14 research outputs found

    A stepwise breakdown of B-cell tolerance occurs within renal allografts during chronic rejection

    Get PDF
    Autoantibodies detected after kidney transplantation may contribute to chronic rejection. We and others have previously described the organization of immune effectors into functional intragraft tertiary lymphoid tissue, a site where breakdown of B-cell tolerance may occur. To test this, we performed a comprehensive analysis of 26 chronically rejected kidney grafts. Antibodies were screened by indirect immunofluorescence on HEp2 cells, a procedure that detects antibodies to intracellular antigens, and monkey kidney sections, which detects kidney tissue autoantigens. The incidence of anti-HEp2 autoantibodies was significantly higher in graft explant culture supernatants than in patient sera. Reactivity against monkey kidney sections was detected in almost half of culture supernatants with anti-HEp2 autoantibodies. A local enrichment in T helper 17 and B-cell-activating factor (CD257) correlated with intragraft production of anti-HEp2 antibodies. A decrease in Tregs and a symmetric increase of activated OX40 (CD134)-expressing CD4+ T cells were found in grafts in which anti-kidney autoantibodies were produced. Thus, a stepwise breakdown of B-cell tolerance occurs within the graft during chronic rejection. Hence, the intragraft microenvironment interferes with peripheral deletion of autoreactive immature B cells that, in turn, produce antibodies against intracellular autoantigens. When intragraft immune regulation is insufficient, spreading of the local response against kidney autoantigens is favored

    Germinal centers B-cell reaction and T follicular helper cells in response to HIV-1 infection

    No full text
    International audiencePURPOSE OF REVIEW: This review aims to summarize the recent findings on germinal center B-cell reaction and Tfh cells in HIV-1 infection, with particular emphasis on the spatial organization of the germinal center, follicular cell regulation, and cellular alterations resulting from HIV infection.RECENT FINDINGS: HIV-specific bNAbs are generated by iterative cycles of B-cell maturation supported by GC environment. Recent observations underline that germinal center structural alterations at the earliest stages of HIV infection could impact Tfh cell and germinal center B-cell homeostasis, thus preventing the rise of efficient humoral immunity. Moreover, despite ART treatment, HIV-derived antigens persist, particularly in follicular CD4+ T cells. Antigenic persistence and variability lead to unregulated chronic stimulation. In this context, regulation of the germinal center appears of special interest. In addition to follicular T-regulatory cells (Tfr), new potent regulators of germinal center reaction, such as follicular CD8 T and NK cells have been recently identified.SUMMARY: Altogether these new data provide a better understanding on how HIV infection severely impacts germinal center reaction. Here we propose several therapeutic approaches to promote the bNAb development in HIV-infected patients by improving the preservation of germinal center architecture and its regulation.PURPOSE OF REVIEW:This review aims to summarize the recent findings on germinal center B-cell reaction and Tfh cells in HIV-1 infection, with particular emphasis on the spatial organization of the germinal center, follicular cell regulation, and cellular alterations resulting from HIV infection.RECENT FINDINGS: HIV-specific bNAbs are generated by iterative cycles of B-cell maturation supported by GC environment. Recent observations underline that germinal center structural alterations at the earliest stages of HIV infection could impact Tfh cell and germinal center B-cell homeostasis, thus preventing the rise of efficient humoral immunity. Moreover, despite ART treatment, HIV-derived antigens persist, particularly in follicular CD4+ T cells. Antigenic persistence and variability lead to unregulated chronic stimulation. In this context, regulation of the germinal center appears of special interest. In addition to follicular T-regulatory cells (Tfr), new potent regulators of germinal center reaction, such as follicular CD8 T and NK cells have been recently identified.SUMMARY: Altogether these new data provide a better understanding on how HIV infection severely impacts germinal center reaction. Here we propose several therapeutic approaches to promote the bNAb development in HIV-infected patients by improving the preservation of germinal center architecture and its regulation.PURPOSE OF REVIEW:This review aims to summarize the recent findings on germinal center B-cell reaction and Tfh cells in HIV-1 infection, with particular emphasis on the spatial organization of the germinal center, follicular cell regulation, and cellular alterations resulting from HIV infection.RECENT FINDINGS: HIV-specific bNAbs are generated by iterative cycles of B-cell maturation supported by GC environment. Recent observations underline that germinal center structural alterations at the earliest stages of HIV infection could impact Tfh cell and germinal center B-cell homeostasis, thus preventing the rise of efficient humoral immunity. Moreover, despite ART treatment, HIV-derived antigens persist, particularly in follicular CD4+ T cells. Antigenic persistence and variability lead to unregulated chronic stimulation. In this context, regulation of the germinal center appears of special interest. In addition to follicular T-regulatory cells (Tfr), new potent regulators of germinal center reaction, such as follicular CD8 T and NK cells have been recently identified.SUMMARY: Altogether these new data provide a better understanding on how HIV infection severely impacts germinal center reaction. Here we propose several therapeutic approaches to promote the bNAb development in HIV-infected patients by improving the preservation of germinal center architecture and its regulation

    Lymphocytes T folliculaires helper et VIH : Unis pour le meilleur et pour le pire

    No full text
    International audienceFollicular helper T cells (Tfh) have been discovered in lymph nodes and, since then, are the focus of very intensive research to understand their origin, differentiation and functions. Tfh interact with B cells in the secondary lymphoid organs leading to B cell differentiation and maturation. Tfh are particularly studied in pathological contexts such as autoimmune diseases and infection by the human immunodeficiency virus (HIV). In the context of HIV infection, broadly neutralizing antibodies have been identified in a few patients. The generation of these broadly neutralizing antibodies requires a long and complex maturation of B cells in the secondary lymphoid organs. Characterizing Tfh functions and the relation with the quality of antibodies in HIV infection might help in designing novel immunotherapies and vaccination strategies to induce broadly neutralizing antibodies.Les lymphocytes T folliculaires helper (Tfh) ont été découverts dans les années 2000 et sont, depuis, le sujet d’intenses recherches visant à comprendre leur(s) origine(s), leur(s) différenciation(s) et leurs fonctions. Les Tfh interagissent avec les lymphocytes B (LB) dans les organes lymphoïdes secondaires. Ces interactions permettent la différenciation des LB en cellules produisant des anticorps de haute affinité. Les Tfh sont particulièrement étudiés dans des contextes pathologiques, comme les maladies auto-immunes et l’infection par le virus de l’immunodéficience humaine (VIH). Dans le cas de l’infection par le VIH, des anticorps hautement neutralisants ont été identifiés chez quelques patients. La production de ces anticorps nécessite une maturation longue et complexe des LB. L’étude de la fonction des Tfh, en lien avec la qualité de ces anticorps, pourrait aider à développer de nouvelles immunothérapies et stratégies vaccinales visant à induire des anticorps neutralisants

    Magnetic Detection Structure for Lab-on-Chip Applications Based on the Frequency Mixing Technique

    No full text
    A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding

    The HIV-1 Antisense Protein (ASP) induces CD8 T cell responses during chronic infection

    No full text
    International audienceBackground : CD8+ T cells recognize HIV-1 epitopes translated from a gene’s primary reading frame (F1) and any one of its five alternative reading frames (ARFs) in the forward (F2, F3) or reverse (R1-3) directions. The 3’ end of HIV-1’s proviral coding strand contains a conserved sequence that is directly overlapping but antiparallel to the env gene (ARF R2) and encodes for a putative antisense HIV-1 protein called ASP. ASP expression has been demonstrated in vitro using HIV-transfected cell lines or infected cells. Although antibodies to ASP were previously detected in patient sera, T cell recognition of ASP-derived epitopes has not been evaluated. We therefore investigated the ex vivo and in vitro induction of ASP-specific T cell responses as a measure of immune recognition and protein expression during HIV-1 infection.Results : A panel of overlapping peptides was initially designed from the full-length ASP sequence to perform a global assessment of T cell responses. Recognition of ASP-derived antigens was evaluated in an IFN-γELISpot assay using PBMCs from HIV-1 seropositive and seronegative individuals. Eight of 25 patients had positive responses to ASP antigens and none of the seronegative donors responded. As a complimentary approach, a second set of antigens was designed using HLA-I binding motifs and affinities. Two ASP-derived peptides with high predicted binding affinities for HLA-A*02 (ASP-YL9) and HLA-B*07 (ASP-TL10) were tested using PBMCs from HIV-1 seropositive and seronegative individuals who expressed the matching HLA-I-restricting allele. We found that HLA-I-restricted ASP peptides were only recognized by CD8+ T cells from patients with the relevant HLA-I and did not induce responses in any of the seronegative donors or patients who do not express the restrictive HLA alleles. Further, ASP-YL9-specific CD8+ T cells had functional profiles that were similar to a previously described HLA-A*02-restricted epitope (Gag-SL9). Specific recognition of ASP-YL9 by CD8+ T cells was also demonstrated by tetramer staining using cells from an HLA-A*02 HIV-infected patient.Conclusion : Our results provide the first description of CD8+ T cell-mediated immune responses to ASP in HIV-1-infected patients, demonstrating that ASP is expressed during infection. Our identification of epitopes within ASP has implications for designing HIV vaccines

    HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells

    No full text
    International audienceBackground: T follicular helper (Tfh) cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells. Methodology: Tfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay.Results: Phylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int)+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils.Conclusion: The major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population. As the generation of Tfh are important for establishing effective immune responses during primary infections, Tfh are likely to be an early target of HIV-1 following transmission, creating an important component of the reservoir that has the potential to expand over time

    Genetic annotation of gain-of-function screens using RNA interference and in situ hybridization of candidate genes in the Drosophila wing

    Get PDF
    Gain-of-function screens in Drosophila are an effective method with which to identify genes that affect the development of particular structures or cell types. It has been found that a fraction of 2-10% of the genes tested, depending on the particularities of the screen, results in a discernible phenotype when overexpressed. However, it is not clear to what extent a gain-of-function phenotype generated by overexpression is informative about the normal function of the gene. Thus, very few reports attempt to correlate the loss- and overexpression phenotype for collections of genes identified in gain-of-function screens. In this work we use RNA interference and in situ hybridization to annotate a collection of 123 P-GS insertions that in combination with different Gal4 drivers affect the size and/or patterning of the wing. We identify the gene causing the overexpression phenotype by expressing, in a background of overexpression, RNA interference for the genes affected by each P-GS insertion. Then, we compare the loss and gainof-function phenotypes obtained for each gene and relate them to its expression pattern in the wing disc. We find that 52% of genes identified by their overexpression phenotype are required during normal development. However, only in 9% of the cases analyzed was there some complementarity between the gain- and loss-of-function phenotype, suggesting that, in general, the overexpression phenotypes would not be indicative of the normal requirements of the gene. © 2012 by the Genetics Society of America.Peer Reviewe
    corecore