is symmetric, but the difference
between them is given (at k = 0) by:

∆G =
c × S × (a1 − a2)

a1 × a2
(12)

resulting in a constitutive equation

c× σ × (a1 − a2) = 0 (13)

In three dimensions the diamond lattice calculation is analogous, with three intercell grain
contacts spanning three lattice vectors, and the resulting constitutive equation is:

c × σ.(a1 × a2 + a2 × a3 + a3 × a1) = 0 (14)

In both cases, when the grains become equivalent and c = 0 one must work to higher
order in the wavevector k, leading to a differential constitutive equation as shown in [14].
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6 Discussion

In this paper we have shown how the geometrical arrangement of grains and their contacts,
assumed known, directly restricts the form of stress tensor that the material can support.
In principle one can only apply forces to a sample, and the restrictions found on the
stress tensor are no more than that required to solve for the resulting stress distribution.
Independent of friction, dimensionality or even whether the particles are spheres, we find a
general universality class GL of mechanical constitutive equation which is simple linear in
the stress components. The coefficients of this are sensitive to the intergranular geometry
to a much finer level than simple objects such as the fabric tensor. Two further universality
classes have been found. The first is where by symmetry of the granular array there is no
coupling (of the constitutive equations) to Trace σ, equivalent to FPA ansatz behaviour
[9]. The second class, DL, is where by internal symmetry of the granular array some of
the constitutive equations become differential[14]. All of the above behaviour is summed
up by the general form:

N : σ + ∇.T : σ + ... = 0 (15)

The nul space of N acting on σ corresponds to allowed macroscopic stress fields; when
this includes pure isotropic stress we have the special class FPA. When the nul space is
degenerately large, T becomes crucial and we have DL behaviour: the only instances of
this which we explicitly calculated had N = 0, but the existence of mixed cases in three
dimensions (and higher) is conjectured. In practice detail of intergranular contacts is not
known in advance, but should be deduced from the deposition history of the system. Truly
history dependent problems are outside the scope of this paper, but for granular systems
which have consolidated or sheared under the applied loading, and for pseudo-elastic as-
semblies which have undergone significant deformation and rearrangement under stress
and/or flow, we can consider the approximation that the current stress itself influences
the contact geometry. In two dimensions we then require to make one scalar equation
out of the stress tensor alone, and assuming it to be independent of the magnitude of
the stress this must reduce to a condition on the ratio of the principal stress components,
σ1/σ2 = constant . This is of precisely the same form as classical considerations of limiting
internal friction:

µ =
σshear

σnormal
=

σ1 − σ2

2
√

σ1σ2
(16)

where µ is the coeffficient of shearing friction. In three dimensions we require three
equations, which cannot be imposed on the only two principle stress ratios available. In
this case, therefore, it appears that we must have inescapably history-dependent behaviour.
There might remain the possibility that the system selects degenerate case configurations
for which at least one of the constitutive equations becomes differential in form, but to
achieve this appears to place conditions on the sample history or, leading to contradiction,
the present stress tensor. Work on disordered arrays of rigid grains is in progress [18].
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