157 research outputs found
Third Family Quark-Lepton Unification at the TeV Scale
We construct a model of quark-lepton unification at the TeV scale based on an
gauge symmetry, while still having acceptable neutrino masses and
enough suppression in flavor changing neutral currents. An approximate
flavor symmetry is an artifact of family-dependent gauge charges leading to a
natural realization of the CKM mixing matrix. The model predicts sizeable
violation of PMNS unitarity as well as a gauge vector leptoquark which can be produced at the LHC -- both effects
within the reach of future measurements. In addition, recently reported
experimental anomalies in semi-leptonic -meson decays, both in charged and neutral currents, can be accommodated.Comment: 9 pages, 5 tables. Version accepted for publication in PL
Flavour anomalies versus high-pT physics
I discuss the implications of the long-standing anomaly in semitauonic B meson decays for new physics (NP) searches at high-pT with ATLAS and CMS detectors. Effective field theory is used to identify potential signatures at high
energies correlated with the anomaly. Several representative models put forward to explain the anomaly are examined in details: color-neutral vector triplet, 2HDM, scalar and vector leptoquark model. We find that in general Ï +Ï â searches impose serious challenge to NP explanations of the anomaly. After recasting present 8 and
13 TeV analyses stringent limits are set on all the models
U(2) Is Right for Leptons and Left for Quarks.
We posit that the distinct patterns observed in fermion masses and mixings are due to a minimally broken U(2)_{q+e} flavor symmetry acting on left-handed quarks and right-handed charged leptons, giving rise to an accidental U(2)^{5} symmetry at the renormalizable level without imposing selection rules on the Weinberg operator. We show that the symmetry can be consistently gauged by explicit examples and comment on realizations in SU(5) unification. Via a model-independent analysis of a standard model viewed as an effective field theory, we find that selection rules due to U(2)_{q+e} enhance the importance of charged lepton flavor violation as a probe, where significant experimental progress is expected in the near future
Combined explanations of B-physics anomalies: the sterile neutrino solution
In this paper we provide a combined explanation of charged- and neutral-current B-physics anomalies assuming the presence of a light sterile neutrino NR which contributes to the B \u2192 D(*)\u3c4\u3bd processes. We focus in particular on two simplified models, where the mediator of the flavour anomalies is either a vector leptoquark U1\u3bc 3c (3, 1, 2/3) or a scalar leptoquark S1 3c (3\uaf , 1, 1/3). We find that U1\u3bc can successfully reproduce the required deviations from the Standard Model while being at the same time compatible with all other flavour and precision observables. The scalar leptoquark instead induces a tension between Bs mixing and the neutral-current anomalies. For both states we present the limits and future projections from direct searches at the LHC finding that, while at present both models are perfectly allowed, all the parameter space will be tested with more luminosity. Finally, we study in detail the cosmological constraints on the sterile neutrino NR and the conditions under which it can be a candidate for dark matter
Vacuum Instabilities with a Wrong-Sign Higgs-Gluon-Gluon Amplitude
The recently discovered 125 GeV boson appears very similar to a Standard
Model Higgs, but with data favoring an enhanced h to gamma gamma rate. A number
of groups have found that fits would allow (or, less so after the latest
updates, prefer) that the h-t-tbar coupling have the opposite sign. This can be
given meaning in the context of an electroweak chiral Lagrangian, but it might
also be interpreted to mean that a new colored and charged particle runs in
loops and produces the opposite-sign hGG amplitude to that generated by
integrating out the top, as well as a contribution reinforcing the W-loop
contribution to hFF. In order to not suppress the rate of h to WW and h to ZZ,
which appear to be approximately Standard Model-like, one would need the loop
to "overshoot," not only canceling the top contribution but producing an
opposite-sign hGG vertex of about the same magnitude as that in the SM. We
argue that most such explanations have severe problems with fine-tuning and,
more importantly, vacuum stability. In particular, the case of stop loops
producing an opposite-sign hGG vertex of the same size as the Standard Model
one is ruled out by a combination of vacuum decay bounds and LEP constraints.
We also show that scenarios with a sign flip from loops of color octet charged
scalars or new fermionic states are highly constrained.Comment: 20 pages, 8 figures; v2: references adde
Rank-one flavor violation and B-meson anomalies
We assume that the quark-flavor coefficients matrix of the semileptonic operators addressing the neutral-current B-meson anomalies has rank-one, i.e. it can be described by a single vector in quark-flavor space. By correlating the observed anomalies to other flavor and high-pT observables, we constrain its possible directions and we show that a large region of the parameter space of this framework will be explored by flavor data from the NA62, KOTO, LHCb and Belle II experiments
Physics of leptoquarks in precision experiments and at particle colliders
We present a comprehensive review of physics effects generated by leptoquarks
(LQs), i.e., hypothetical particles that can turn quarks into leptons and vice
versa, of either scalar or vector nature. These considerations include
discussion of possible completions of the Standard Model that contain LQ
fields. The main focus of the review is on those LQ scenarios that are not
problematic with regard to proton stability. We accordingly concentrate on the
phenomenology of light leptoquarks that is relevant for precision experiments
and particle colliders. Important constraints on LQ interactions with matter
are derived from precision low-energy observables such as electric dipole
moments, (g-2) of charged leptons, atomic parity violation, neutral meson
mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of
indirect constraints on the strength of LQ interactions with the quarks and
leptons to make statements that are as model independent as possible. We
address complementary constraints that originate from electroweak precision
measurements, top, and Higgs physics. The Higgs physics analysis we present
covers not only the most recent but also expected results from the Large Hadron
Collider (LHC). We finally discuss direct LQ searches. Current experimental
situation is summarized and self-consistency of assumptions that go into
existing accelerator-based searches is discussed. A progress in making
next-to-leading order predictions for both pair and single LQ productions at
colliders is also outlined.Comment: 136 pages, 22 figures, typographical errors fixed, the Physics
Reports versio
- âŠ