113 research outputs found

    S. 600-An Unnecessary and Dangerous Foray into Classic Populism

    Get PDF

    Insights into mitochondrial dysfunction: aging, amyloid-β, and tau-A deleterious trio

    Get PDF
    Significance: Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder mainly affecting elderly individuals. The pathology of AD is characterized by amyloid plaques (aggregates of amyloid-β [Aβ]) and neurofibrillary tangles (aggregates of tau), but the mechanisms underlying this dysfunction are still partially unclear. Recent Advances: A growing body of evidence supports mitochondrial dysfunction as a prominent and early, chronic oxidative stress-associated event that contributes to synaptic abnormalities and, ultimately, selective neuronal degeneration in AD. Critical Issues: In this review, we discuss on the one hand whether mitochondrial decline observed in brain aging is a determinant event in the onset of AD and on the other hand the close interrelationship of this organelle with Aβ and tau in the pathogenic process underlying AD. Moreover, we summarize evidence from aging and Alzheimer models showing that the harmful trio "aging, Aβ, and tau protein" triggers mitochondrial dysfunction through a number of pathways, such as impairment of oxidative phosphorylation (OXPHOS), elevation of reactive oxygen species production, and interaction with mitochondrial proteins, contributing to the development and progression of the disease. Future Directions: The aging process may weaken the mitochondrial OXPHOS system in a more general way over many years providing a basis for the specific and destructive effects of Aβ and tau. Establishing strategies involving efforts to protect cells at the mitochondrial level by stabilizing or restoring mitochondrial function and energy homeostasis appears to be challenging, but very promising route on the horizon

    The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65

    Get PDF
    Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B.  In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place.  We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle.  We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells.  This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light.  RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels.  Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity.  Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction.  Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision

    Outcomes of Combined Cardiovascular Risk Factor Management Strategies in Type 2 Diabetes: The ACCORD Randomized Trial

    Get PDF
    OBJECTIVETo compare effects of combinations of standard and intensive treatment of glycemia and either blood pressure (BP) or lipids in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial.RESEARCH DESIGN AND METHODSACCORD enrolled 10,251 type 2 diabetes patients aged 40–79 years at high risk for cardiovascular disease (CVD) events. Participants were randomly assigned to hemoglobin A1c goals of <6.0% (<42 mmol/mol; intensive glycemia) or 7.0–7.9% (53–63 mmol/mol; standard glycemia) and then randomized a second time to either 1) systolic BP goals of <120 mmHg (intensive BP) or <140 mmHg (standard BP) or 2) simvastatin plus fenofibrate (intensive lipid) or simvastatin plus placebo (standard lipid). Proportional hazards models were used to assess combinations of treatment assignments on the composite primary (deaths due to CVD, nonfatal myocardial infarction [MI], and nonfatal stroke) and secondary outcomes.RESULTSIn the BP trial, risk of the primary outcome was lower in the groups intensively treated for glycemia (hazard ratio [HR] 0.67; 95% CI 0.50–0.91), BP (HR 0.74; 95% CI 0.55–1.00), or both (HR 0.71; 95% CI 0.52–0.96) compared with combined standard BP and glycemia treatment. For secondary outcomes, MI was significantly reduced by intensive glycemia treatment and stroke by intensive BP treatment; most other HRs were neutral or favored intensive treatment groups. In the lipid trial, the general pattern of results showed no evidence of benefit of intensive regimens (whether single or combined) compared with combined standard lipid and glycemia treatment. The mortality HR was 1.33 (95% CI 1.02–1.74) in the standard lipid/intensive glycemia group compared with the standard lipid/standard glycemia group.CONCLUSIONSIn the ACCORD BP trial, compared with combined standard treatment, intensive BP or intensive glycemia treatment alone improved major CVD outcomes, without additional benefit from combining the two. In the ACCORD lipid trial, neither intensive lipid nor glycemia treatment produced an overall benefit, but intensive glycemia treatment increased mortality

    Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function

    Get PDF
    Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    corecore