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We construct a model of quark–lepton unification at the TeV scale based on an SU (4) gauge symmetry, 
while still having acceptable neutrino masses and enough suppression in flavor changing neutral currents. 
An approximate U (2) flavor symmetry is an artifact of family-dependent gauge charges leading to a 
natural realization of the CKM mixing matrix. The model predicts sizeable violation of PMNS unitarity 
as well as a gauge vector leptoquark Uμ

1 = (3, 1, 2/3) which can be produced at the LHC – both effects 
within the reach of future measurements. In addition, recently reported experimental anomalies in semi-
leptonic B-meson decays, both in charged b → cτν and neutral b → sμμ currents, can be accommodated.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Quark–lepton unification – as originally suggested by Jogesh 
Pati and Abdus Salam [1] – is an attractive paradigm of physics 
beyond the Standard Model (SM). Namely, a fundamental represen-
tation of an SU (4) gauge symmetry embeds a color triplet quark 
and a color singlet lepton (4 = 3 ⊕ 1). Such a construction pre-
dicts existence of an exotic particle, a gauge vector leptoquark (LQ) 
Uμ

1 = (3, 1, 2/3), which can turn a quark into a lepton and vice 
versa.

In this article, we entertain the possibility of quark–lepton uni-
fication at the TeV scale, motivated by the scope of present parti-
cle laboratories. The two main challenges to this idea are (i) the 
observed neutrino masses and (ii) the stringent constraints from 
flavor changing neutral currents (FCNC) in meson decays. In par-
ticular, the neutrino masses are expected to be similar in size to 
the masses of the up-type quarks, since the two fields are embed-
ded in the same 4 of SU (4). The correct structure for a solution 
comes naturally in high-scale Pati–Salam models, possibly in the 
context of S O (10) grand unification (GUT) [2], where the Majo-
rana mass is around the GUT scale, while the Dirac mass is at the 
electroweak scale, leading to a seesaw mechanism [3–6]. On the 
contrary, quark–lepton unification at scales much lower than the 
GUT scale (but still far beyond LHC reach) was achieved in Ref. [7]
using the inverse seesaw mechanism (ISS) [8–10] to generate small 
neutrino masses.
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Also problematic for Pati–Salam quark–lepton unification at the 
TeV scale are the stringent bounds on FCNC in semi-leptonic me-
son decays (e.g. K L → μe) due to gauge vector LQ exchange, push-
ing the LQ mass to the PeV ballpark [11–15]. On the other hand, 
as shown recently in Ref. [16], the FCNC induced by a TeV scale 
vector LQ can be avoided in the context of partial unification mod-
els [17,18] in which the SM gauge group is embedded into a larger 
SU (4) × SU (3)′ × SU (2)L × U (1)′ group (“4321”), and the (would-
be) SM fermions are charged only under the “321” part. The LQ 
couplings to SM fermions are generated via mass mixing with ex-
tra vector-like fermions charged under SU (4), where the largest LQ 
interactions are taken to be with the third family fermions as al-
lowed by the low energy flavor data. Note that this construction 
does not have a neutrino mass problem since the (would-be) SM 
quarks and leptons are not unified in 4 of SU (4).1

Building on this work, the authors of Ref. [29] introduce 
family-dependent gauge interactions – Pati–Salam for every fam-
ily (P S3) – achieving a TeV scale vector LQ dominantly coupled 
to the third family while still having quarks and leptons unified 
into a 4 of SU (4). Scalar link fields are introduced to break the 
gauge symmetry down to the SM. This is done in several steps 
with very hierarchical vacuum expectation values (VEVs) ranging 
from 1 TeV up to (at least) 103 TeV – a construction which is pre-
sumably responsible for the peculiar quark masses and mixing in 
the SM. However, the aforementioned neutrino mass problem is 

1 As shown in [16], the “4321” model is the first UV complete gauge model to co-
herently address a set of experimental anomalies recently reported in semi-leptonic 
B-meson decays [19–25], utilizing the vector LQ representation Uμ

1 = (3, 1, 2/3). 
See also recent activities in Refs. [26–31].
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Table 1
Scalar sector of the model.

Scalar fields

Gauge Global

Field SU (4) SU (3)′ SU (2)L U (1)′ U (1)B ′ U (1)L′

H 1 1 2 1/2 0 0
� 15 1 2 1/2 0 0
�3 4 3 1 1/6 1/12 −1/4
�1 4 1 1 −1/2 −1/4 3/4

set aside noting that, in principle, one could fine tune the contri-
butions of the two Higgs fields, both of which are O(vEW) where 
vEW ≈ 246 GeV.

Also relevant to this article is the idea of Ref. [32], where the 
authors consider an extended color symmetry SU (3)12 × SU (3)3 →
SU (3)c , where the first two quark families are charged under 
SU (3)12, and the third family is charged under SU (3)3. An ap-
proximate U (2) flavor symmetry [33] is obtained accidentally as 
an artifact of the gauge representation choices. The leading U (2)

breaking spurion is generated by integrating out a weak doublet 
vector-like quark.

Building on the work of the aforementioned Refs. [7,16,29,32], 
we construct a model of TeV scale quark–lepton unification based 
on the “4321” gauge group with the third family charged under 
“421”, and the light families under “321”. As a consequence, the 
model possesses an accidental approximate U (2) flavor symmetry 
which is softly broken by a weak doublet vector-like fermion rep-
resentation. In addition, SM singlet fermions are introduced in or-
der to implement the inverse seesaw mechanism and generate ac-
ceptable neutrino masses and mixings without a fine-tuning prob-
lem. When the vector-like fermion is integrated out, this model 
is the low-energy limit of Ref. [29], apart from the neutral lep-
ton sector. The model is UV complete and renormalizable, and 
the heaviest states are not far above the TeV scale. Therefore, un-
like high scale models of quark–lepton unification, our model does 
not introduce a severe problem with the stabilization of the elec-
troweak scale.

2. Model basics

2.1. Gauge symmetry and breaking structure

We consider here the “4321” gauge group G ≡ SU (4) ×
SU (3)′ × SU (2)L × U (1)′ . We label the respective gauge fields 
as Hα

μ, G ′ a
μ , W i

μ, B ′
μ , the gauge couplings as g4, g3, g2, g1, and 

the generators as T α, T a, T i, Y ′ with indices α = 1, . . . , 15, a =
1, . . . , 8, and i = 1, 2, 3. The generators are normalized such that 
Tr [T A T B ] = 1

2 δAB in the fundamental representation. The “4321” 
gauge group G contains the SM gauge group GSM = SU (3)c ×
SU (2)L × U (1)Y as a subgroup. Specifically, color is embedded 
as SU (3)c = [

SU (3)4 × SU (3)′
]

diag and hypercharge is embedded 
as U (1)Y = [

U (1)4 × U (1)′
]

diag, where SU (3)4 × U (1)4 ⊂ SU (4). 
Spontaneous symmetry breaking of G → GSM occurs when the 
scalars �3 and �1 shown in Table 1 acquire vacuum expectation 
values. The proper G → GSM breaking is achieved by following VEV 
configurations [16,18]

〈�3〉 =

⎛⎜⎜⎜⎝
v3√

2
0 0

0 v3√
2

0

0 0 v3√
2

0 0 0

⎞⎟⎟⎟⎠ , 〈�1〉 =

⎛⎜⎜⎝
0
0
0
v1√

2

⎞⎟⎟⎠ . (1)
In the G-symmetry broken phase, we have Y =
√

2
3 T 15 + Y ′ , where 

T 15 = 1
2
√

6
diag(1, 1, 1, −3). The G-symmetry breaking scalar rep-

resentations decompose under GSM as �3 = (8, 1, 0) ⊕ (1, 1, 0) ⊕
(3, 1, 2/3) and �1 = (3, 1, −2/3) ⊕ (1, 1, 0). In the unitary gauge, 
the physical scalar degrees of freedom are: a real color octet, three 
real singlets, and a complex triplet leptoquark.

Additionally, there are three massive gauge bosons U1, g′ , and 
Z ′ which belong to the coset group G/GSM. They transform as 
U1 = (3, 1, 2/3), g′ = (8, 1, 0) and Z ′ = (1, 1, 0) under GSM and 
have masses [16,18]

mU1 = 1
2 g4

√
v2

1 + v2
3 , (2)

mg′ = 1√
2

v3

√
g2

4 + g2
3 , (3)

mZ ′ = 1
2

√
3
2

√
g2

4 + 2
3 g2

1

√
v2

1 + 1
3 v2

3 . (4)

Expressions for U1, g′ , Z ′ , and the SM gauge bosons and gauge 
couplings in terms of the original gauge fields and gauge couplings 
of G can be found in Ref. [16]. A benchmark point matching the 
SM gauge couplings to the gauge couplings of G at μ = 2 TeV
yields g4 = 3, g3 = 1.08, and g1 = 0.365.

The final breaking is electroweak symmetry breaking,
GSM → SU (3)c × U (1)EM, obtained when the Higgs doublet H =
(1, 1, 2, 1/2) of G acquires a VEV 〈H0〉 = v H/

√
2. Additionally, 

there is an SU (4) adjoint scalar � ≡ �α T α = (15, 1, 2, 1/2) which 
contains weak doublets of several kinds: a color octet, two color 
triplets and a color singlet �15 (another Higgs doublet). In what 
follows, we assume that only 

〈
�15

0

〉 = v�/
√

2 develops a VEV and 
contributes to electroweak symmetry breaking. The scalar poten-
tial of the model can naturally generate the aforementioned VEVs 
and symmetry breaking pattern [34]. We note that apart from the 
addition of the SU (4) adjoint scalar �, the bosonic sector of the 
model is identical to that of Ref. [16].

2.2. Matter content

The would-be light family SM fermion fields (when neglect-
ing the mixing discussed below), are charged under the SU (3)′ ×
SU (2)L × U (1)′ subgroup, but are singlets of SU (4). Let us 
denote them as: q′ i

L = (1, 3, 2, 1/6), u′ i
R = (1, 3, 1, 2/3), d′ i

R =
(1, 3, 1, −1/3), �′ i

L = (1, 1, 2, −1/2), and e′ i
R = (1, 1, 1, −1). We la-

bel these representations as dominantly light family SM fermions 
and note that they come in two copies of flavor (i = 1, 2). Being 
SU (4) singlets, they do not couple with the vector leptoquark Uμ

1
directly.

In contrast, the would-be third family SM fermion fields are 
charged as fundamentals under SU (4), in addition to carrying 
charge under SU (2)L × U (1)′ . We denote them as: ψL = (4, 1, 2, 0), 
ψu

R = (4, 1, 1, 1/2), and ψd
R = (4, 1, 1, −1/2). The dominantly third 

family SM fermions are embedded into these representations as 
(ψL)

T = (q′ 3
L �′ 3

L ), (ψu
R )T = (u′ 3

R ν ′ 3
R ), and (ψd

R)T = (d′ 3
R e′ 3

R ). This 
field content is summarized in Table 2. Unlike the light family 
fermions, the dominantly third family SM fermions couple directly 
to the vector leptoquark Uμ

1 via gauge interactions.
In order to generate mixing between the third and light fam-

ily fermions, we introduce a vector-like fermion representation 
χL,R = (4, 1, 2, 0), shown in Table 3. This representation decom-
poses under the SM as χ T

L,R ≡ (Q ′
L,R , L′

L,R), where Q ′
L,R and L′

L,R
are vector-like partners of the SM quark and lepton doublets, re-
spectively. The left-handed field χL couples to the right-handed 
dominantly third family SM fermions ψu

R and ψd
R via a Higgs in-

sertion. The right-handed field χR couples to the left-handed dom-
inantly light family SM quark doublets via �3 insertions and to the 
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Table 2
Dominantly SM fermion content of the model in the G-symmetric phase. The flavor 
index i = 1, 2 runs over the 1st and 2nd family fermions, while the third family is 
embedded in ψL , ψu

R , and ψd
R .

Dominantly light family SM fermions

Gauge Global

Field SU (4) SU (3)′ SU (2)L U (1)′ U (1)B ′ U (1)L′

q′ i
L 1 3 2 1/6 1/3 0

u′ i
R 1 3 1 2/3 1/3 0

d′ i
R 1 3 1 −1/3 1/3 0

�′ i
L 1 1 2 −1/2 0 1

e′ i
R 1 1 1 −1 0 1

Dominantly third family SM fermions

Gauge Global

Field SU (4) SU (3)′ SU (2)L U (1)′ U (1)B ′ U (1)L′

ψL 4 1 2 0 1/4 1/4
ψu

R 4 1 1 1/2 1/4 1/4
ψd

R 4 1 1 −1/2 1/4 1/4

Table 3
Vector-like fermion representation.

New vector-like fermions

Gauge Global

Field SU (4) SU (3)′ SU (2)L U (1)′ U (1)B ′ U (1)L′

χL,R 4 1 2 0 1/4 1/4

Table 4
Fermion singlets. The index i = 1, 2 (a = 1, 2, 3) is a flavor index for the gauge sin-
glet fermion ν ′

R (S R ).

Right handed singlet fermions

Gauge Global

Field SU (4) SU (3)′ SU (2)L U (1)′ U (1)B ′ U (1)L′

ν ′ i
R 1 1 1 0 0 1

Sa
R 1 1 1 0 0 −1

left-handed dominantly light family SM lepton doublets via �1 in-
sertions.

Since the dominantly third family SM quarks and leptons are 
unified into SU (4) multiplets, we get the interesting prediction 
that m′

t = m′
ντ

and m′
b = m′

τ if they receive mass only from the 
Higgs field. While this approximation works quite well for the 
bottom quark and tau lepton, the prediction that the top quark 
and tau neutrino must have the same mass is extremely incon-
sistent with experimental data. If the dominantly third family SM 
fermions also receive contributions to their masses from the VEV 
of �15, then there are four independent Yukawa couplings and 
correct masses for all third family SM fermions can be achieved. 
However, a large fine-tuning is required to arrange a cancella-
tion between the two terms contributing to the tau neutrino mass 
in order to obtain an experimentally acceptable value. This fine-
tuning problem for neutrino masses in low scale SU (4) quark–
lepton unification models was solved by Ref. [7] by adding sin-
glet fermions to implement the inverse seesaw mechanism. Here, 
we follow this prescription and introduce two right-handed dom-
inantly light family SM neutrinos ν ′ i

R and three new right-handed 
fermions Sa

R which are singlets under G . This extension of the 
fermion content is summarized in Table 4 and we discuss the de-
tails of the ISS mechanism in Section 3.2.

In addition, there are accidental global symmetries U (1)B ′ and 
U (1)L′ , whose action on the matter fields are displayed in the last 
two columns of the first four tables. The VEVs of �3 and �1 spon-
taneously break both the gauge and global symmetries, leaving two 
new global U (1)’s unbroken: B = B ′ + 1√
6

T 15 and L = L′ −
√

3
2 T 15. 

For SM particles, these unbroken U (1)’s correspond to ordinary 
baryon and lepton number, respectively. These symmetries protect 
proton stability and make the active neutrinos massless. As will be 
discussed later on, a soft breaking of U (1)L will lead to tiny neu-
trino masses in the context of the inverse seesaw mechanism.

3. Yukawa interactions

Let us define �T
L = (ψL, χL) and write the Lagrangian contain-

ing Yukawa interactions and mass terms as LYuk =L12 +L3χ +Lν , 
where

L12 = −q′
L Yu H̃ u′

R − q′
L Yd H d′

R

− �
′
L Yν H̃ ν ′

R − �
′
L Ye H e′

R + h.c. ,

L3χ = −q′
Lλq �T

3 χR − �
′
Lλ� �T

1 χR − �LmχR

− �L yu
H H̃ψu

R − �L yd
H Hψd

R

− �L yu
� �̃ψu

R − �L yd
� �ψd

R + h.c. ,

Lν = −�T
1 Sc

R λRψu
R − Sc

R MR ν ′
R

− 1

2
Sc

R μS S R − 1

2
ν ′ c

R μR ν ′
R + h.c. .

(5)

Here, we have defined H̃ ≡ iσ 2 H∗ , �̃ ≡ T α(iσ 2�α∗), mT =
(mmix, mχ ), (yu

H,�)T = (yu
H,�, λu

H,�) and (yd
H,�)T = (yd

H,�, λd
H,�).

Without LYuk, the global flavor symmetry of the model is F =
F3χ ×F12 ×FS , where F3χ = U (2)�L × U (1)ψu

R
× U (1)

ψd
R
× U (1)χR

is the flavor symmetry of the dominantly third family SM fermions 
and the new vector-like fermion χL,R , F12 = U (2)q′ × U (2)u′ ×
U (2)d′ × U (2)�′ × U (2)e′ × U (2)ν ′ is the flavor symmetry of the 
dominantly light family SM fermions, and FS = U (N S )S is the fla-
vor symmetry of the right-handed singlet fields Sa

R . The breaking 
F → U (1)B ′ of the flavor group occurs when LYuk is present. We 
can use the broken F12 flavor symmetry start in a basis in which 
Yd and Ye are real and diagonal, Yu = V †Y diag

u , and Yν = U Y diag
ν . 

Here, V and U are orthogonal 2 × 2 matrices, with V approxi-
mately the Cabibbo matrix. Since μS and μR softly break U (1)L′ , 
the group FS is fully broken and can be used to make μS real and 
diagonal.

The broken F3χ symmetry allows us to choose mmix = 0, mχ

real, and fix the phases of yu
H and yd

H . The remaining broken 
symmetry includes the dominantly third family fermion number 
U (1)3 ⊂ F3χ and the dominantly light family fermion number 
U (1)12 ⊂ F12. We will later use the U (1)3 to adjust the phase of 
λd

H and the U (1)12 to choose one component of λT
q ≡ (λ

(1)
q , λ(2)

q )

to be real. If mχ � TeV, χ can be integrated out to gener-
ate dimension-5 operators which mix the third and light family 
fermions, closely approaching the setup of [29]

Ld5 = λq

mχ

(
λu

H q′
L�

T
3 H̃ ψu

R + λu
� q′

L�
T
3 �̃ψu

R

)
+ λq

mχ

(
λd

H q′
L�

T
3 H ψd

R + λd
� q′

L�
T
3 �ψd

R

)
+ λ�

mχ

(
λu

H �
′
L�

T
1 H̃ ψu

R + λu
� �

′
L�

T
1 �̃ψu

R

)
+ λ�

mχ

(
λd

H �
′
L�

T
1 H ψd

R + λd
� �

′
L�

T
1 �ψd

R

)
+ h.c. .

(6)

After electroweak symmetry breaking, the dominantly third family 
SM fermions receive the following masses [7]
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m′
t = vEW√

2

(
yu

H cosβ + 1

2
√

6
yu

� sinβ

)
, (7)

m′
ντ

= vEW√
2

(
yu

H cosβ − 3

2
√

6
yu

� sinβ

)
, (8)

m′
b = vEW√

2

(
yd

H cosβ + 1

2
√

6
yd

� sinβ

)
, (9)

m′
τ = vEW√

2

(
yd

H cosβ − 3

2
√

6
yd

� sinβ

)
, (10)

where we have defined v2
EW = v2

H + v2
� and tan β = v�/v H . Since 

we have the freedom to fix the phases of yu
H and yd

H , we will 
choose them such that the linear combinations which comprise 
m′

t and m′
b are real. We also simplify the light and third family 

fermion mixing coefficients from Ld5 by defining

fu = v3 vEW

2mχ

(
λu

H cosβ + 1

2
√

6
λu

� sinβ

)
, (11)

fν = v1 vEW

2mχ

(
λu

H cosβ − 3

2
√

6
λu

� sinβ

)
, (12)

fd = v3 vEW

2mχ

(
λd

H cosβ + 1

2
√

6
λd

� sinβ

)
, (13)

fe = v1 vEW

2mχ

(
λd

H cosβ − 3

2
√

6
λd

� sinβ

)
. (14)

3.1. Quark sector

The quark mass matrices have the same structure as in Ref. [32]

Md =
(

v H√
2

Y diag
d − fd λq

0 m′
b

)
, (15)

Mu =
(

v H√
2

V †Y diag
u − fu λq

0 m′
t

)
. (16)

These 3 × 3 matrices can be diagonalized by bi-unitary rota-
tions of the form Mdiag

f = V f
L M f V f †

R with f = u, d. With this 
convention, the Cabibbo–Kobayashi–Maskawa (CKM) matrix is de-
fined as V CKM = V u

L V d†
L . Diagonalizing Mu and Md assuming 

v H Y diag
u,d � mχ |λq|, fu,d, m′

t,b � mχ , the CKM matrix to leading or-
der is

V CKM =

⎛⎜⎜⎜⎝
V ud V us F

(
V udλ

(1)
q + V usλ

(2)
q

)
V cd V cs F

(
V cdλ

(1)
q + V csλ

(2)
q

)
−

(
F λ

(1)
q

)∗ −
(

F λ
(2)
q

)∗
1

⎞⎟⎟⎟⎠ ,

(17)

where we have defined

F = fu

m′
t
− fd

m′
b

. (18)

As mentioned previously, we have the freedom remaining to 
choose λ(2)

q real and to fix the phase of λd
H such that Im( fu)/m′

t =
Im( fd)/m′

b , making F real. Comparing to the Wolfenstein param-
eterization in Ref. [35], the CKM matrix can be fit by: Vtd =
Aλ3(1 −ρ− iη) = −F (λ

(1)
q )∗ = 0.0080 − i 0.0033 and Vts = −Aλ2 =

−Fλ
(2)
q = −0.041.

The U (2)q′ × U (2)u′ × U (2)d′ flavor symmetry of the quark 
sector is softly broken by the spurion bi-doublets Yu ∼ (2, 2, 1), 
Yd ∼ (2, 1, 2), and a single spurion doublet V(i) = v3 λ

(i)
q ∼ (2, 1, 1)
mχ
which is entirely responsible for the communication of the third to 
light generations. This setup nicely reproduces the Minimal U (2)

picture of quark masses and mixings proposed in Ref. [33]. The 
smallness of the leading breaking spurion doublet V(i) can be un-
derstood as a consequence of large mχ or perhaps small λ(i)

q , which 
is the only coupling violating the light family quark number.

3.2. Lepton sector

As mentioned in Section 2.2, we introduced two right-handed 
dominantly light family SM neutrinos ν ′ i

R and three new right-
handed fermions Sa

R which are singlets under G in order to avoid 
fine-tuning in Eq. (8). To see how this is achieved, we define 
nT

L = (ν ′
L ν ′ c

R Sc
R), where ν ′ contains the light and third family neu-

trinos and S contains all its flavors. When all scalars receive VEVs, 
the neutrino mass Lagrangian can be written as

Lν = −1

2
nLMνnc

L + h.c. . (19)

The neutrino mass matrix Mν is a 9 × 9 matrix of the form

Mν =
⎛⎜⎝ 0 M D

ν 0

(M D
ν )T μ̃R M̃T

R

0 M̃R μS

⎞⎟⎠ , (20)

where we have defined M̃R ≡ (MR
v1√

2
λR). The 3 × 3 matrix μ̃R

contains μR as the upper left 2 × 2 block and has zeros elsewhere. 
The Dirac mass matrix M D

ν is a 3 × 3 matrix of the form

M D
ν =

(
v H√

2
U Y diag

ν − fν λ�

0 m′
ντ

)
. (21)

If Mν has the ISS hierarchy μ̃R , μS � mD
ν < M̃R , then there are 

three light Majorana neutrinos with a mass matrix of the form2

Mlight ≈ M D
ν M̃−1

R μS (M̃T
R )−1(M D

ν )T , (22)

and six heavy Majorana states which can be grouped into three 
pairs with mass splittings proportional to μS , such that they be-
have as three heavy pseudo-Dirac neutrinos with masses O(M̃R )

[36,39]. In the ISS limit, sub-eV masses can be achieved for the 
light Majorana neutrinos even if the Dirac mass is O(vEW) and M̃R
is O(v1), as long as μS is very small. The fields ν ′ i

R , ν ′ 3
R , and S R

carry U (1)L number 1, 1, and −1, respectively, so the two terms in 
the first line of Lν in Eq. (5) are L conserving, whereas the terms 
with μR and μS in the second line violate L by 2 units. Thus, it 
is natural in the t’Hooft sense [40] for μR and μS to be small 
parameters because U (1)L symmetry is restored in the limit that 
μR , μS → 0. In this limit, the six heavy Majorana states become 
three heavy exactly Dirac neutrinos and the three active Majorana 
neutrinos become exactly massless because the U (1)L symmetry 
forbids Majorana mass terms.

4. Gauge interactions and phenomenology

4.1. Fermion interactions with gauge bosons

Let us denote fermion representations with multiple flavor 
copies under the unbroken SM gauge group G S M as Q′

L =

2 Here, we have taken μ̃R = 0 for simplicity, but its inclusion does not change 
the effectiveness of the ISS mechanism if it obeys the hierarchy μ̃R , μS � mD

ν <

M̃R [36,37]. The same is true for lepton number violating couplings of the form 
�
′
L H̃ S R which are in principle allowed by gauge invariance [36–38].
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(q′ i
L , q′ 3

L , Q ′
L)

T , and L′
L = (�′ i

L , �′ 3
L , L′

L)
T for left-handed fields, and 

U′
R = (u′ i

R , u′ 3
R )T , D′

R = (d′ i
R , d′ 3

R )T , and E′
R = (e′ i

R , e′ 3
R )T for right-

handed fields, where i = 1, 2. Expanding the kinetic terms of the 
fermions leads to the following V f f couplings in the interaction 
basis:

LU1 ⊃ g4√
2

(
Q

′
Lγ

μL′
L + q′ 3

L γ μ�′ 3
L

)
U1μ

+ g4√
2

(
Q

′
Rγ μL′

R + d
′ 3
R γ μe′ 3

R + u′ 3
R γ μν ′ 3

R

)
U1μ + h.c. ,

(23)

Lg′ ⊃ g4 gs

g3

(
Q

′
L CL

g′γ μT aQ′
L + Q

′
Rγ μT a Q ′

R

)
g′ a
μ

+ g4 gs

g3

(
U

′
R CR

g′γ μT aU′
R + D

′
R CR

g′γ μT aD′
R

)
g′ a
μ , (24)

LZ ′ ⊃
√

3 g4 gY

6
√

2 g1

(
Q

′
L CL

Z ′γ μQ′
L − 3 L

′
L CL

Z ′γ μL′
L

)
Z ′
μ

+
√

3 g4 gY

6
√

2 g1

(
Q

′
Rγ μ Q ′

R − 3 L
′
Rγ μL′

R

)
Z ′
μ

+
√

3 g4 gY

6
√

2 g1

(
U

′
R CU

Z ′γ μU′
R + D

′
R CD

Z ′γ μD′
R

)
Z ′
μ

−
√

3 g4 gY

2
√

2 g1

(
E

′
R CE

Z ′γ μE′
R −

(
1 + 2g2

1

3g2
4

)
ν ′ 3

R γ μν ′ 3
R

)
Z ′
μ ,

(25)

where

CL
g′ = diag

(
-g2

3

g2
4

,
-g2

3

g2
4

,1,1

)
, CL

Z ′ = diag

(
-2g2

1

3g2
4

,
-2g2

1

3g2
4

,1,1

)
,

CR
g′ = diag

(
-g2

3

g2
4

,
-g2

3

g2
4

,1

)
, CU

Z ′ = diag

(
-8g2

1

3g2
4

,
-8g2

1

3g2
4

,1 − 2g2
1

g2
4

)
,

CD
Z ′ = diag

(
4g2

1

3g2
4

,
4g2

1

3g2
4

,1 + 2g2
1

g2
4

)
,

CE
Z ′ = diag

(
-4g2

1

3g2
4

,
-4g2

1

3g2
4

,1 − 2g2
1

3g2
4

)
. (26)

Note that the right-handed representations Q ′
R and L′

R come in a 
single copy of flavor. The relevant interactions in the mass basis 
are obtained after applying the appropriate rotation matrices.

A detailed phenomenological survey of the model is beyond the 
scope of the present work. Here, we comment only on a few inter-
esting effects in low- and high-pT experiments. A good example 
is the LHC phenomenology in the limit g4 � g1, g3, where one 
finds g3 ≈ gs and g1 ≈ gY . In this case, the g′ and Z ′ bosons de-
cay dominantly to a pair of third family SM fermions (or to χ if it 
is light enough) and the production cross section in pp collisions 
for g′ and Z ′ from the valence quarks is suppressed, relaxing oth-
erwise strong bounds. This also makes direct searches for the Uμ

1
vector LQ [41,42] relevant because the mass spectrum of the gauge 
bosons cannot be significantly split [16]. The present LHC limits on 
these states are already � TeV, with significant prospect for im-
provements in the future.3

When integrated out, these vector resonances lead to four-
fermion operators, which could give an observable indirect signal 

3 For a recent review on LQ physics, see [43]. LQ direct search phenomenology at 
hadron colliders was recently reviewed in [44].
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by
 low-energy flavor and electroweak precision observables. How-
er, thanks to the approximate U (2) flavor symmetry, the rotation 
atrices which control flavor violation are close to identity and 
hibit enough suppression [33,45] to allow for TeV scale vec-
r resonances.4 Flavor effects of the color octet in this context 
ve been discussed in Ref. [32]. Important constraints come from 
e neutral meson oscillation phenomena in the down quark sec-
r (e.g. Bs-Bs mixing), effectively requiring down-alignment [16]. 
TeV scale vector LQ with left-handed interactions controlled by 
 approximate U (2) flavor symmetry has been shown to be com-
tible with the constraints from semi-leptonic and rare meson 
cays, LFU and LFV in charged lepton decays, and Z and W -pole 
ecision measurements (see e.g. Ref. [26,46]). It is crucial to note 
at in the limit of large mχ , this model is the low energy limit 
 the P S3 model presented in Ref. [29], apart from the neutral 

ton sector.

. B-physics anomalies and PMNS non-unitarity

The model proposed here can accommodate the recently 
ported anomalies in B-meson decays both in (i) deviations 
m τ/� (where � = e, μ) universality in semi-tauonic decays 
 defined by R(D(∗)) observables (charged b → c�ν transi-
ns) [19–21] and (ii) deviations from μ/e universality in rare 
cays as defined by R(K (∗)) observables (neutral b → s�� transi-
ns) [22,23]. Basically, the Uμ

1 vector LQ induces a large tree-level 
ntribution to b → cτν while simultaneously giving a flavor-
ppressed tree-level contribution to b → sμμ. We note that 
e dimension-6 effective operator introduced in [29] to solve 
→ sμμ is generated in our model when integrating out the 
ctor-like fermion field χ .
The rest of the discussion on B-anomalies follows Ref. [29], 

d we do not repeat it here. Nonetheless, let us point to 
novel correlation between B-anomalies and non-unitarity in 
e Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, both of 
ich are controlled by the ratio of GSM- and G-breaking scales. 
 the one hand, the non-standard contribution to �Rτ�

D(∗) ≡
D(∗))/R(D(∗))SM − 1 is [29]

Rτ�
D ≈ 2.2�Rτ�

D∗ ≈ 5v2
EW

v2
1 + v2

3

. (27)

ce 〈�3〉 (≡ v3/
√

2) controls the mass of the coloron field g′ , it 
bounded from below by direct searches at the LHC (v3 � 1 TeV). 
 the other hand, deviation of the PMNS matrix from unitarity 
parameterized by the Hermitian matrix ε = 1 − N N†, where N
the non-unitarity PMNS matrix. In terms of the ISS parameters 

troduced in Section 3.2, we can write ε approximately as [39]

≈ (M D
ν )∗(M̃−1

R )∗(M̃−1
R )T (M D

ν )T . (28)

we require v3 � 1 TeV in order to evade the bound on direct 
arches for the coloron, we then require v1 � 1 TeV in order to 
oduce the observed anomaly in �Rτ�

D . Thus, there is a contribu-
n to ε which is a least as large as

∼ v2
EW

v2
1|λR |2 , (29)

eaning that significant PMNS unitarity violation is associated 
th a quark–lepton unification scale which is low enough to ex-

ain �Rτ�
D . The two ways to avoid the unitarity bound are: a large 

The effects of scalar resonances in flavor physics are typically further suppressed 
 the light fermion masses.
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coupling |λR | or accepting some tuning in M D
ν . For example, the 

benchmark point shown in Appendix A predicts PMNS unitarity vi-
olation which is just below the present limits with M D

ν ∼ 10−1 vEW, 
however, a large coupling |λR | ∼ 3 is required.

5. Conclusions

We have constructed a model of TeV scale quark–lepton unifi-
cation based on an extended “4321” gauge group, where the third 
family quarks and leptons are unified into fundamental represen-
tations of SU (4) while the light family fermions are charged only 
under “321”. As a result of this construction, the model contains 
an accidental U (2) flavor symmetry which suppresses FCNC and 
allows for the realization of the correct CKM texture. A key pre-
diction of the model is a gauge vector leptoquark Uμ

1 , coupled 
dominantly to the third family, and potentially within reach of the 
LHC.

While third family quark–lepton unification nicely explains the 
closeness of the tau lepton and bottom quark masses, it fails spec-
tacularly in the up sector, suggesting a peculiar origin for neutrino 
masses. In particular, the model, with the addition of gauge sin-
glet fermions, admits a natural realization of light neutrino masses 
via the inverse seesaw mechanism. In this article, we present a nu-
merical benchmark point where experimentally acceptable masses 
and mixings are obtained for the light neutrinos.

This model is a very interesting and phenomenologically rich 
construction, predicting a plethora of observable effects ranging 
from low energy neutrino and flavor physics up to high-pT col-
lider searches. We may already be seeing its first signatures in the 
still inconclusive B-anomalies.
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Appendix A. Neutrino masses, mixings, and PMNS non-unitarity

A.1. Light neutrino masses and mixings

In Section 3.2, we wrote the neutrino mass Lagrangian as

Lν = −1

2
nLMνnc

L + h.c. , (A.1)

where the neutrino mass matrix is a 9 × 9 complex symmetric 
matrix which has the ISS texture

Mν =
⎛⎜⎝ 0 M D

ν 0

(M D
ν )T μ̃R M̃T

R

0 M̃R μS

⎞⎟⎠ . (A.2)

In terms of the original Lagrangian parameters, the mass matrix 
has the form
Mν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 v H√
2

U Y diag
ν − fν λ� 0

0 0 0 m′
ντ

0
v H√

2
Y diag

ν U T 0 μR 0 MT
R

− fν λT
� m′

ντ
0 0 v1√

2
λT

R

0 0 MR
v1√

2
λR μS

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.3)

The entry v H√
2

U Y diag
ν is the product of a 2 × 2 orthogonal matrix 

with a 2 × 2 real diagonal matrix which we parameterize as

v H√
2

U Y diag
ν =

(
cos θ sin θ

− sin θ cos θ

)(
m′

νe
0

0 m′
νμ

)
. (A.4)

To reduce the number of free parameters, we seek a solution 
which yields acceptable light neutrino masses and mixings with 
a simplifying ansatz where μR = 0, μS = diag (μ1 , μ2 , μ3), λT

� =
(λ

(1)
� , λ(2)

� ) and

MR =
⎛⎜⎝mR 0

0 mR

0 0

⎞⎟⎠ ,
v1√

2
λR =

⎛⎜⎝ 0

0

mQ L

⎞⎟⎠ , (A.5)

such that M̃R = (MR
v1√

2
λR) is a diagonal 3 × 3 block of Mν . 

Here, mQ L is of order the SU (4) breaking (quark–lepton unifica-
tion) scale. We also take all parameters to be real. Following the 
prescription in Refs. [39,47,48], we first block diagonalize Mν via 
a rotation W such that

W T MνW =
(

(Mlight)3×3 03×6
06×3 (Mheavy)6×6

)
. (A.6)

The rotation matrix W is approximately given as

W ≈
([

1 − 1
2 ��†

]
3×3 �3×6

�
†
6×3

[
1 − 1

2 ��†
]

6×6

)
, (A.7)

assuming � is given as a power series in M−1
heavy as � = ∑

i �i

with �i ∼ (M−1
heavy)

i . In terms of the ISS parameters in Eq. (A.2), 
the 3 × 3 mass matrix for the light Majorana neutrinos Mlight has 
the usual ISS form

Mlight ≈ M D
ν M̃−1

R μS (M̃T
R )−1(M D

ν )T . (A.8)

If we now diagonalize Mlight and Mheavy via rotations of the form 
Ul and Uh , the complete matrix U which diagonalizes Mν is

U ≈
([

1 − 1
2 ��†

]
Ul � Uh

�† Ul
[
1 − 1

2 ��†
]

Uh

)
, (A.9)

and the light neutrino flavor eigenstates are given by

να ≈
[

Ul − 1

2
�1�

†
1Ul

]
αi

n̂i
l + [�1Uh]α b n̂b

h , (A.10)

where α = e, μ, τ , n̂i
l are the light mass eigenstates with i = 1, .., 3, 

and n̂b
h are the heavy mass eigenstates with b = 1, .., 6. The PMNS 

neutrino mixing matrix is now a non-unitary matrix given by

N =
[

1 − 1

2
�1�

†
1

]
Ul , (A.11)

where ε ≡ 1 − N N† ≈ �1�
†
1 parameterizes the deviation of N N†

from unitarity. The 3 × 3 Hermitian matrix ε can be written ap-
proximately in terms of the original ISS parameters as



A. Greljo, B.A. Stefanek / Physics Letters B 782 (2018) 131–138 137
Table 5
ISS parameters for a simplified bench-
mark point.

ISS parameter Value

m′
νe

1.67 GeV
m′

νμ
38.3 GeV

m′
ντ

10.0 GeV

sin θ 0.510
fνλ

(1)
� 0.883 GeV

fνλ
(2)
� 6.80 GeV

mQ L 2.00 TeV
mR 10.0 TeV

μ1 0.720 keV
μ2 0.871 keV
μ3 1.28 keV

ε ≈ (M D
ν )∗(M̃−1

R )∗(M̃−1
R )T (M D

ν )T (A.12)

Assuming the simplifying ansatz for the ISS parameters out-
lined in the previous section, we diagonalize Mlight numerically 
using the benchmark parameter set in Table 5. We obtain a nor-
mal hierarchy of light neutrino masses of m1 ≈ 1.86 × 10−2 meV, 
m2 ≈ 8.58 meV, m3 ≈ 51.3 meV with mass-squared splittings of

�m2
32 = 2.56 × 10−3 eV2 ,

�m2
21 = 7.36 × 10−5 eV2 . (A.13)

To construct the PMNS matrix, we numerically find the ma-
trix Ul which diagonalizes Mlight as Mdiag

light = U T
l MlightUl and use 

Eq. (A.11). We obtain the following results for the mixing angles

sin2 θ12 = 0.296 ,

sin2 θ23 = 0.425 ,

sin2 θ13 = 0.0214 . (A.14)

These mass-squared splittings and mixing angles agree very 
well with the best-fit values derived from a global fit of the cur-
rent neutrino oscillation data in Refs. [35,49]. We have also per-
formed an exact numerical diagonalization of Eq. (A.3) and found 
very good agreement with the approximate masses and mixings 
given by diagonalizing Eq. (A.8). More general benchmark points 
are of course possible if the simplifying assumptions about Mν

made here are relaxed, e.g. leaving M̃R as a general complex 3 × 3
matrix. One can even consider non-equal numbers of ν ′

R and S R in 
order to have additional sterile neutrino states at the scale μS [36,
50–55].

A.2. PMNS non-unitarity

We quantify the deviation of the PMNS matrix from unitarity 
by |ε| = |1 − N N†|. For the benchmark point, the matrix |ε| is

|ε| =
⎛⎜⎝4.04 × 10−6 7.94 × 10−6 2.21 × 10−6

7.94 × 10−6 2.24 × 10−5 1.70 × 10−5

2.21 × 10−6 1.70 × 10−5 2.50 × 10−5

⎞⎟⎠ . (A.15)

The largest source of non-unitarity is coming from |ε33| for which 
(assuming the benchmark parameters) a simple analytic approxi-
mation can be obtained

|ε33| ≈
(

m′
ντ

)2

, (A.16)

mQ L
which is in agreement with the estimate in Eq. (29). The current 
bounds on PMNS non-unitarity are [56,57]

|ε| <
⎛⎜⎝2.1 × 10−3 1.0 × 10−5 2.1 × 10−3

1.0 × 10−5 4.0 × 10−4 8.0 × 10−4

2.1 × 10−3 8.0 × 10−4 5.3 × 10−3

⎞⎟⎠ . (A.17)
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