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Genetic meta-analysis of diagnosed Alzheimer’s disease 
identifies new risk loci and implicates Aβ, tau, immunity and 
lipid processing

A full list of authors and affiliations appears at the end of the article.

Abstract

Risk for late-onset Alzheimer’s disease (LOAD), the most prevalent dementia, is partially driven 

by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-

analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk 

loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), 

two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-
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familial-proxy of Alzheimer’s or dementia. Fine-mapping of the human leukocyte antigen (HLA) 

region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk 

factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, 

and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and 

Aβ processing are associated not only with early-onset autosomal dominant Alzheimer’s disease 

but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 

1.32 × 10−7), indicating that additional rare variants remain to be identified. We also identify 

important genetic correlations between LOAD and traits such as family history of dementia and 

education.

Our previous work identified 19 genome-wide-significant common variant signals in 

addition to APOE that influence risk for LOAD (onset age > 65 years)1. These signals, 

combined with ‘subthreshold’ common variant associations, account for ~31% of the genetic 

variance of LOAD2, leaving the majority of genetic risk uncharacterized3. To search for 

additional signals, we conducted a GWAS meta-analysis of non-Hispanic Whites (NHW) by 

using a larger Stage 1 discovery sample (17 new, 46 total datasets; n = 21,982 cases, 41,944 

cognitively normal controls) from our group, the International Genomics of Alzheimer’s 

Project (IGAP) (composed of four consortia: Alzheimer Disease Genetics Consortium 

(ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium 

(CHARGE), The European Alzheimer’s Disease Initiative (EADI), and Genetic and 

Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for 

Alzheimer’s Disease Consortium (GERAD/ PERADES) (Supplementary Tables 1 and 2, 

and Supplementary Note). To sample both common and rare variants (minor allele frequency 

(MAF) ≥ 0.01 and MAF < 0.01, respectively), we imputed the discovery datasets by using a 

1,000 Genomes reference panel consisting of 36,648,992 single-nucleotide polymorphisms 

(SNPs), 1,380,736 insertions/deletions, and 13,805 structural variants. After quality control, 

9,456,058 common variants and 2,024,574 rare variants were selected for analysis. 

Genotype dosages were analyzed within each dataset, and then combined with meta-analysis 

(Supplementary Fig. 1 and Supplementary Tables 1–3).

Results

Meta-analysis of Alzheimer’s disease GWAS.

The Stage 1 discovery meta-analysis produced 12 loci with genome-wide significance (P ≤ 5 

× 10−8) (Table 1), all of which are previously described1,4–11. Genomic inflation factors (λ) 

were slightly inflated (λ median = 1.05; λ regression = 1.09; see Supplementary Figure 2 

for a quantile–quantile (QQ) plot); however, univariate linkage disequilibrium score (LDSC) 

regression12,13 estimates indicated that the majority of this inflation was due to a polygenic 

signal, with the intercept being close to 1 (1.026, s.e.m. = 0.006). The observed heritability 

(h2) of LOAD was estimated at 0.071 (0.011) using LDSC. Stage 1 meta-analysis was first 

followed by Stage 2, using the I-select chip we previously developed in Lambert et al.1 

(including 11,632 variants, n = 18,845; Supplementary Table 4) and finally Stage 3A (n = 

11,666) or Stage 3B (n = 30,511) (for variants in regions not well captured in the I-select 

chip) (see Supplementary Figure 1 for the workflow). The final sample was 35,274 clinical 

and autopsy-documented Alzheimer’s disease cases and 59,163 controls.
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Meta-analysis of Stages 1 and 2 produced 21 genome-wide-significant associations (P ≤ 5 × 

10−8) (Table 1 and Fig. 1), 18 of which were previously reported as genome-wide significant 

in Lambert et al.1. Three other signals were not initially described in the initial IGAP 

GWAS: the rare R47H TREM2 coding variant previously reported by others7,8,14; ECHDC3 
(rs7920721; NC_000010.10: g.11720308A>G), which was recently identified as a potential 

genome-wide-significant Alzheimer’s disease risk locus in several studies15–17, and ACE 
(rs138190086; NC_000017.10: g.61538148G>A) (Supplementary Figs. 3 and 4). In 

addition, seven signals showed suggestive association with P < 5 × 10−7 (closest genes: 

ADAM10, ADAMTS1, ADAMTS20, IQCK, MIR142/ TSPOAP1-AS1, NDUFAF6, and 

SPPL2A) (Supplementary Figs. 5–11). Stage 3A and meta-analysis of all three stages for 

these nine signals (excluding the TREM2 signal; see Supplementary Table 5 for the variant 

list) identified five genome-wide-significant loci. In addition to ECHDC3, this included four 

new genome-wide Alzheimer’s disease risk signals at IQCK, ADAMTS1, ACE, and 

ADAM10 (Table 2). ACE and ADAM10 were previously reported as Alzheimer’s disease 

candidate genes18–22 but were not replicated in some subsequent studies23–25. A recent 

GWAS using family history of Alzheimer’s disease or dementia as a proxy26 also identified 

these two risk loci, suggesting that while use of proxy Alzheimer’s disease/dementia cases 

introduces less sensitivity and specificity for true Alzheimer’s disease signals overall in 

comparison to clinically diagnosed Alzheimer’s disease, proxy studies can identify disease-

relevant associations. Two of the four other signals approached genome-wide significance: 

miR142/TSPOAP1-AS1 (P = 5.3 × 10−8) and NDUFAF6 (P = 9.2 × 10−8) (Table 2). Stage 

3A also extended the analysis of two loci (NME8 and MEF2C) that were previously 

genome-wide significant in our 2013 meta-analysis. These loci were not genome-wide 

significant in our current study and will deserve further investigation (NME8: P = 2.7 × 

10−7; MEF2C: P = 9.1 × 10−8; Supplementary Figs. 12 and 13). Of note, GCTA COJO27 

conditional analysis of the genome-wide loci indicates that TREM2 and three other loci 

(BIN1, ABCA7, and PTK2B/CLU) have multiple independent LOAD association signals 

(Supplementary Table 6), suggesting that the genetic variance associated with some GWAS 

loci is probably underestimated.

We also selected 33 variants from Stage 1 (28 common and 5 rare variants in loci not well 

captured in the I-select chip; see Methods for full selection criteria) for genotyping in Stage 

3B (including populations of Stage 2 and Stage 3A). We nominally replicated a rare variant 

(rs71618613; NC_000005.9: g.29005985A>C) within an intergenic region near SUCLG2P4 
(MAF = 0.01; P = 6.8 × 10−3; combined P = 3.3 × 10−7) and replicated a low-frequency 

variant in the TREM2 region (rs114812713; NC_000006.11: g.41034000G>C, MAF = 0.03, 

P = 7.2 × 10−3; combined P = 2.1 × 10−13) in the gene OARD1 that may represent an 

independent signal according to our conditional analysis (Table 2, Supplementary Figs. 14 

and 15, Supplementary Tables 6 and 7). In addition, rs62039712 (NC_000016.9: 

g.79355857G>A) in the WWOX locus reached genome-wide significance (P = 3.7 × 10−8), 

and rs35868327 (NC_000005.9: g.52665230T>A) in the FST locus reached suggestive 

significance (P = 2.6 × 10−7) (Table 2 and Supplementary Figs. 16 and 17). WWOX may 

play a role in Alzheimer’s disease through its interaction with tau28,29, and it is worth noting 

that the sentinel variant (defined as the variant with the lowest P value) is just 2.4 mega-

bases from PLCG2, which contains a rare variant that we recently associated with 
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Alzheimer’s disease14. Since both rs62039712 and rs35868327 were only analyzed in a 

restricted number of samples, these loci deserve further attention.

Candidate gene prioritization at genome-wide loci.

To evaluate the biological significance and attempt to identify the underlying risk genes for 

the newly identified genome-wide signals (IQCK, ACE, ADAM10, ADAMTS1, and 

WWOX) and those found previously, we pursued five strategies: (1) annotation and gene-

based testing for deleterious coding, loss-of-function (LOF) and splicing variants; (2) 

expression-quantitative trait loci (eQTL) analyses; (3) evaluation of transcriptomic 

expression in LOAD clinical traits (correlation with the BRAAK stage30 and differential 

expression in Alzheimer’s disease versus control brains31); (4) evaluation of transcriptomic 

expression in Alzheimer’s disease–relevant tissues32–34; and (5) gene cluster/pathway 

analyses. For the 24 signals reported here, other evidence indicates that APOE35,36, ABCA7 
(refs. 37–40), BIN1 (ref. 41), TREM2 (refs. 7,8), SORL1 (refs. 42,43), ADAM10 (ref. 44), SPI1 
(ref. 45), and CR1 (ref. 46) are the true Alzheimer’s disease risk gene, although there is a 

possibility that multiple risk genes exist in these regions47. Because many GWAS loci are 

intergenic, and the closest gene to the sentinel variant may not be the actual risk gene, in 

these analyses we considered all protein-coding genes within ±500 kilobases (kb) of the 

sentinel variant linkage disequilibrium (LD) regions (r2 ≥ 0.5) for each locus as a candidate 

Alzheimer’s disease gene (n = 400 genes) (Supplementary Table 8).

We first annotated all sentinel variants for each locus and variants in LD (r2 > 0.7) with these 

variants in a search for deleterious coding, LOF or splicing variants. In line with findings 

that most causal variants for complex disease are non-coding48, only 2% of 1,073 variants 

across the 24 loci (excluding APOE) were exonic variants, with a majority (58%) being 

intronic (Supplementary Fig. 18 and Supplementary Table 9). Potentially deleterious 

variants include the rare R47H missense variant in TREM2, common missense variants in 

CR1, SPI1, MS4A2, and IQCK, and a relatively common (MAF = 0.16) splicing variant in 

IQCK. Using results of a large whole-exome-sequencing study conducted in the ADGC and 

CHARGE sample49 (n = 5,740 LOAD cases and 5,096 controls), we also identified ten 

genes located in our genome-wide loci as having rare deleterious coding, splicing or LOF 

burden associations with LOAD (false discovery rate (FDR) P < 0.01), including previously 

implicated rare-variant signals in ABCA7, TREM2, and SORL1 (refs. 14,49–55), and 

additional associations with TREML4 in the TREM2 locus, TAP2 and PSMB8 in the HLA-
DRB1 locus, PIP in the EPHA1 locus, STYX in the FERMT2 locus, RIN3 in the SLC24A4 
locus, and KCNH6 in the ACE locus (Supplementary Table 10).

For eQTL analyses, we searched existing eQTL databases and studies for cis-acting eQTLs 

in a prioritized set of variants (n = 1,873) with suggestive significance or in LD with the 

sentinel variant in each locus. Of these variants, 71–99% have regulatory potential when 

considering all tissues according to RegulomeDB56 and HaploReg57, but restricting to 

Alzheimer’s disease–relevant tissues (via Ensembl Regulatory Build58 and GWAS4D59) 

appears to aid in regulatory variant prioritization, with probabilities for functional variants 

increasing substantially when using GWAS4D cell-dependent analyses with brain or 

monocytes, for instance (these and other annotations are provided in Supplementary Table 
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11). Focusing specifically on eQTLs, we found overlapping cis-acting eQTLs for 153 of the 

400 protein-coding genes, with 136 eQTL-controlled genes in Alzheimer’s disease–relevant 

tissues (that is, brain and blood/immune cell types; see Methods for details) (Supplementary 

Tables 12 and 13). For our newly identified loci, there were significant eQTLs in 

Alzheimer’s disease–relevant tissue for ADAM10, FAM63B, and SLTM (in the ADAM10 
locus); ADAMTS1 (ADAMTS1 locus); and ACSM1, ANKS4B, C16orf62, GDE1, 

GPRC5B, IQCK, and KNOP1 (IQCK locus). There were no eQTLs in Alzheimer’s disease–

relevant tissues in the WWOX or ACE locus, although several eQTLs for PSMC5 in 

coronary artery tissue were found for the ACE locus. eQTLs for genes in previously 

identified loci include BIN1 (BIN1 locus), INPP5D (INPP5D locus), CD2AP (CD2AP 
locus), and SLC24A4 (SLC24A4 locus). Co-localization analysis confirmed evidence of a 

shared causal variant affecting expression and disease risk in 66 genes over 20 loci, 

including 31 genes over 13 loci in LOAD-relevant tissue (see Supplementary Table 14 and 

15 for complete lists). Genes implicated include CR1 (CR1 locus), ABCA7 (ABCA7 loci), 

BIN1 (BIN1 locus), SPI1 and MYBPC3 (SPI1 locus), MS4A2, MS4A6A, and MS4A4A 
(MS4A2 locus), KNOP1 (IQCK locus), and HLA-DRB1 (HLA-DRB1 locus) 

(Supplementary Table 12).

To study the differential expression of genes in brains of patients with Alzheimer’s disease 

versus controls, we used 13 expression studies31. We found that 58% of the 400 protein-

coding genes within the genome-wide loci had evidence of differential expression in at least 

one study (Supplementary Table 16). Additional comparisons to Alzheimer’s disease related 

gene expression sets revealed that 62 genes were correlated with pathogenic stage (BRAAK) 

in at least one brain tissue30 (44 genes in prefrontal cortex, the most relevant LOAD tissue; 

36 in cerebellum and 1 in visual cortex). Finally, 38 genes were present in a set of 1,054 

genes preferentially expressed in aged microglial cells, a gene set shown to be enriched for 

Alzheimer’s disease genes (P = 4.1 × 10−5)34. We also annotated our list of genes with brain 

RNA-seq data, which showed that 80% were expressed in at least one type of brain cell, and 

the genes were most highly expressed in fetal astrocytes (26%), followed by microglia/ 

macrophages (15.8%), neurons (14.8%), astrocytes (11.5%), and oligodendrocytes (6.5%). 

When not considering fetal astrocytes, mature astrocytes (21%), and microglial cells 

(20.3%), the resident macrophage cells of the brain thought to play a key role in the 

pathologic immune response in LOAD8,14,60, became the highest expressed cell types in the 

genome-wide set of genes, with 5.3% of the 400 genes showing high microglial expression 

(Supplementary Table 17; see Supplementary Table 18 for the highly expressed gene list by 

cell type).

We conducted pathway analyses (MAGMA61) separately for common (MAF > 0.01) and 

rare variants (MAF < 0.01). For common variants, we detected four function clusters 

including (1) APP metabolism/Aβ formation (regulation of Aβ formation: P = 4.56 × 10−7 

and regulation of APP catabolic process: P = 3.54 × 10−6); (2) tau protein binding (P = 3.19 

× 10−5); (3) lipid metabolism (four pathways including protein−lipid complex assembly: P = 
1.45 × 10−7); and (4) immune response (P = 6.32 × 10−5) (Table 3 and Supplementary Table 

19). Enrichment of the four clusters remained after removal of genes in the APOE region. 

When APOE-region genes and genes near genome-wide-significant genes were removed, 

tau showed moderate association (P = 0.027), and lipid metabolism and immune-related 
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pathways showed strong associations (P < 0.001) (Supplementary Table 20). Genes driving 

these enrichments (that is, having a gene-wide P < 0.05) included SCNA, a Parkinson’s risk 

gene that encodes alpha-synuclein, the main component of Lewy bodies, whch may play a 

role in tauopathies62,63, for the tau pathway; apolipoprotein genes (APOM, APOA5) and 

ABCA1, a major regulator of cellular cholesterol, for the lipid metabolism pathways; and 52 

immune pathway genes (Supplementary Table 21). While no pathways were significantly 

enriched for rare variants, lipid and Aβ pathways did reach nominal significance in rare-

variant-only analyses. Importantly, we also observed a highly significant correlation between 

common and rare pathway gene results (P = 1.32 × 10−7), suggesting that risk Alzheimer’s 

disease genes and pathways are enriched for rare variants. In fact, 50 different genes within 

tau, lipid, immunity and Aβ pathways showed nominal rare-variant driven associations (P < 

0.05) with LOAD.

To further explore the APP/Aβ pathway enrichment, we analyzed a comprehensive set of 

335 APP metabolism genes64 curated from the literature. We observed significant 

enrichment of this gene set in common variants (P = 2.27 × 10−4; P = 3.19 × 10−4 excluding 

APOE), with both ADAM10 and ACE nominally significant drivers of this result (Table 4 

and Supplementary Tables 22 and 23). Several ‘sub-pathways’ were also significantly 

enriched in the common variants, including ‘clearance and degradation of Aβ’, and 

‘aggregation of Aβ’, along with its subcategory ‘microglia’, the latter supporting microglial 

cells suspected role in response to Aβ in LOAD65. Nominal enrichment for risk from rare 

variants was found for the pathway ‘aggregation of Aβ: chaperone’ and 23 of the 335 genes.

To identify candidate genes for our novel loci, we combined results from our five 

prioritization strategies in a priority ranking method similar to that of Fritsche et al.66 (Fig. 2 

and Supplementary Table 24). ADAM10 was the top ranked gene of the 11 genes within the 

ADAM10 locus. ADAM10, the most important α-secretase in the brain, is a component of 

the non-amyloidogenic pathway of APP metabolism67 and sheds TREM2 (ref. 68), an innate 

immunity receptor expressed selectively in microglia. Overexpression of ADAM10 in mouse 

models can halt Aβ production and subsequent aggregation69. In addition, two rare 

ADAM10 alterations segregating with disease in LOAD families increased Aβ plaque load 

in ‘Alzheimer-like’ mice, with diminished α-secretase activity from the alterations probably 

the causal mechanism19,44. For the IQCK signal, which is also an obesity locus70,71, IQCK, 

a relatively uncharacterized gene, was ranked top, although four of the other 11 genes in the 

locus have a priority rank ≥ 4, including KNOP1 and GPRC5B, the latter being a regulator 

of neurogenesis72,73 and inflammatory signaling in obesity74. Of the 22 genes in the ACE 
locus, PSMC5, a key regulator of major histocompatibility complex (MHC)75,76, has a top 

score of 4, while DDX42, MAP3K3, an important regulator of macrophages and innate 

immunity77,78, and CD79B, a B lymphocyte antigen receptor subunit, each have a score of 

3. Candidate gene studies have associated ACE variants with Alzheimer’s disease 

risk20,22,79, including a strong association in the Wadi Ara, an Israeli Arab community with 

high risk of Alzheimer’s disease21. However, these studies yielded inconsistent results23, 

and our work reports a clear genome-wide association in NHW at this locus. While ACE 
was not prioritized, it should not be rejected as a candidate gene, as its expression in 

Alzheimer’s disease brain tissue is associated with Aβ load and Alzheimer’s disease 

severity80. Furthermore, cerebrospinal fluid (CSF) levels of the angiotensin-converting 
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enzyme (ACE) are associated with Aβ levels81 and LOAD risk82, and studies show ACE can 

inhibit Aβ toxicity and aggregation83. Finally, angiotensin II, a product of ACE function, 

mediates a number of neuropathological processes in Alzheimer’s disease84 and is now a 

target for intervention in phase II clinical trials of Alzheimer’s disease85. Another novel 

genome-wide locus reported here, ADAMTS1, is within 665 kb of APP on chromosome 21. 

Of three genes at this locus, our analyses nominate ADAMTS1 as the likely risk gene, 

although we cannot rule out that this signal is a regulatory element for APP. ADAMTS1 is 

elevated in Down’s syndrome with neurodegeneration and Alzheimer’s disease86, and it is a 

potential neuroprotective gene87–89 or a neuroinflammatory gene important to microglial 

response90. Finally, WWOX and MAF, which surround an intergenic signal in an obesity 

associated locus91, were both prioritized for the WWOX locus, with MAF, another 

important regulator of macrophages92,93, being highly expressed in microglia in the Brain 

RNA-seq database, and WWOX, a high-density-lipoprotein cholesterol and triglyceride–

associated gene94,95, being expressed most highly in astrocytes and neurons. WWOX has 

been implicated in several neurological phenotypes96; in addition, it binds tau and may play 

a critical role in regulating tau hyper-phosphorylation, neurofibrillary formation and Aβ 
aggregation28,29. Intriguingly, treatment of mice with its binding partner restores memory 

deficits97, hinting at its potential in neurotherapy.

For previously reported loci, applying the same prioritization approach highlights several 

genes, as described in Fig. 2, some of which are involved in APP metabolism (FERMT2, 
PICALM) or tau toxicity (BIN1, CD2AP, FERMT2, CASS4, PTK2B)98–101. Pathway, tissue 

and disease trait enrichment analyses support the utility of our prioritization method, as the 

53 prioritized genes with a score ≥ 5 are (1) enriched in substantially more Alzheimer’s 

disease–relevant pathways, processes and dementia-related traits; (2) enriched in candidate 

Alzheimer’s disease cell types such as monocytes (adjusted P = 9.0 × 10−6) and 

macrophages (adjusted P = 5.6 × 10−3); and (3) more strongly associated with dementia-

related traits and Alzheimer’s disease–relevant pathways (Supplementary Table 25 and 26; 

see Supplementary Fig. 19 for the interaction network of these prioritized genes). To further 

investigate the cell types and tissues the prioritized genes are expressed in, we performed 

differentially expressed gene (DEG) set enrichment analysis of the prioritized genes by 

using GTEx102 tissues, and we identified significant differential expression in several 

potentially relevant Alzheimer’s disease tissues including immune-related tissues 

(upregulation in blood and spleen), obesity-related tissue (upregulation in adipose), heart 

tissues (upregulation in left ventricle and atrial appendage), and brain tissues (dowregulation 

in cortex, cerebellum, hippo-campus, basal ganglia, and amygdala). Furthermore, the 53 

genes are overexpressed in ‘adolescence’ and ‘young adult’ brain tissues in BrainSpan103, a 

transcriptomic atlas of the developing human brain, which is consistent with accumulating 

evidence suggesting Alzheimer’s disease may start decades before the onset of 

disease104,105 (Supplementary Fig. 20; see Supplementary Fig. 21 for a tissue expression 

heat map for the 53 genes).

Fine-mapping of the HLA region.

The above approach prioritized HLA-DRB1 as the top candidate gene in the MHC locus, 

known for its complex genetic organization and highly polymorphic nature (see 
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Supplementary Fig. 22 for a plot of the region of the Stage 1 results). Previous analyses in 

the ADGC (5,728 Alzheimer’s disease cases and 5,653 controls) have linked both HLA class 

I and II haplotypes with Alzheimer’s disease risk106. In order to further investigate this locus 

in a much larger sample, we used a robust imputation method and fine-mapping association 

analysis of alleles and haplotypes of HLA class I and II genes in 14,776 cases and 23,047 

controls from our datasets (Supplementary Table 27). We found risk effects of HLA-
DQA1*01:02 (FDR P = 0.014), HLA-DRB1*15:01 (FDR P = 0.083), and HLA-
DQB1*06:02 (FDR P = 0.010) (Supplementary Table 28). After conditioning on the sentinel 

meta-analysis variant in this region (rs78738018), association signals were lost for the three 

alleles, suggesting that the signal observed at the variant level is due to the association of 

these three alleles. These alleles form the HLA-DQA1*01:02~HLA-DQB1*06:02~HLA-
DRB1*15:01 (DR15) haplotype, which is also associated with Alzheimer’s disease in our 

sample (FDR P = 0.013) (Supplementary Table 29). Taken together, these results suggest a 

central role of the DR15 haplotype in Alzheimer’s disease risk, a finding originally 

discovered in a small study in the Tunisian population107 and more recently in a large 

ADGC analysis106. Intriguingly, the DR15 haplotype and its component alleles also 

associate with protection against diabetes108, a high risk for multiple sclerosis109,110, and 

risk or protective effects with many other immune-mediated diseases (Supplementary Table 

30). Moreover, the associated diseases include a large number of traits queried from an 

HLA-specific Phewas111, including neurological diseases (for example, Parkinson’s 

disease112,113) and diseases with risk factors for Alzheimer’s disease (for example, 

hyperthyroidism114), pointing to potential shared and/or interacting mechanisms and co-

morbidities, a common paradigm in the MHC locus115. Two additional alleles, HLA-
DQA1*03:01 and HLA-DQB1*03:02, belonging to another haplotype, show a protective 

effect on Alzheimer’s disease, but their signal was lost after conditioning on HLA-
DQA1*01:02, and the HLA-DQA1*03:01~HLA-DQB1*03:02 haplotype is not associated 

with Alzheimer’s disease (FDR P = 0.651).

Genetic correlations with Alzheimer’s disease.

As described above, several of our genome-wide loci have potentially interesting co-morbid 

or pleiotropic associations with traits that may be relevant to the pathology of Alzheimer’s 

disease. To investigate the extent of LOAD’s shared genetic architecture with other traits, we 

performed LD-score regression to estimate the genetic correlation between LOAD and 792 

human diseases, traits and behaviors12,116 (Supplementary Table 31). The common variant 

genetic architecture of LOAD was positively correlated with a maternal family history of 

Alzheimer’s disease/dementia (rg for the genetic correlation of two traits = 0.81; FDR P = 

2.79 × 10−7), similar to the Marioni et al. family proxy analyses26, which found maternal 

genetic correlation with Alzheimer’s disease to be higher than that for paternal Alzheimer’s 

disease (rg = 0.91 and 0.66, respectively). There is substantial overlap between these 

estimates, as the Marioni et al. analyses include the 2013 IGAP summary statistics and 

employed the same UK Biobank variable that we used for rg estimates with maternal history 

of dementia. We also find significant negative correlation between Alzheimer’s disease and 

multiple measures of educational attainment (for example, college completion, rg = −0.24; 

years of schooling, rg range = −0.19 to −0.24; cognitive scores, rg = −0.24 and −0.25) (FDR 

P < 0.05), supporting the theory that a greater cognitive reserve could help protect against 
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development of LOAD117. The extent to which socioeconomic, environmental, or cultural 

factors contribute to the correlation between educational attainment and risk for Alzheimer’s 

disease is unknown, but research shows dementia risk to be associated with lower socio-

economic status, independently of education status118,119. We also found negative 

correlations at P < 0.05 with multiple measures of cardiovascular health (that is, family 

history of high blood pressure and heart disease and vascular/heart problems) and diabetes 

(that is, fasting proinsulin, basal metabolic rate and fasting insulin), supporting previous 

research suggesting that use of blood pressure and diabetic medications may reduce the risk 

of Alzheimer’s disease120. In fact, use of blood pressure medication does show a negative 

genetic correlation with Alzheimer’s disease in our study (rg = −0.12; P = 0.035), although 

this result does not survive FDR correction. These and other top results from this analysis 

(for example, body mass index, height; see Supplementary Table 31 for a full list of other 

nominally significant correlations) have been linked to Alzheimer’s disease 

previously116,120–127, either through suggestive or significant genetic or epidemiological 

associations (see Kuzma et al.128 for a recent review), but the multiple measures here 

support and emphasize their genetic correlation with LOAD and highlight the possible 

genetic pleiotropy or co-morbidity of these traits with pathology of LOAD.

Discussion

In conclusion, our work identifies five new genome-wide associations for LOAD and shows 

that GWAS data combined with high-quality imputation panels can reveal rare disease risk 

variants (for example, TREM2). The enrichment of rare variants in pathways associated with 

Alzheimer’s disease indicates that additional rare variants remain to be identified, and larger 

samples and better imputation panels will facilitate identifying them. While these rare 

variants may not contribute substantially to the predictive value of genetic findings, they will 

enhance the understanding of disease mechanisms and potential drug targets. Discovery of 

the risk genes at genome-wide loci remains challenging, but we demonstrate that converging 

evidence from existing and new analyses can prioritize risk genes. We also show that APP 

metabolism is associated with not only early-onset Alzheimer’s disease but also LOAD, 

suggesting that therapies developed by studying early-onset families could also be applicable 

to the more common late-onset form of the disease. Pathway analysis showing that tau is 

involved in LOAD supports recent evidence that tau may play an early pathological role in 

Alzheimer’s disease129–131 and confirms that therapies targeting tangle formation/

degradation could potentially affect LOAD. Finally, our fine-mapping analyses of HLA and 

genetic correlation results point to LOAD’s shared genetic architecture with many 

immunemediated and cognitive traits, suggesting that research and interventions that 

elucidate mechanisms behind these relationships could also yield fruitful therapeutic 

strategies for LOAD.

Methods

Samples.

All Stage 1 meta-analysis samples are from four consortia: ADGC, CHARGE, EADI, and 

GERAD/PERADES. Summary demographics of all 46 case-control studies from the four 
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consortia are described in Supplementary Tables 1 and 2. Written informed consent was 

obtained from study participants or, for those with substantial cognitive impairment, from a 

caregiver, legal guardian, or other proxy. Study protocols for all cohorts were reviewed and 

approved by the appropriate institutional review boards. Further details of all cohorts can be 

found in the Supplementary Note.

Pre-imputation genotype chip quality control.

Standard quality control was performed on all datasets individually, including exclusion of 

individuals with low call rate, individuals with a high degree of relatedness, and variants 

with low call rate. Individuals with non-European ancestry according to principal 

components analysis of ancestry-informative markers were excluded from the further 

analysis.

Imputation and pre-analysis quality control.

Following genotype chip quality control, each dataset was phased and imputed to the 1,000 

Genomes Project (phase 1 integrated release 3, March 2012)132 using SHAPEIT/

IMPUTE2133,134 or MaCH/Minimac135,136 software (Supplementary Table 3). All reference 

population haplotypes were used for the imputation, as this method improves accuracy of 

imputation for low-frequency variants137. Common variants (MAF ≥ 0.01%) with an r2 or an 

information measure <0.40 from MaCH and IMPUTE2 were excluded from further 

analyses. Rare variants (MAF < 0.01%) with a ‘global’ weighted imputation quality score of 

<0.70 were also excluded from analyses. This score was calculated by weighting each 

variant’s MACH/IMPUTE2 imputation quality score by study sample size and combining 

these weighted scores for use as a post-analysis filter. We also required the presence of each 

variant in 30% of cases and 30% of controls across all datasets.

Stage 1 association analysis and meta-analysis.

Stage 1 single variant-based association analysis employed an additive genotype model 

adjusting for age (defined as age-at-onset for cases and age-at-last exam for controls), sex, 

and population substructure using principal components138. The score test was implemented 

on all case-control datasets. This test is optimal for meta-analysis of rare variants due to its 

balance between power and control of type 1 error139. Family datasets were tested using 

GWAF140, with generalized estimating equations (GEE) implemented for common variants 

(MAF ≥ 0.01), and a general linear mixed effects model (GLMM) implemented for rare 

variants (MAF < 0.01), per our preliminary data showing that the behavior of the test 

statistics for GEE was fine for common variants but inflated for rare variants, while GLMM 

controlled this rare-variant inflation. Variants with regression coefficient |β| > 5 or P value 

equal to 0 or 1 were excluded from further analysis.

Within-study results for Stage 1 were meta-analyzed in METAL141 using an inverse-

variance-based model with genomic control. The meta-analysis was split into two separate 

analyses according to the study sample size, with all studies being included in the analysis of 

common variants (MAF ≥ 0.01), and only studies with a total sample size of 400 or greater 

being included in the rare-variant (MAF < 0.01) analysis. See the Supplementary Note for 

further details of the meta-analyses methods.
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Stage 1 summary statistics quality control and analysis.

Genomic inflation was calculated for lambda (λ) in the GenABEL package142. In addition, 

we performed LDSC regression via LD Hub v.1.9.0 (refs. 12,13) to calculate the LD score 

regression intercept and derive a heritability estimate for the inverse-variance weighted 

meta-analysis summary statistics. The APOE region (Chr19:45,116,911–46,318,605) was 

removed to calculate the intercept. Removal of the APOE region reduced the heritability 

estimate slightly from 0.071 (s.e.m. = 0.011) to 0.0637 (s.e.m. = 0.009).

LDSC was also employed via the LD Hub web server to obtain genetic correlation estimates 

(rg)116 between LOAD and a wide range of other disorders, diseases and human traits, 

including 518 UK BioBank traits143. UK BioBank is a large long-term study (~500,000 

volunteers aged 40 to 69) begun in 2006 in the United Kingdom, which is investigating the 

contributions of genetic predisposition and environmental exposure (that is, nutrition, 

lifestyle, and medications) to the development of disease. While volunteers in the study are 

generally healthier than the overall United Kingdom population144, its large size and 

comprehensive data collection make the study an invaluable resource for researchers looking 

to interrogate the combined effect of genetics and environmental factors on disease. Before 

analyses in LD Hub, we removed all SNPs with extremely large effect sizes including the 

MHC (Chr6:26,000,000–34,000,000) and APOE region, as outliers can overly influence the 

regression analyses. A total of 1,180,989 variants were used in the correlation analyses. 

Statistical significance of the genetic correlations was estimated using 5% Benjamini

−Hochberg FDR corrected P values.

GCTA COJO27 was used to conduct conditional analysis of the Stage 1 summary statistics, 

with 28,730 unrelated individuals from the ADGC as a reference panel for calculation of 

LD. See URLs for methods for creation of the ‘ADGC reference dataset’.

Stage 2 and 3 genotyping, quality control, and analysis.

Stage 2 genotypes were determined for 8,362 cases and 10,483 controls (Supplementary 

Table 4). 1,633 variants from the I-select chip were located in the 24 genome-wide loci 

(defined by the LD blocks of the sentinel variants; excluding the APOE region), with an 

average of 68 variants per locus. The most well-covered loci were HLA-DRB1, M24A2, and 

PICALM (763, 202, and 156 variants available, respectively); the least were MAF, 

ADAMTS1, and INPP5D (0, 4, and 5 variants, respectively).

Stage 3A was conducted for variants selected as novel loci from meta-analyses of Stages 1 

and 2 with P < 5 × 10−7 (9 variants) and variants that were previously significant (P < 5 × 

10−8) that were not genome-wide significant after Stages 1 and 2 (2 variants) (4,930 cases 

and 6,736 controls) (Supplementary Table 5). Variants were genotyped using Taqman.

URLs. ADGC Reference Dataset: https://kauwelab.byu.edu/Portals/22/adgc_combined_1000G_09192014.pdf; AlzBase: http://
alz.big.ac.cn/alzBase/; Brain RNA-seq Database: http://www.brainrnaseq.org/; Enrichr: http://amp.pharm.mssm.edu/Enrichr/; exSNP: 
http://www.exsnp.org/; NESDA eQTL catalog: https://eqtl.onderzoek.io/index.php?page=info; FUMA: http://fuma.ctglab.nl/; HLA-
PheWas catalog: https://phewascatalog.org/hla; INFERNO: http://inferno.lisanwanglab.org/index.php; LD Hub: http://
ldsc.broadinstitute.org/ldhub/; STRING: https://string-db.org/.
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Stage 3B, which combined samples from Stage 2 and 3A, included variants with MAF < 

0.05 and P < 1 × 10−5 or variants with MAF ≥ 0.05 and P < 5 × 10−6 in novel loci not 

covered in the 2013 iSelect genotyping1 (13,292 cases and 17,219 controls) (Supplementary 

Table 7). See the Supplementary Note for details on selection of variants for Stage 3B 

follow-up genotyping. For Stages 1, 2, and 3, samples did not overlap.

Per-sample quality checks for genetic sex and relatedness were performed in PLINK. Sex 

mismatches or individuals showing a high degree of relatedness (identical-by-descent value 

of 0.98 or greater) were removed from the analysis. A panel of ancestry-informative markers 

was used to perform principal component analysis with SMARTPCA from EIGENSOFT 4.2 

software145, and individuals with non-European ancestry were excluded. Variant quality 

control was also performed separately in each country including removal of variants missing 

in more than 10% of individuals, having a Hardy−Weinberg P value in controls lower than 1 

× 10−6 or a P value for missingness between cases and controls lower than 1 × 10−6.

Per-study analysis for Stage 2 and Stage 3 followed the same analysis procedures described 

for Stage 1, except for covariate adjustments per cohort, where all analyses were adjusted on 

sex and age apart from the Italian, Swedish, and Gr@ACE cohorts, which were also adjusted 

for principal components. Within-study results were meta-analyzed in METAL141 using an 

inverse-variance-based model.

Characterization of gene(s) and non-coding features in associated loci.

We determined the base-pair boundaries of the search space for potential gene(s) and non-

coding features in each of the 24 associated loci (excluding APOE) using the ‘proxy search’ 

mechanism in LDLink146. LDLink uses 1,000 genomes genotypes to calculate LD for a 

selected population; in our case all five European populations were selected (population 

codes CEU, TSI, FIN, GBR, and IBS). The boundaries for all variants in LD (r2 ≥ 0.5) with 

the top associated variant from the Stage 2 meta-analysis for each region ±500 kb of the 

ends of the LD blocks (as eQTL controlled genes are typically less than 500 kb from their 

controlling variant147) were input into the UCSC genome browser’s ‘Table Browser’ for 

RefSeq148 and GENCODEv24lift37149 genes at each associated locus. The average size of 

the LD blocks was 123 kb.

Identification of potentially causal coding or splicing variants.

To identify deleterious coding or splicing variants that may represent causal variants for our 

genome-wide loci, we first used SNIPA150 to identify variants in high LD (defined as r2 > 

0.7) with the sentinel variants of the 24 genome-wide loci (excluding APOE) (n = 1,073). 

The sentinel variants were defined as the variants with the lowest P in each genome-wide 

locus. We then used Ensembl VEP151 for annotation of the set of sentinel variants and their 

proxies. We used BLOSUM62 (ref. 152), SIFT153, Polyphen-2 (ref. 154), CADD155, 

Condel156, MPC157 and Eigen158 to predict the pathogenicity of protein-altering exonic 

variants and MaxEntScan to predict the splicing potential of variants. Splicing variants with 

high splicing potential according to MaxEntScan159 and protein-coding variants predicted to 

be deleterious by two or more programs were considered to be potentially causal variants for 
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a locus. It should be noted that while we do include rare variants from imputation in our 

analyses, we may be missing many rare causal variants in this study.

Identification of genes with rare-variant burden via gene-based testing.

We used the summary statistics results of a large whole-exome sequencing (WES) study of 

LOAD, the Alzheimer’s Disease Sequencing Project (ADSP) case-control study (n = 5,740 

LOAD cases and 5,096 cognitively normal controls of NHW ancestry) to identify genes 

within our genome-wide loci that may contribute to the association signal through rare 

deleterious coding, splicing or LOF variants. The individuals in the ADSP study largely 

overlap with individuals in the ADGC and CHARGE cohorts included in our Stage 1 meta-

analysis. All 400 protein-coding genes within our LD-defined genome-wide loci were 

annotated with the gene-based results from this study, and the results were corrected using a 

1% FDR P as a cutoff for significance. Complete details of the analysis can be found in Bis 

et al.49 and the Supplementary Note.

Regulatory variant and eQTL analysis.

To identify potential functional risk variants and genes at each associated locus, we first 

annotated a list of prioritized variants from the 24 associated loci (excluding APOE) (n = 

1,873). This variant list combined variants in LD with the sentinel variants (r2 ≥ 0.5) using 

INFERNO160 LD expansion (n = 1,339) and variants with suggestive significance (P < 10−5) 

and LD (r2 ≥ 0.5) with the sentinel variants for the 24 associated loci (excluding APOE) (n = 

1,421 variants). We then identified variants with regulatory potential in this set of variants 

using four programs that incorporate various annotations to identify likely regulatory 

variants: RegulomeDB56, HaploReg v.4.1 (refs. 57,161), GWAS4D59, and the Ensembl 

Regulatory Build58. We used the ChromHMM (core 15-state model) as ‘source epigenomes’ 

for the HaploReg analyses. We used immune (Monocytes-CD14+, GM12878 

lymphoblastoid, HSMM myoblast) and brain (NH-A astroctyes) for the Ensembl Regulatory 

Build analyses. We then used the list of 1,873 prioritized variants to search for genes 

functionally linked via eQTLs in LOAD relevant tissues including various brain and blood 

tissue types, including all immune-related cell types, most specifically myeloid cells 

(macrophages and monocytes) and B-lymphoid cells, which are cell types implicated in 

LOAD and neurodegeneration by a number of recent studies14,45,162,163. While their 

specificity may be lower for identifying Alzheimer’s disease risk eQTLs, we included whole 

blood cell studies in our Alzheimer’s disease–relevant tissue class due to their high 

correlation of eQTLs with Alzheimer’s disease–relevant tissues (70% with brain164; 51–70% 

for monocytes and lymphoblastoid cell lines165) and their large sample sizes that allow for 

increased discovery power. See the Supplementary Note for details on the eQTL databases 

and studies searched, and Supplementary Table 13 for sample sizes of each database/study.

Formal co-localization testing of our summary Stage 1 results was conducted using (1) 

COLOC166 via INFERNO and (2) Summary Mendelian Randomization (SMR)-Heidi 

analysis167. The approximate Bayes factor (ABF), which was used to assess significance in 

the INFERNO COLOC analysis, is a summary measure that provides an alternative to the P 
value for the identification of associations as significant. SMR-Heidi analysis, which 

employs a heterogeneity test (HEIDI test) to distinguish pleiotropy or causality (a single 
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genetic variant affecting both gene expression and the trait) from linkage (two distinct 

genetic variants in LD, one affecting gene expression and one affecting trait), was also 

employed for co-localization analysis. Genes located less than 1 Mb from the GWAS 

sentinel variants that pass a 5% Benjamini–Hochberg FDR-corrected SMR P-value 

significance threshold and a HEIDI P-value > 0.05 threshold were considered significant. 

The Westra eQTL168 summary data and Consortium for the Architecture of Gene 

Expression (CAGE) eQTL summary data were used for analysis. These datasets, conducted 

in whole blood, are large eQTL studies (Westra: discovery phase n = 5,311, replication 

phase n = 2,775; CAGE: n = 2,765), and while there is some overlap in samples between the 

two datasets, CAGE provides finer coverage. The ADGC reference panel dataset referenced 

above for GCTA COJO analysis was used for LD calculations.

Human brain gene expression analyses.

We also evaluated gene expression of all candidate genes in the associated loci (see 

Supplementary Table 8 for a complete list of genes searched), using differential Alzheimer’s 

disease gene expression results from AlzBase31, brain tissue expression from the Brain 

RNA-seq Database32,33 (see URLs), and the HuMi_Aged gene set34, a set of genes 

preferentially expressed in aged human microglia established through RNA-seq expression 

analysis of aged human microglial cells from ten post-mortem brains. AlzBase includes 

transcription data from brain and blood from aging, non-dementia, mild cognitive 

impairment, early-stage Alzheimer’s disease, and late-stage Alzheimer’s disease. See 

ALZBase (see URLs) for a complete list of studies included in the search. Correlation values 

for the BRAAK stage expression were taken from the Zhang et al.30 study of 1,647 post-

mortem brain tissues from LOAD patients and non-demented subjects.

Pathway analysis.

Pathway analyses were performed with MAGMA61, which performs SNP-wise gene 

analysis of summary statistics with correction for LD between variants and genes to test 

whether sets of genes are jointly associated with a phenotype (that is, LOAD), compared to 

other genes across the genome. Adaptive permutation was used to produce an empirical P 
value and an FDR-corrected q value. Gene sets used in the analyses were from GO169,170, 

KEGG171,172, REACTOME173,174, BIOCARTA, and MGI175 pathways. Analyses were 

restricted to gene sets containing between 10 and 500 genes, a total of 10,861 sets. Variants 

were restricted to common variants (MAF ≥ 0.01) and rare variants (MAF < 0.01) only for 

each analysis, and separate analyses for each model included and excluded the APOE 
region. Analyses were also performed after removal of all genome-wide-significant genes. 

Primary analyses used a 35-kb upstream/10-kb downstream window around each gene in 

order to capture potential regulatory variants for each gene, while secondary analyses were 

run using a 0-kb window176. To test for significant correlation between common and rare-

variant gene results, we performed a gene property analysis in MAGMA, regressing the 

gene-wide association statistics from rare variants on the corresponding statistics from 

common variants, correcting for LD between variants and genes using the ADGC reference 

panel. The Aβ-centered network pathway analysis used a curated list of 32 Aβ-related gene 

sets and all 335 genes combined (see Campion et al.64 for details). The combined dataset of 
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28,730 unrelated individuals from the ADGC referenced in the GCTA COJO analysis was 

used as a reference set for LD calculations in these analyses.

Validation of prioritization method.

Evaluation of the prioritization of the risk genes in genome-wide loci was done using 

STRING177, and Jensen Diseases178, Jensen Tissues179, dbGAP gene sets, and the 

ARCHS4180 resource via the EnrichR181 tool. We evaluated both the 400 genes set list and a 

list of 53 genes with priority score ≥ 5 (adding in APOE to both lists as the top gene in the 

APOE locus) using the standard settings for both STRING and EnrichR. We used the q 
value, which is the adjusted P value using the Benjamini–Hochberg FDR method with a 5% 

cutoff for correction for multiple hypotheses testing. We also performed ‘differentially 

expressed gene (DEG)’ sets analysis via FUMA182. These analyses were performed in order 

to assess whether our 53 prioritized genes were significantly differentially expressed in 

certain GTEx v.7 (ref. 102; 30 general tissues and 53 specific tissues) or BrainSpan tissues 

(11 tissue developmental periods with distinct DEG sets ranging from early prenatal to 

middle adulthood)103. FUMA defines DEG sets by calculating a two-sided t-test per tissue 

versus all remaining tissue types or developmental periods. Genes with a Bonferonni-

corrected P < 0.05 and absolute log(fold change) ≥ 0.58 were considered DEGs. Input genes 

were tested against each of the DEG sets using the hypergeometric test. Significant 

enrichment was defined by Bonferonni-corrected P ≤ 0.05.

HLA region analysis.

Non-familial datasets from the ADGC, EADI and GERAD consortiums were used for HLA 

analysis. After imputation quality control, a total of 14,776 cases and 23,047 controls were 

available for analysis (Supplementary Table 27). Within ADGC, GenADA, ROSMAP, 

TARC1, TGEN2, and a subset of the UMCWRMSSM datasets were not imputed as 

Affymetrix genotyping arrays are not supported by the imputation software.

Imputation of HLA alleles.—Two-field resolution HLA alleles were imputed using the R 

package HIBAG v.1.4 (ref. 183) and the NHW-specific training set. This software uses 

specific combinations of variants to predict HLA alleles. Alleles with an imputation 

posterior probability lower than 0.5 were considered as undetermined as recommended by 

HIBAG developers. HLA-A, HLA-B, HLA-C class I genes, and HLA-DPB1, HLA-DQA1, 

HLA-DQB1, and HLA-DRB1 class II genes were imputed. Individuals with more than two 

undetermined HLA alleles were excluded.

Statistical analysis.—All analyses were performed in R184. Associations of HLA alleles 

with disease were tested using logistic regressions, adjusting for age, sex, and principal 

components as specified above for single variant association analysis. Only HLA alleles 

with a frequency higher than 1% were analyzed. Haplotype estimations and association 

analyses with disease were performed using the ‘haplo.glm’ function from the haplo.stats R 

package185 with age, sex, and principal components as covariates. Analysis was performed 

on two-loci and three-loci haplotypes of HLA-DQA1, HLA-DQB1, and HLA-DRB1 genes. 

Haplotypes with a frequency below 1% were excluded from the analysis. Considering the 

high LD in the MHC region, only haplotypes predicted with posterior probabilities higher 
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than 0.2 were considered for analysis. Meta-analysis P values were computed using an 

inverse-variance-based model as implemented in METAL software141. For haplotypes 

analysis, only individuals with no undetermined HLA alleles and only datasets with more 

than 100 cases or controls were included. Adjustments on HLA significant variants and 

HLA alleles were performed by introducing the variant or alleles as covariates in the 

regression models. Adjusted P values were computed using the FDR method and the R 

‘p.adjust’ function, and applied to the meta-analysis P values. The FDR threshold was set to 

10%.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Manhattan plot of meta-analysis of stage 1, 2, and 3 results for genome-wide association 
with Alzheimer’s disease.
The threshold for genomewide significance (P < 5 × 10−8) is indicated by the red line, while 

the blue line represents the suggestive threshold (P < 1 × 10−5). Loci previously identified by 

the Lambert et al.1 IGAP GWAS are shown in blue and newly associated loci are shown in 

red. Loci are named for the closest gene to the sentinel variant for each locus. Diamonds 

represent variants with the smallest P values for each genome-wide locus.
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Fig. 2 |. Top prioritized genes of 400 genes located in genome-wide-significant loci.
The criteria include: (1) deleterious coding, LOF or splicing variant in the gene; (2) 

significant gene-based tests; (3) expression in a tissue relevant to Alzheimer’s disease 

(astrocytes, neurons, microglia/macrophages, oligodendrocytes); (4) a HuMi microglial-

enriched gene; (5) having an eQTL effect on the gene in any tissue, in Alzheimer’s disease–

relevant tissue, and/ or a co-localized eQTL; (6) being involved in a biological pathway 

enriched in Alzheimer’s disease (from the current study); (7) expression correlated with the 

BRAAK stage; and (8) differential expression in a 1 + Alzheimer’s disease (AD) study. 

Novel genome-wide loci from the current study are listed first, followed by known genome-

wide loci. Each category is assigned an equal weight of 1, with the priority score equaling 

the sum of all categories. Colored fields indicate that the gene meets the criteria. Genes with 

a priority score ≥ 4 are listed for each locus. If no gene reached a score of ≥ 5 in a locus, 

then the top ranked gene(s) is listed.
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