95 research outputs found

    Wooden sticks as environmental enrichment: effect on fattening and carcass traits of individually housed growing rabbits

    Full text link
    [EN] The aim of our study was to examine the influence of wooden sticks for gnawing as environmental enrichment on fattening, carcass and meat quality traits of growing rabbits. Forty-eight rabbits of SIKA sire line (Slovenian line for meat production) of both sexes were housed individually in wire-mesh cages equipped only with a feeder and a nipple drinker. Half of the cages were enriched with wooden sticks of Norway spruce (Picea abies). That was the experimental group whereas the other half was the control group. Animals had free access to feed and water, daily duration of lighting was 12 h. The experiment lasted from 44th to 103rd d of age. The consumption of wood was less than 0.5 % of the total feed intake. Results indicate that fattening and carcass traits, as well as meat quality were not influenced by environmental enrichment, although in the experimental group a smaller large intestine percentage (-0.21±0.13 %; [Pr(|difference|>0)=0.94]) was observed. Additionally rabbits in experimental group had redder meat values [Pr(|difference|>0)=0.92]. However, given that wooden sticks had no negative impact on rabbits performance, sticks made of Norway spruce can still be treated as appropriate environmental enrichment for growing rabbits.Jordan, D.; Gorjanc, G.; Kermauner, A.; Stuhec, I. (2008). Wooden sticks as environmental enrichment: effect on fattening and carcass traits of individually housed growing rabbits. World Rabbit Science. 16(4). doi:10.4995/wrs.2008.619SWORD16

    A random regression model in analysis of litter size in pigs

    Get PDF
    Dispersion parameters for number of piglets born alive (NBA) were estimated using a random regression model (RRM). Two data sets of litter records from the NemĆĄčak farm in Slovenia were used for analyses. The first dataset (DS1) included records from the first to the sixth parity. The second dataset (DS2) was extended to the tenth parity. Four sow genotypes were included: Swedish Landrace (SL), Large White (LW) and their crossbred lines. The fixed part of the model included sow genotype, mating season (as month-year interaction), parity and weaning to conception interval as class effects. The age at farrowing was modelled as a quadratic regression, nested within parity. The previous lactation length was fitted as a linear regression. Random regressions for parity on Legendre polynomials were included for direct additive genetic, permanent environmental and common litter environmental effects. Orthogonal Legendre polynomials from the linear to the cubic power were fitted. Estimates of heritability ranged from 0.09 to 0.14. The ratio of permanent environmental variance to total variance increased along the trajectory from 0.05 to 0.16. Magnitudes of common litter effect were generally small (0.01 to 0.02). The eigenvalues of covariance functions showed that between 10 and 15% of genetic variability was explained by the individual genetic curve of sows in the DS2. This proportion was mainly covered by linear and quadratic coefficients. Results suggest that RRM could be used for genetic analysis of litter size. South African Journal of Animal Science Vol. 34(4) 2004: 241-24

    Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation

    Get PDF
    Small breeding programs are limited in achieving competitive genetic gain and prone to high rates of inbreeding. Thus, they often import genetic material to increase genetic gain and to limit the loss of genetic variability. However, the benefit of import depends on the strength of genotype-by-environment interaction. Import also diminishes the relevance of domestic selection and the use of domestic breeding animals. Introduction of genomic selection has potentially exacerbated this issue, but is also opening the potential for smaller breeding programs. The aim of this paper was to determine when and to what extent small breeding programs benefit from importing genetic material by quantifying the genetic gain as well as the sources of genetic gain. We simulated 2 cattle breeding programs of the same breed that represented a large foreign and a small domestic breeding program. The programs differed in selection parameters of sire selection, and in the initial genetic mean and annual genetic gain. We evaluated a control scenario without the use of foreign sires in the domestic breeding program and 24 scenarios that varied the percentage of domestic dams mated with foreign sires, the genetic correlation between the breeding programs (0.8 or 0.9), and the time of implementing genomic selection in the domestic compared with the foreign breeding program (concurrently or with a 10-yr delay). We compared the scenarios based on the genetic gain and genic standard deviation. Finally, we partitioned breeding values and genetic trends of the scenarios to quantify the contribution of domestic selection and import to the domestic genetic gain. The simulation revealed that when both breeding programs implemented genomic selection simultaneously, the use of foreign sires increased domestic genetic gain only when genetic correlation was 0.9 (10%–18% increase). In contrast, when the domestic breeding program implemented genomic selection with a 10-yr delay, import increased genetic gain at both tested correlations, 0.8 (5%–23% increase) and 0.9 (15%–53% increase). The increase was significant when we mated at least 10% or 25% domestic females with foreign sires and increased with the increasing use of foreign sires, but with a diminishing return. The partitioning analysis revealed that the contribution of import expectedly increased with the increased use of foreign sires. However, the increase did not depend on the genetic correlation and was not proportional to the increase in domestic genetic gain. This represents a peril for small breeding programs because they could be overly relying on import with diminishing returns for the genetic gain, marginal benefit for the genetic variability, and large loss of the domestic germplasm. The benefit and peril of import depends on an interplay of genetic correlation, extent of using foreign sires, and a breeding scheme. It is therefore crucial that small breeding programs assess the possible benefits of import beyond domestic selection. The benefit of import should be weighed against the perils of decreased use of domestic sires and decreased contribution and value of domestic selection

    Towards Uniform Gene Bank Documentation In Europe – The Experience From The EFABISnet Project

    Get PDF
    In the EFABISnet project, a collaborative effort of EAAP, FAO and partners from 14 European countries, in cooperation with the European Regional Focal Point for Animal Genetic Resources (ERFP), national information systems for monitoring the animal genetic resources on breed level were established in Austria, Cyprus, Estonia, Georgia, Iceland, Ireland, Italy, Netherlands, Slovakia, Slovenia, Switzerland, and United Kingdom. The network was soon extended beyond the project plans, with the establishment of EFABIS databases in Finland, Greece, and Hungary. The network was then complemented by a set of inventories of national gene bank collections to strengthen the documentation of ex situ conservation programmes. These documentation systems were established by the National Focal Points for management of farm animal genetic resources. Here we present the experience gained in establishment of these national inventories of gene banks and their relevance to the Strategic Priority Areas of the Global Plan of Action which could be useful for other areas in the world

    National single-step genomic method that integrates multi-national genomic information

    Get PDF
    The aim of this paper was to develop a national single-step genomic BLUP that integrates multi-national genomic estimated breeding values (EBV) and associated reliabilities without double counting dependent data contributions from the different evaluations. Simultaneous use of all data, including phenotypes, pedigree, and genotypes, is a condition to obtain unbiased EBV. However, this condition is not always fully met, mainly due to unavailability of foreign raw data for imported animals. In dairy cattle genetic evaluations, this issue is traditionally tackled through the multiple across-country evaluation (MACE) of sires, performed by Interbull Centre (Uppsala, Sweden). Multiple across-country evaluation regresses all the available national information onto a joint pedigree to obtain country-specific rankings of all sires without sharing the raw data. In the context of genomic selection, the issue is handled by exchanging sire genotypes and by using MACE information (i.e., MACE EBV and reliabilities), as a valuable source of “phenotypic” data. Although all the available data are considered, these “multi-national” genomic evaluations use multi-step methods assuming independence of various sources of information, which is not met in all situations. We developed a method that handles this by single-step genomic evaluation that jointly (1) uses national phenotypic, genomic, and pedigree data; (2) uses multi-national genomic information; and (3) avoids double counting dependent data contributions from an animal’s own records and relatives’ records. The method was demonstrated by integrating multi-national genomic EBV and reliabilities of Brown Swiss sires, included in the InterGenomics consortium at Interbull Centre, into the national evaluation in Slovenia. The results showed that the method could (1) increase reliability of a national (genomic) evaluation; (2) provide consistent ranking of all animals: bulls, cows, and young animals; and (3) increase the size of a genomic training population. These features provide more efficient and transparent selection throughout a breeding program

    A method for the allocation of sequencing resources in genotyped livestock populations

    Get PDF
    International audienceAbstractBackgroundThis paper describes a method, called AlphaSeqOpt, for the allocation of sequencing resources in livestock populations with existing phased genomic data to maximise the ability to phase and impute sequenced haplotypes into the whole population.MethodsWe present two algorithms. The first selects focal individuals that collectively represent the maximum possible portion of the haplotype diversity in the population. The second allocates a fixed sequencing budget among the families of focal individuals to enable phasing of their haplotypes at the sequence level. We tested the performance of the two algorithms in simulated pedigrees. For each pedigree, we evaluated the proportion of population haplotypes that are carried by the focal individuals and compared our results to a variant of the widely-used key ancestors approach and to two haplotype-based approaches. We calculated the expected phasing accuracy of the haplotypes of a focal individual at the sequence level given the proportion of the fixed sequencing budget allocated to its family.ResultsAlphaSeqOpt maximises the ability to capture and phase the most frequent haplotypes in a population in three ways. First, it selects focal individuals that collectively represent a larger portion of the population haplotype diversity than existing methods. Second, it selects focal individuals from across the pedigree whose haplotypes can be easily phased using family-based phasing and imputation algorithms, thus maximises the ability to impute sequence into the rest of the population. Third, it allocates more of the fixed sequencing budget to focal individuals whose haplotypes are more frequent in the population than to focal individuals whose haplotypes are less frequent. Unlike existing methods, we additionally present an algorithm to allocate part of the sequencing budget to the families (i.e. immediate ancestors) of focal individuals to ensure that their haplotypes can be phased at the sequence level, which is essential for enabling and maximising subsequent sequence imputation.ConclusionsWe present a new method for the allocation of a fixed sequencing budget to focal individuals and their families such that the final sequenced haplotypes, when phased at the sequence level, represent the maximum possible portion of the haplotype diversity in the population that can be sequenced and phased at that budget

    Genetic prediction of complex traits: integrating infinitesimal and marked genetic effects

    Get PDF
    Genetic prediction for complex traits is usually based on models including individual (infinitesimal) or marker effects. Here, we concentrate on models including both the individual and the marker effects. In particular, we develop a ''Mendelian segregation'' model combining infinitesimal effects for base individuals and realized Mendelian sampling in descendants described by the available DNA data. The model is illustrated with an example and the analyses of a public simulated data file. Further, the potential contribution of such models is assessed by simulation. Accuracy, measured as the correlation between true (simulated) and predicted genetic values, was similar for all models compared under different genetic backgrounds. As expected, the segregation model is worthwhile when markers capture a low fraction of total genetic variance. (Résumé d'auteur
    • 

    corecore