750 research outputs found
Motion sickness incidence during a round-the-world yacht race
Motion sickness experiences were obtained from participants in a 9 month, round the world yacht race. Race participants completed questionnaires on their motion sickness experience 1 week prior to the start of the race, during the race, and following the race. Yacht headings, sea states, and wind directions were recorded throughout the race. Illness and the occurrence of vomiting were related to the duration at sea and yacht encounter directions relative to the prevailing wind. Individual crewmember characteristics, the use of anti-motion sickness drugs, activity while at sea, and after-effects of yacht motion were also examined with respect to sickness occurrence, Sickness was greatest among females and younger crewmembers, and among crewmembers who used anti-motion sickness drugs. Sickness varied as a function of drug type and activity while at sea. Crewmembers who reported after-effects of yacht motion also reported greater sickness while at sea. ]he primary determinants of motion sickness were the duration of time spent at sea and yacht encounter direction to the prevailing wind. R ESEARCH HAS ESTABLISHED that seasickness is dependent on the magnitude of ship motion The majority of studies of seasickness have involved single voyages (e.g., 8) or multiple, short duration voyages (e.g., 10). There have been few investigations of the incidence of seasickness over prolonged periods at sea. Wiker et al. conducted 3-d sea trials involving different U.S. Coast Guard vessels navigating an octagonal course (16). The incidence of motion sickness was found to be greater on vessels producing greater magnitudes of vertical motion. Vomiting and lesser symptoms of motion sickness were greatest when steaming with a component of head seas. Applebee et al. Goto and Kanda (5) examined sickness data from 35 sea cadets on board a 97-m training vessel during a 4-month voyage in the Pacific Ocean. Motion sickness symptoms decreased logarithmically as days at sea increased, the incidence of motion sickness falling to 10% of its original value over the first 10 d at sea. The authors suggest that motion sickness incidence can be determined from two factors: a h u m a n response factor derived from the magnitude of vertical acceleration experienced, and an exposure effect function based on the decline in sickness incidence with days spent at sea. It is clear that motion sickness during extended periods at sea is not simply determined by the sea conditions. Motion sickness incidence will also be determined by the type of vessel, the vessel heading and the prevailing sea and wind conditions (encounter direction) and the period of time spent at sea. Predictions of seasickness incidence based only on short duration exposures do not allow for the effect of habituation. Initial susceptibility to motion sickness and the rate of habituation m a y differ from person to person depending on age, gender, previous sailing experience, and the use of anti-motion sickness drugs (e.g., 13). This study investigated the importance of sea state, vessel encounter direction and continuous exposure duration as determinants of motion sickness over prolonged periods at sea during the 1992-93 British Steel Challenge ocean yacht race. The effects of individual characteristics and individual behavior on the incidence of motion sickness were also examined. M E T H O D S The British Steel Challenge: T h e British Steel Challenge was a 9-month, 28,000 mile yacht race involving a cirFrom the Huma
Phase 1b randomized, double-blind study of namilumab, an anti-granulocyte macrophage colony-stimulating factor monoclonal antibody, in mild-to-moderate rheumatoid arthritis
Change from baseline in swollen (a) and tender (b) joint counts. *Error bars show upper SE for placebo and lower SE for namilumab. SE standard error, SJC swollen joint count, TJC tender joint count. (PDF 1292 kb
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
Lorentz violation, Gravity, Dissipation and Holography
We reconsider Lorentz Violation (LV) at the fundamental level. We show that
Lorentz Violation is intimately connected with gravity and that LV couplings in
QFT must always be fields in a gravitational sector. Diffeomorphism invariance
must be intact and the LV couplings transform as tensors under coordinate/frame
changes. Therefore searching for LV is one of the most sensitive ways of
looking for new physics, either new interactions or modifications of known
ones. Energy dissipation/Cerenkov radiation is shown to be a generic feature of
LV in QFT. A general computation is done in strongly coupled theories with
gravity duals. It is shown that in scale invariant regimes, the energy
dissipation rate depends non-triviallly on two characteristic exponents, the
Lifshitz exponent and the hyperscaling violation exponent.Comment: LateX, 51 pages, 9 figures. (v2) References and comments added.
Misprints correcte
Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS
Systemic inflammation is often associated with impaired glucose metabolism. We therefore studied the activation of inflammatory pathway intermediates that interfere with glucose uptake during systemic inflammation by applying a standardised inflammatory stimulus in vivo. After ethical approval, informed consent and a thorough physical examination, 10 patients with type 2 diabetes and 10 participants with normal glucose tolerance (NGT) were given an intravenous bolus of E. coli lipopolysaccharide (LPS) of 0.3 ng/kg. Skeletal muscle biopsies and plasma were obtained at baseline and two, four and six hours after LPS. Nuclear factor (NF)-κB p65 DNA binding activity measured by ELISA, tumor necrosis factor-α and interleukin-6 mRNA expression analysed by real time reverse transcription polymerase chain reaction, and abundance of inhibitor of NF-κB (IκB)α, phosphorylated c-Jun-N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase measured by Western blotting were detected in muscle biopsy samples. Relative to subjects with NGT, patients with type 2 diabetes exhibited a more pronounced increase in NF-κB binding activity and JNK phosphorylation after LPS, whereas skeletal muscle cytokine mRNA expression did not differ significantly between groups. AMPK phosphorylation increased in volunteers with NGT, but not in those with diabetes. The present findings indicate that pathways regulating glucose uptake in skeletal muscle may be involved in the development of inflammation-associated hyperglycemia. Patients with type 2 diabetes exhibit changes in these pathways, which may ultimately render such patients more prone to develop dysregulated glucose disposal in the context of systemic inflammation
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
The ISO LWS grating spectrum of NGC 7027
We present a high signal-to-noise ISO Long Wavelength Spectrometer (LWS) grating spectrum of the planetary nebula NGC 7027 from 43-194μm. In total 40 emission lines have been detected, with 30 identified. From the ionized region, we observe fine-structure lines from [N II], [N III] and [O III]. The [O I] and [C II] fine-structure lines from the photodissociation region are the strongest features observed in this spectral region. Amongst the molecular lines, 11 pure rotation CO lines from J=14-13 up to J=24-23 have been detected. The most striking result, however, is the detection in this carbon-rich nebula of the o-H_2_O 179.53μm and the OH 119.3μm fundamental lines. Astrophysical implications are briefly discussed
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
- …