293 research outputs found

    Absence of Langerhans Cells in Oral Hairy Leukoplakia, an AIDS-Associated Lesion

    Get PDF
    Oral hairy leukoplakia (HL) is a recently described manifestation of human immunodeficiency virus (HIV) infection in which Epstein-Barr virus (EBV) has been shown to replicate. To seek evidence for a local defect in mucosal immunity, we assessed the presence of epithelial Langer-hans cells (LC) in these lesions and in autologous nonlesional mucosa. We used monoclonal antibodies against HLA-DR, HLA-DQ, and T6 antigens to identify LC in biopsy specimens of HL from 23 homosexual men. In all lesion specimens, LO either were not detected or were present only in greatly reduced numbers with at least 1 of the antibodies. In nonlesional oral mucosa from the same patients, LC were detected with all 3 antibodies in 11/12 specimens (92%) and were found in approximately normal numbers with at least 1 antibody. There was close correlation between the absence of LC and positive staining for EBV, human papillomavirus antigens, and candidal hyphae in the epithelium. We conclude that LC are absent or greatly reduced in the lesions of HL. Absence of normal LC function may be important in the pathogenesis of HL and may reflect an event in the pathogenesis of other features of the acquired immune deficiency syndrome

    Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance

    Get PDF
    We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes

    The Brain Activity Map

    Get PDF
    Neuroscientists have made impressive advances in understanding the microscale function of single neurons and the macroscale activity of the human brain. One can probe molecular and biophysical aspects of individual neurons and also view the human brain in action with magnetic resonance imaging (MRI) or magnetoencephalography (MEG). However, the mechanisms of perception, cognition, and action remain mysterious because they emerge from the real-time interactions of large sets of neurons in densely interconnected, widespread neural circuits

    Odanacatib for the treatment of postmenopausal osteoporosis: Development history and design and participant characteristics of LoFT, the Long-term odanacatib Fracture Trial

    Get PDF
    Summary: Odanacatib is a cathepsin K inhibitor investigated for the treatment of postmenopausal osteoporosis. Phase 2 data indicate that 50 mg once weekly inhibits bone resorption and increases bone mineral density, with only a transient decrease in bone formation. We describe the background, design and participant characteristics for the phase 3 registration trial. Introduction: Odanacatib (ODN) is a selective cathepsin K inhibitor being evaluated for the treatment of osteoporosis. In a phase 2 trial, ODN 50 mg once weekly reduced bone resorption while preserving bone formation and progressively increased BMD over 5 years. We describe the phase III Long-Term ODN Fracture Trial (LOFT), an event-driven, randomized, blinded placebo-controlled trial, with preplanned interim analyses to permit early termination if significant fracture risk reduction was demonstrated. An extension was planned, with participants remaining on their randomized treatment for up to 5 years, then transitioning to open-label ODN. Methods: The three primary outcomes were radiologically determined vertebral, hip, and clinical non-vertebral fractures. Secondary end points included clinical vertebral fractures, BMD, bone turnover markers, and safety and tolerability, including bone histology. Participants were women, 65 years or older, with a BMD T-score ≤−2.5 at the total hip (TH) or femoral neck (FN) or with a prior radiographic vertebral fracture and a T-score ≤−1.5 at the TH or FN. They were randomized to ODN or placebo tablets. All received weekly vitamin D3 (5600 international units (IU)) and daily calcium supplements as needed to ensure a daily intake of approximately 1200 mg. Results: Altogether, 16,713 participants were randomized at 387 centers. After a planned interim analysis, an independent data monitoring committee recommended that the study be stopped early due to robust efficacy and a favorable benefit/risk profile. Following the base study closeout, 8256 participants entered the study extension. Conclusions: This report details the background and study design of this fracture end point trial and describes the baseline characteristics of its participants

    The Cancer-Associated Virus Landscape in HIV Patients with Oral Hairy Leukoplakia, Kaposi's Sarcoma, and Non-Hodgkin Lymphoma

    Get PDF
    Although HIV-positive patients are at higher risk for developing a variety of infection-related cancers, the prevalence of infections with the seven known cancer-associated viruses has not been studied. Luciferase immunoprecipitation systems were used to evaluate antiviral antibodies in four 23-person groups: healthy blood donors and HIV-infected patients with oral hairy leukoplakia (OLP), Kaposi's sarcoma (KS), or non-Hodgkin lymphoma (NHL). Antibody profiling revealed that all HIV-positive individuals were strongly seropositive for anti-gp41 and antireverse transcriptase antibodies. However, anti-p24 HIV antibody levels were highly variable and some OLP and KS patients demonstrated weak or negative responses. Profiling two EBV antigens revealed no statistical difference in antibody levels among the three HIV-infected groups. A high frequency of KSHV infection was detected in HIV patients including 100% of KS, 78% of OLP, and 57% of NHL patients. Most HIV-infected subjects (84%) showed anti-HBV core antibodies, but only a few showed antibodies against HCV. MCV seropositivity was also common (94%) in the HIV-infected individuals and KS patients showed statistically higher antibody levels compared to the OLP and NHL patients. Overall, 68% of the HIV-infected patients showed seropositivity with at least four cancer-associated viruses. Antibody profiles against these and other infectious agents could be useful for enhancing the clinical management of HIV patients

    Osteoid osteoma of the ethmoid bone associated with dacryocystitis

    Get PDF
    BACKGROUND: Osteoid osteomas (OO) are small, benign osteoblastic lesions. Ethmoid bone OO has been very rarely reported so far. CASE PRESENTATION: We report a case of a 16-year-old boy suffering from persistent epiphora and a mild pain in the area of median canthus, due to a bone density mass within the right ethmoid air cells extending to the ipsilateral right orbit. The mass was removed via an external ethmoidectomy approach. Histopathologic examination of the specimen set the diagnosis of OO. One year after the operation the patient is free of symptoms, while no recurrence occurred. CONCLUSION: A case of ethmoid bone OO associated with dacryocystitis is reported. Although benign and rare, OO should be considered in differential diagnosis of the ethmoid bone osteoblastic lesions

    Computer simulation of glioma growth and morphology

    Get PDF
    Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Network Features of the Mammalian Circadian Clock

    Get PDF
    The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA) in which small interfering RNA (siRNA)-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation
    corecore