24 research outputs found

    The Grell-Freitas Convection Parameterization: Recent Developments and Applications Within the NASA GEOS Global Model

    Get PDF
    We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, mid, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Here, we briefly introduce the recent developments, implementation, and preliminary results of this parameterization in the NASA GEOS modeling system

    Subseasonal Forecasting with an Icosahedral, Vertically Quasi-Lagrangian Coupled Model. Part I: Model Overview and Evaluation of Systematic Errors

    Get PDF
    The atmospheric hydrostatic Flow-Following Icosahedral Model (FIM), developed for medium-range weather prediction, provides a unique three-dimensional grid structurea quasi-uniform icosahedral horizontal grid and an adaptive quasi-Lagrangian vertical coordinate. To extend the FIM framework to subseasonal time scales, an icosahedral-grid rendition of the Hybrid Coordinate Ocean Model (iHYCOM) was developed and coupled to FIM. By sharing a common horizontal mesh, airsea fluxes between the two models are conserved locally and globally. Both models use similar adaptive hybrid vertical coordinates. Another unique aspect of the coupled model (referred to as FIMiHYCOM) is the use of the GrellFreitas scale-aware convective scheme in the atmosphere. A multiyear retrospective study is necessary to demonstrate the potential usefulness and allow for immediate bias correction of a subseasonal prediction model. In these two articles, results are shown based on a 16-yr period of hindcasts from FIMiHYCOM, which has been providing real-time forecasts out to a lead time of 4 weeks for NOAAs Subseasonal Experiment (SubX) starting July 2017. Part I provides an overview of FIMiHYCOM and compares its systematic errors at subseasonal time scales to those of NOAAs operational Climate Forecast System version 2 (CFSv2). Part II uses bias-corrected hindcasts to assess both deterministic and probabilistic subseasonal skill of FIMiHYCOM. FIMiHYCOM has smaller biases than CFSv2 for some fields (including precipitation) and comparable biases for other fields (including sea surface temperature). FIMiHYCOM also has less drift in bias between weeks 1 and 4 than CFSv2. The unique grid structure and physics suite of FIMiHYCOM is expected to add diversity to multimodel ensemble forecasts at subseasonal time scales in SubX

    Assessing the Grell-Freitas Convection Parameterization in the NASA GEOS Modeling System

    Get PDF
    We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM). The proposed parameterization follows the mass flux approach with several closures, for equilibrium and nonequilibrium convection, and includes scale and aerosol aware functionalities. Recently, we extended the scheme to a trimodal spectral size distribution of allowed convective plumes to simulate the transition among shallow, congestus, and deep convection regimes. In addition, the inclusion of a new closure for nonequilibrium convection resulted in a substantial gain of realism in the model representation of the diurnal cycle of convection over the land. We demonstrated the scaledependence functionality with a cascade of globalscale simulations from a nominal horizontal resolution of 50 km down to 6 km. The ability to realistically simulate the diurnal cycle of precipitation over various regions of the earth was verified against several remote sensingderived intradiurnal precipitation estimates. We extended the model performance evaluation for weatherscale applications by bringing together some available operational shortrange weather forecast models and global atmospheric reanalyses. Our results demonstrate that the GEOS GCM with the alternative convective parameterization has good properties and competitive skill in comparison with stateoftheart observations and numerical simulations

    Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    Get PDF
    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are investigated. Overall, despite these limitations and uncertainties, using OMI AAOD to constrain BC sources improves model representation of BC distributions, particularly over China

    The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)

    Get PDF
    To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders

    Potential Impacts of the Introduction of Low-Sulfur Fuel on Concentrations at Breathing Level in a Subarctic City

    No full text
    The effects of using low-sulfur fuel for oil-heating and oil-burning facilities on the PM2.5 concentrations at breathing level in an Alaska city surrounded by vast areas were examined with the Weather Research and Forecasting model coupled with chemistry packages that was modified for the subarctic. Simulations were performed in forecast mode for a cold season using the National Emission Inventory 2008 and alternatively emissions that represent the use of low-sulfur fuel for oil-heating and oil-burning facilities while keeping the emissions of other sources the same as in the reference simulation. The simulations suggest that introducing low-sulfur fuel would decrease the monthly mean 24 h-averaged PM2.5 concentrations over the city’s PM2.5 nonattainment area by 4%, 9%, 8%, 6%, 5%, and 7% in October, November, December, January, February, and March, respectively. The quarterly mean relative response factors for PM2.5 of 0.96 indicate that with a design value of 44.7 Όg/m3 introducing low-sulfur fuel would lead to a new design value of 42.9 Όg/m3 that still exceeds the US National Ambient Air Quality Standard of 35 Όg/m3. The magnitude of the relation between the relative response of sulfate and nitrate changes differs with temperature. The simulations suggest that, in the city, PM2.5 concentrations would decrease stronger on days with low atmospheric boundary layer heights, low hydrometeor mixing ratio, low downward shortwave radiation, and low temperatures

    A new chemistry option in WRF/Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: Evaluation against IMPACT-EUCAARI data

    No full text
    A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the Weather Research and Forecasting model with Chemistry (WRF-Chem) model. The new chemistry option called "RACM-MADE-VBS-AQCHEM" was evaluated on a cloud resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI (Intensive Cloud Aerosol Measurement Campaign – European Integrated project on Aerosol Cloud Climate and Air quality interaction) campaign, and complemented with satellite data from MODIS. The day-to-day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface are captured by the model. Surface aerosol mass concentrations of sulfate (SO4), nitrate (NO3), ammonium (NH4), and organic matter (OM) are simulated with correlations larger than 0.55. WRF-Chem captures the vertical profile of the aerosol mass concentration in both the planetary boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the model does not capture the full range of the measured concentrations. Predicted OM concentration is at the lower end of the observed mass concentrations. The bias may be attributable to the missing aqueous chemistry processes of organic compounds and to uncertainties in meteorological fields. A key role could be played by assumptions on the VBS approach such as the SOA formation pathways, oxidation rate, and dry deposition velocity of organic condensable vapours. Another source of error in simulating SOA is the uncertainties in the anthropogenic emissions of primary organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated by a factor of 1.4 and 1.7 within the PBL and FT, respectively. Model bias is most likely attributable to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. Simulated cloud condensation nuclei (CCN) are also overestimated, but the bias is more contained with respect to that of CN. The CCN efficiency, which is a characterization of the ability of aerosol particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. The comparison with MODIS data shows that the model overestimates the aerosol optical thickness (AOT). The domain averages (for 1 day) are 0.38 ± 0.12 and 0.42 ± 0.10 for MODIS and WRF-Chem data, respectively. The droplet effective radius (Re) in liquid-phase clouds is underestimated by a factor of 1.5; the cloud liquid water path (LWP) is overestimated by a factor of 1.1–1.6. The consequence is the overestimation of average liquid cloud optical thickness (COT) from a few percent up to 42 %. The predicted cloud water path (CWP) in all phases displays a bias in the range +41–80 %, whereas the bias of COT is about 15 %. In sensitivity tests where we excluded SOA, the skills of the model in reproducing the observed patterns and average values of the microphysical and optical properties of liquid and all phase clouds decreases. Moreover, the run without SOA (NOSOA) shows convective clouds with an enhanced content of liquid and frozen hydrometers, and stronger updrafts and downdrafts. Considering that the previous version of WRF-Chem coupled with a modal aerosol module predicted very low SOA content (secondary organic aerosol model (SORGAM) mechanism) the new proposed option may lead to a better characterization of aerosol–cloud feedbacks.ISSN:1991-9603ISSN:1991-959
    corecore