18 research outputs found

    Smad4 haploinsufficiency: a matter of dosage

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Aerobic Training in Rats Increases Skeletal Muscle Sphingomyelinase and Serine Palmitoyltransferase Activity, While Decreasing Ceramidase Activity

    Get PDF
    Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    SWI/SNF Mediates Polycomb Eviction and Epigenetic Reprogramming of the INK4b-ARF-INK4a Locus▿

    No full text
    Stable silencing of the INK4b-ARF-INK4a tumor suppressor locus occurs in a variety of human cancers, including malignant rhabdoid tumors (MRTs). MRTs are extremely aggressive cancers caused by the loss of the hSNF5 subunit of the SWI/SNF chromatin-remodeling complex. We found previously that, in MRT cells, hSNF5 is required for p16INK4a induction, mitotic checkpoint activation, and cellular senescence. Here, we investigated how the balance between Polycomb group (PcG) silencing and SWI/SNF activation affects epigenetic control of the INK4b-ARF-INK4a locus in MRT cells. hSNF5 reexpression in MRT cells caused SWI/SNF recruitment and activation of p15INK4b and p16INK4a, but not of p14ARF. Gene activation by hSNF5 is strictly dependent on the SWI/SNF motor subunit BRG1. SWI/SNF mediates eviction of the PRC1 and PRC2 PcG silencers and extensive chromatin reprogramming. Concomitant with PcG complex removal, the mixed lineage leukemia 1 (MLL1) protein is recruited and active histone marks supplant repressive ones. Strikingly, loss of PcG complexes is accompanied by DNA methyltransferase DNMT3B dissociation and reduced DNA methylation. Thus, various chromatin states can be modulated by SWI/SNF action. Collectively, these findings emphasize the close interconnectivity and dynamics of diverse chromatin modifications in cancer and gene control

    Lig4 and Rad54 Are Required for Repair of DNA Double-Strand Breaks Induced by P-Element Excision in Drosophila

    No full text
    Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2–8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4

    Single Nucleotide Variant rs2232710 in the Protein Z-Dependent Protease Inhibitor (ZPI, SERPINA10) Gene Is Not Associated with Deep Vein Thrombosis.

    Get PDF
    Rare mutations in PROC, PROS1 or SERPINC1 as well as common variants in F5, F2, F11 and SERPINC1 have been identified as risk factors for deep vein thrombosis (DVT). To identify novel genetic risk factors for DVT, we have developed and applied next-generation DNA sequencing (NGS) of the coding area of hemostatic and proinflammatory genes. Using this strategy, we previously identified a single nucleotide variant (SNV) rs6050 in the FGA gene and novel, rare SNVs in the ADAMTS13 gene associated with DVT. To identify novel coding variants in the genetic predisposition to DVT, we applied NGS analysis of the coding area of 186 hemostatic and proinflammatory genes in 94 DVT cases and 98 controls and we identified 18 variants with putative role in DVT. A group of 585 Italian idiopathic DVT patients and 550 healthy controls was used to genotype all the 18 risk-associated variants identified by NGS. Replication study in the Italian population identified the rs2232710 variant in the protein Z-dependent protease inhibitor (ZPI) gene to be associated with an increased risk of DVT (OR 2.74; 95% CI 1.33-5.65; P = 0.0045; Bonferroni P = 0.081). However, the rs2232710 SNV showed no association with DVT in two Dutch replication cohorts the LETS study (454 patients and 451 controls) and the MEGA study (3799 patients and 4399 controls), indicating that the rs2232710 variant is not a risk factor for DVT
    corecore