14 research outputs found

    Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug

    Get PDF
    The objective of this proof-of-concept study was to develop a platform for controlled drug delivery based on silk fibroin (SF) and to explore the feasibility of using SF in oral drug delivery. The SF-containing matrixes were prepared via spray-drying and film casting, and the release profile of the model drug naproxen sodium was evaluated. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR) has been used to observe conformational changes in SF- and drug-containing compositions. SF-based films, spray-dried microparticles, and matrixes loaded with naproxen were prepared. Both FTIR spectra and in vitro dissolution data demonstrated that SF β-sheet conformation regulates the release profile of naproxen. The controlled release characteristics of the SF-containing compositions were evaluated as a function of SF concentration, temperature, and exposure to dehydrating solvents. The results suggest that SF may be an attractive polymer for use in controlled drug delivery systems

    Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Get PDF
    Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126) and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1). The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2) and rohituka (Pet-Ether) extracts induced cytotoxicity; the chittagonga (EtoAC) and rohituka (MeOH) extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells

    In Vitro Effects of Actively Delivered Coencapsulated Curcumin and Cisplatin Nanoliposomes on Squamous Oral Carcinoma

    No full text
    77 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2008.Multidrug carriers were also formulated using a Dipalmitoyl Phosphatidylcholine (DPPC) as a primary lipid, with incorporation of a lysolipid to achieve controlled release of the drugs loaded within. Diagnostic ultrasound energy was then employed as a tool to achieve controlled release from the newly developed multidrug carriers at a frequency of 7.5 MHz and four different power intensities depending on the pulse repetition time. The optimal lipid composition and the intensity settings of ultrasound energy were chosen to formulate a new class of nanoliposomes---ultrasound sensitive nanoliposomes (USNL). The USNLs released increasing amounts of drug in response to increasing irradiation times while the drug release was not significant when the Non-USNLs were exposed to ultrasound energy levels. In vitro studies to test the cytotoxicity of the formulations showed that the USNLs significantly inhibited cell survival of SCC9 oral cancer cells, as compared to the Non-USNLs. We hypothesize that the drug is released due to increased membrane permeability during exposure to ultrasound energy. The lipid composition and energy levels play a key role in determining the efficacy of diagnostic ultrasound energy as a tool for drug delivery. Thus the novel chemotherapeutic approach with the use of compound liposomes, when combined with an active delivery modality can be employed as the primary treatment rather then opting for cosmetically harsh surgery. This may also help in better organ preservation and functioning, which in turn would improve the overall quality of life in patients with these tumors.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
    corecore