267 research outputs found

    Crust and upper mantle structure in the region of Barbados and the Lesser Antilles

    Get PDF
    The Lesser Antilles form one of only two island arcs that occur in the Atlantic Ocean. Bathymetric, gravity, magnetic, and seismic reflection data were collected by HMS HECLA during 1971 in an area bounded by latitudes 12 54’ N and 13 54' N, and longitudes 57 W and 61 10' W, including the islands of St. Lucia, St. Vincent, and Barbados. These data are reduced and interpreted in conjunction with seismic refraction data from an experiment run in 1972 and data from other published and unpublished sources. The structure of the upper sedimentary layers is derived from the seismic reflection records. The crustal structure is modelled two dimensionally using a non-linear optimisation technique to fit the observed gravity and seismic refraction data. The island arc and the Barbados Ridge are examined in detail, and the nature of a ridge running eastward from St. Lucia into the Atlantic Ocean basin is investigated. Magnetic anomalies are treated by direct modelling, magnetic to gravity transformation, and analysis of the power spectrum. The seismicity of the eastern Caribbean is considered with respect to possible plate motions, and maps of focal depth and energy release are presented. The mechanism and causes of subduction beneath the Lesser Antilles are discussed. The possible gravity anomaly caused by subducted lithosphere is estimated and its effect on the determination of the crustal structure examined. The influence of the relative motions between the North and South American plates on the development of the Caribbean and the Lesser Antilles is studied. Some ideas on the origin and growth of the Barbados Ridge and the island arc are put forward. Geophysical data profiles, and computer programs for reduction and interpretation of data are presented in appendices

    Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope

    Get PDF
    The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSRs) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5–12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3–4 Ωm) at 390–600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4–8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20–50 per cent hydrate within the lower slope sediments and less than 12 per cent within the upper slope sediments. A free gas zone beneath the GHSZ (10–20 per cent gas saturation) is connected to the high free gas saturated (10–45 per cent) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf

    Seismic evidence for shallow gas-escape features associated with a retreating gas hydrate zone offshore west Svalbard

    Get PDF
    Active gas venting occurs on the uppermost continental slope off west Svalbard, close to and upslope from the present-day intersection of the base of methane hydrate stability (BMHS) with the seabed in about 400 m water depth in the inter-fan region between the Kongsfjorden and Isfjorden cross-shelf troughs. From an integrated analysis of high-resolution, two-dimensional, pre-stack migrated seismic reflection profiles and multibeam bathymetric data, we map out a bottom simulating reflector (BSR) in the inter-fan region and analyze the subsurface gas migration and accumulation. Gas seeps mostly occur in the zone from which the BMHS at the seabed has retreated over the recent past (1975–2008) as a consequence of a bottom water temperature rise of 1°C. The overall margin-parallel alignment of the gas seeps is not related to fault-controlled gas migration, as seismic evidence of faults is absent. There is no evidence for a BSR close to the gas flare region in the upper slope but numerous gas pockets exist directly below the predicted BMHS. While the contour following trend of the gas seeps could be a consequence of retreat of the landward limit of the BMHS and gas hydrate dissociation, the scattered distribution of seeps within the probable hydrate dissociation corridor and the occurrence of a cluster of seeps outside the predicted BMHS limit and near the shelf break indicate the role of lithological heterogeneity in focusing gas migration

    Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    Get PDF
    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400–500 m water depth (mwd) in response to past temperature changes inferred from historical measurements and proxy data and we model future changes predicted by seven climate models and two climate-forcing scenarios (Representative Concentration Pathways RCPs 2.6 and 8.5). We show that over the past 2000 year, a combination of annual and decadal temperature fluctuations could have triggered multiple hydrate-sourced methane emissions from seabed shallower than 400 mwd during episodes when the multidecadal average temperature was similar to that over the last century (∼2.6°C). These temperature fluctuations can explain current methane emissions at 400 mwd, but decades to centuries of ocean warming are required to generate emissions in water deeper than 420 m. In the venting area, future methane emissions are relatively insensitive to the choice of climate model and RCP scenario until 2050 year, but are more sensitive to the RCP scenario after 2050 year. By 2100 CE, we estimate an ocean uptake of 97–1050 TgC from marine Arctic hydrate-sourced methane emissions, which is 0.06–0.67% of the ocean uptake from anthropogenic CO2 emissions for the period 1750–2011

    Outcome of the First wwPDB Hybrid / Integrative Methods Task Force Workshop

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences
    • …
    corecore