192 research outputs found

    Time-dependent linear response of an inhomogeneous Bose superfluid: Microscopic theory and connection to current-density functional theory

    Full text link
    The dynamics of a confined fluid of Bose atoms is treated within the linear response regime, with a view to establishing a current-density functional formalism for an inhomogeneous superfluid state. After evaluating in full detail a simplified case of an external coupling to the density and phase of the condensate, the theory is extended to include the coupling to the total current density. The Kohn-Sham response functions of the condensate and all the exchange-correlation kernels for the superfluid are introduced from the microscopic equations of motion and are expressed in a physically transparent way through functional derivatives of correlation functions. A microscopic formula for the superfluid density is derived and used to introduce a generalized hydrodynamic approach for a weakly inhomogeneous two-fluid model in isothermal conditions. Local-density expressions are thereby derived for the velocities of first and second sound in the weakly inhomogeneous superfluid and for visco-elastic functions describing the transition from the hydrodynamic to the collisionless regime. Landau's hydrodynamic theory and known results in Green's functions language are recovered in the limiting case of a homogeneous superfluid.Comment: 25 pages, no figures, Postscript fil

    Explicit finite-difference and direct-simulation-MonteCarlo method for the dynamics of mixed Bose-condensate and cold-atom clouds

    Full text link
    We present a new numerical method for studying the dynamics of quantum fluids composed of a Bose-Einstein condensate and a cloud of bosonic or fermionic atoms in a mean-field approximation. It combines an explicit time-marching algorithm, previously developed for Bose-Einstein condensates in a harmonic or optical-lattice potential, with a particle-in-cell MonteCarlo approach to the equation of motion for the one-body Wigner distribution function in the cold-atom cloud. The method is tested against known analytical results on the free expansion of a fermion cloud from a cylindrical harmonic trap and is validated by examining how the expansion of the fermionic cloud is affected by the simultaneous expansion of a condensate. We then present wholly original calculations on a condensate and a thermal cloud inside a harmonic well and a superposed optical lattice, by addressing the free expansion of the two components and their oscillations under an applied harmonic force. These results are discussed in the light of relevant theories and experiments.Comment: 33 pages, 13 figures, 1 tabl

    Gamma-ray Observations Under Bright Moonlight with VERITAS

    Full text link
    Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727+502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations

    Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements

    Get PDF
    A model of the lodging process has been successfully adapted for use on spring wheat grown in North-West Mexico (NWM). The lodging model was used to estimate the lodging-associated traits required to enable spring wheat grown in NWM with a typical yield of 6 t ha−1 and plant height of 0.7 m to achieve a lodging return period of 25 years. Target traits included a root plate spread of 51 mm and stem strength of the bottom internode of 268 N mm. These target traits increased to 54.5 mm and 325 N mm, respectively, for a crop yielding 10 t ha−1. Analysis of multiple genotypes across three growing seasons enabled relationships between both stem strength and root plate spread with structural dry matter to be quantified. A NWM lodging resistant ideotype yielding 6 t ha−1 would require 3.93 t ha−1 of structural stem biomass and 1.10 t ha−1 of root biomass in the top 10 cm of soil, which would result in a harvest index (HI) of 0.46 after accounting for chaff and leaf biomass. A crop yielding 10 t ha−1 would achieve a HI of 0.54 for 0.7 m tall plants or 0.41 for more typical 1.0 m tall plants. This study indicates that for plant breeders to achieve both high yields and lodging-proofness they must either breed for greater total biomass or develop high yielding germplasm from shorter crops

    Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Get PDF
    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide1. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities2. However, subsequent experimental tests produced mixed results3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability14, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events

    Upper limits from five years of blazar observations with the VERITAS Cherenkov telescopes

    Get PDF
    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4σ excess
    corecore