169 research outputs found

    Correlates of light and moderate-to-vigorous objectively measured physical activity in four-year-old children

    Get PDF
    Correlates of physical activity (PA) are hypothesized to be context and behaviour specific, but there is limited evidence of this in young children. The aim of the current study is to investigate associations between personal, social and environmental factors and objectively measured light and moderate-to-vigorous PA (LPA and MVPA, respectively) in four-year-old children.Cross-sectional data were used from the Southampton Women's Survey, a UK population-based longitudinal study. Four-year old children (n = 487, 47.0% male) had valid PA data assessed using accelerometry (Actiheart) and exposure data collected with a validated maternal questionnaire (including data on child personality, family demographics, maternal behaviour, rules and restrictions, and perceived local environment). Linear regression modelling was used to analyse associations with LPA and MVPA separately, interactions with sex were explored.LPA minutes were greater in children whose mothers reported more PA (vs. inactive: regression coefficient±standard error: 6.70±2.94 minutes), and without other children in the neighbourhood to play with (-6.33±2.44). MVPA minutes were greater in children with older siblings (vs. none: 5.81±2.80) and those whose mothers used active transport for short trips (vs. inactive: 6.24±2.95). Children accumulated more MVPA in spring (vs. winter: 9.50±4.03) and, in boys only, less MVPA with availability of other children in the neighbourhood (-3.98±1.70).Young children's LPA and MVPA have differing associations with a number of social and environmental variables. Interventions targeting PA promotion in young children outside of formal care settings should consider including intensity specific factors

    Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance to fibrinolysis

    Get PDF
    Background: Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. Methods: We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. Results: A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. Conclusions: Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve ?-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis

    Static and mobile DXA scanner in-vivo cross-calibration study

    Get PDF
    Copyright © 2012 The College of Radiographers. Published by Elsevier Ltd. NOTICE: this is the author’s version of a work that was accepted for publication in Radiography. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Radiography Vol. 19 (2013), DOI: 10.1016/j.radi.2012.08.005In-vitro cross-calibration of DXA scanning equipment, with a phantom device, has been recommended for assessing agreement between devices co-located within DXA scanning services. This study evaluated in-vivo and in-vitro cross-calibration of a static and a mobile DXA scanner within the same service in their individual clinical settings. 50 individuals from a volunteer group were recruited to take part in this study and had DXA measurements made on two GE Lunar Prodigy Advance (GE Lunar, Bedford, UK) scanners. Results in this study showed that the scanners agreed, with no clinically significant differences in BMD measurements made at the same site on the individual devices used in this study. The in-vivo cross-calibration of the instruments was a useful experience, which demonstrated closely calibrated systems and raised the profile of the bone densitometry service within the hospital

    Hydrodynamic behavior in expanding thermal clouds of Rb-87

    Full text link
    We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released from an elongated trap. At our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic cooling during the early stages of the expansion. We present an analytical model to describe the expansion and to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure

    Theory of output coupling for trapped fermionic atoms

    Full text link
    We develop a dynamic theory of output coupling, for fermionic atoms initially confined in a magnetic trap. We consider an exactly soluble one-dimensional model, with a spatially localized delta-type coupling between the atoms in the trap and a continuum of free-particle external modes. Two important special cases are considered for the confinement potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the coupled system appears for any value of the coupling constant, implying that the trap population does not vanish in the infinite-time limit. For weak coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding to the initially occupied energy levels in the trap; the height of these peaks increases with the energy. As the coupling gets stronger, the energy spectrum is displaced towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which contributes to the energy spectrum of the outgoing beam more strongly than the other modes. This effect is especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasi-monochromatic anti-bunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral distribution and corresponding figur

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Understanding COVID-19-associated coagulopathy

    Get PDF
    COVID-19-associated coagulopathy (CAC) is a life-threatening complication of SARS-CoV-2 infection. However, the underlying cellular and molecular mechanisms driving this condition are unclear. Evidence supports the concept that CAC involves complex interactions between the innate immune response, the coagulation and fibrinolytic pathways, and the vascular endothelium, resulting in a procoagulant condition. Understanding of the pathogenesis of this condition at the genomic, molecular and cellular levels is needed in order to mitigate thrombosis formation in at-risk patients. In this Perspective, we categorize our current understanding of CAC into three main pathological mechanisms: first, vascular endothelial cell dysfunction; second, a hyper-inflammatory immune response; and last, hypercoagulability. Furthermore, we pose key questions and identify research gaps that need to be addressed to better understand CAC, facilitate improved diagnostics and aid in therapeutic development. Finally, we consider the suitability of different animal models to study CAC

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Planck early results. VI. The High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 . The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100–217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project
    corecore