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A method for the allocation 
of sequencing resources in genotyped livestock 
populations
Serap Gonen, Roger Ros‑Freixedes, Mara Battagin, Gregor Gorjanc and John M. Hickey*

Abstract 

Background: This paper describes a method, called AlphaSeqOpt, for the allocation of sequencing resources in 
livestock populations with existing phased genomic data to maximise the ability to phase and impute sequenced 
haplotypes into the whole population.

Methods: We present two algorithms. The first selects focal individuals that collectively represent the maximum pos‑
sible portion of the haplotype diversity in the population. The second allocates a fixed sequencing budget among the 
families of focal individuals to enable phasing of their haplotypes at the sequence level. We tested the performance 
of the two algorithms in simulated pedigrees. For each pedigree, we evaluated the proportion of population haplo‑
types that are carried by the focal individuals and compared our results to a variant of the widely‑used key ancestors 
approach and to two haplotype‑based approaches. We calculated the expected phasing accuracy of the haplotypes 
of a focal individual at the sequence level given the proportion of the fixed sequencing budget allocated to its family.

Results: AlphaSeqOpt maximises the ability to capture and phase the most frequent haplotypes in a population in 
three ways. First, it selects focal individuals that collectively represent a larger portion of the population haplotype 
diversity than existing methods. Second, it selects focal individuals from across the pedigree whose haplotypes can be 
easily phased using family‑based phasing and imputation algorithms, thus maximises the ability to impute sequence 
into the rest of the population. Third, it allocates more of the fixed sequencing budget to focal individuals whose 
haplotypes are more frequent in the population than to focal individuals whose haplotypes are less frequent. Unlike 
existing methods, we additionally present an algorithm to allocate part of the sequencing budget to the families (i.e. 
immediate ancestors) of focal individuals to ensure that their haplotypes can be phased at the sequence level, which 
is essential for enabling and maximising subsequent sequence imputation.

Conclusions: We present a new method for the allocation of a fixed sequencing budget to focal individuals and their 
families such that the final sequenced haplotypes, when phased at the sequence level, represent the maximum pos‑
sible portion of the haplotype diversity in the population that can be sequenced and phased at that budget.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
This paper describes a method for the allocation of a 
fixed sequencing budget in a livestock population with 
existing phased genomic data. In livestock populations, 
the collection of marker array genotypes is routine but 
the collection of sequence data is less frequent. Collect-
ing sequence data in a population can have a number of 

advantages. In human genetic studies, sequencing a large 
number of individuals was shown to increase the discov-
ery of trait-associated and/or causative genetic variants 
using genome-wide association studies (GWAS) (e.g. [1–
3]). In livestock, sequence data has enabled the discov-
ery of causative mutations for qualitative traits (e.g. for 
embryonic lethality in the 1000 Bulls Project [4]), with 
only a few studies reporting some benefit for quantita-
tive traits [5, 6]. To capture the full potential of sequence 
data in livestock, sequence and phenotype data on a large 
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number, perhaps millions, of individuals may be required 
[7]. Only such large quantities of data will contain suf-
ficient numbers of recombination events to accurately 
estimate the effects of large numbers of causative variants 
that underlie a quantitative trait.

The cost of generating large quantities of sequence 
data for millions of individuals is very high. Therefore, it 
is important to develop strategies that minimise the vol-
ume of data collected and maximise its utility for imput-
ing sequence into the rest of the population [7–10]. One 
strategy could be to sequence a few key individuals and to 
impute their information into the rest of the population 
[7, 9]. For this strategy to be effective, a minimal group of 
key individuals whose genomes maximally represent the 
genetic diversity in the population must be selected and 
their haplotypes phased at the sequence level.

This raises two important questions: (1) how to select 
the key individuals to sequence, and (2) how to allocate 
a fixed sequencing budget among the key individuals to 
maximise the phasing accuracy of their haplotypes at 
the sequence level. Several solutions exist for the first 
of these problems but to our knowledge, no solution is 
available for the second or for the unification of the first 
and second problems.

Existing methods to select the key individuals to 
sequence fall into two broad categories: methods that 
use pedigree information and methods that use genomic 
information. Methods that use pedigree informa-
tion identify the individuals with the largest pedigree-
inferred marginal contributions in the population (i.e. 
the key ancestors approach) [4, 11–13]. Methods that 
use genomic information select individuals using heuris-
tics [14] or by inferring shared haplotypes using existing 
genomic data [15, 16]. The key sires approach is sub-opti-
mal in that it does not explicitly account for the realised 
sharing of haplotypes across a population and does not 
account for the information required for accurate phas-
ing of haplotypes at the marker array and sequence level, 
which is essential for subsequent imputation. Algorithms 
that select individuals based on realised haplotype shar-
ing such as those presented in Bickhart et  al. [15] and 
Gusev et al. [16] can account for these factors but do so 
in slightly different ways. The algorithm of Bickhart et al. 
[15] attempts to select the least redundant set of individ-
uals that represent the population haplotypes by scoring 
haplotypes based on their frequency, whereas the algo-
rithm of Gusev et  al. [16] attempts to select individuals 
that share a large proportion of the population haplo-
types with other individuals identical-by-descent (IBD).

The common aim of all existing methods is to capture 
the maximum amount of population diversity in only a 
subset of the population. To our knowledge, all methods 

assume that selected individuals would be sequenced at 
a set coverage and do not consider the ability to phase 
the sequenced haplotypes. When the aim of sequencing 
a subset of the population is to enable sequence impu-
tation into non-sequenced members of the population, 
sequencing all selected individuals at a set coverage 
is likely to be sub-optimal since it does not guarantee 
phasing of haplotypes at the sequence level, which is 
essential for subsequent sequence imputation. In struc-
tured livestock populations, accurate phasing could be 
achieved using simple inheritance-based rules if some 
of the sequencing resource is allocated to the par-
ents and grandparents of selected individuals, which is 
something that current optimisation algorithms do not 
do.

This creates a need to develop methods that jointly 
address both the selection of key individuals to sequence 
and the allocation of a fixed sequencing budget with the 
aim of maximising the proportion of population haplo-
types sequenced and phased at the sequence level. A 
method for selecting the key individuals could capitalise 
on existing genotype, haplotype or sequence data to infer 
realised relationships between individuals in the popula-
tion. When allocating the fixed sequencing budget, the 
method must: (1) account for the frequency of all hap-
lotypes of a key individual in the population; (2) account 
for the impact that phasing these haplotypes would have 
for sequence imputation into the rest of the population; 
and (3) maximise the ability to phase haplotypes at the 
sequence level.

In this paper, we propose a new and fast method for the 
allocation of a fixed sequencing budget across a popula-
tion that implements two algorithms. The first algorithm 
selects ‘focal individuals’ to sequence. A focal individual 
is one that shares a large number of its own haplotypes 
with a large number of individuals in the population, 
and need not be a key ancestor and may have no off-
spring. The second algorithm allocates a fixed sequenc-
ing budget across focal families (i.e. a focal individual, its 
two parents and four grandparents). A fixed sequencing 
budget is referred to in monetary terms. We tested the 
performance of the two algorithms in simulated pedi-
grees and compared it to the key ancestors approach as 
implemented in the PEDIG software [17] and to two hap-
lotype-based approaches, that of Bickhart et al. [15] and 
Gusev et  al. [16]. We show that compared to the other 
methods, our method selects focal individuals whose 
haplotypes are more frequent in the population. By allo-
cating part of the sequencing budget to the relatives of 
focal individuals, we show that a large proportion of the 
sequenced haplotypes could be phased at the sequence 
level.
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Methods
Description of the method
We present two algorithms. The first selects ‘focal indi-
viduals’ whose genomes collectively represent the maxi-
mum possible portion of the haplotype diversity in the 
population. A focal individual is one that shares a large 
number of its own haplotypes with a large number of 
individuals in the population. This individual does not 
need to be a key ancestor, and may have no offspring. The 
second allocates a fixed sequencing budget across focal 
families (i.e. a focal individual, its parents and grandpar-
ents) to enable phasing of the most frequent haplotypes 
in the population at the sequence level. The aim of both 
algorithms is that the final haplotypes, when phased at 
the sequence level, represent the maximum possible por-
tion of the haplotype diversity in the population that can 
be sequenced and phased for a fixed sequencing budget. 
We implemented our method in a software package 
called AlphaSeqOpt. Throughout the rest of the paper, 
AlphaSeqOpt is used when referring to our method. An 
outline of each algorithm is given below.

Algorithm 1: select and rank the focal individuals
 Input data: existing phased, true or imputed genotype, 
haplotype or sequence data.

1. For each chromosome, determine a set of m haplo-
types of length n markers.

2. Determine the haplotypes of each individual and 
construct a population haplotype library. Calculate 
the frequency of each haplotype in the population.

3. Select a focal individual that carries more of the most 
frequent haplotypes.

4. Mask the haplotypes of this focal individual in the 
rest of the population, assuming that sequencing and 
phasing its haplotypes would enable sequence impu-
tation of non-sequenced individuals that share these 
haplotypes.

5. Repeat steps 2  to  4 to generate a list of the k focal 
individuals for sequencing. Since k is user-defined, 
this process can be repeated until all haplotypes in 
the population would be sequenced.

Algorithm 2: allocation of a fixed sequencing budget 
across focal families
To help phase and resolve the haplotypes of focal indi-
viduals, some of the fixed sequencing budget should be 
allocated to an additional group of individuals that share 
their haplotypes. In populations with pedigree, the best 
additional group of individuals is likely to be the parents 
and grandparents of focal individuals. The advantage 
of sequencing parents and grandparents is that simple 
inheritance-based rules can be developed to phase the 

sequenced haplotypes of focal individuals. To maximise 
the accuracy of phasing the most frequent haplotypes in 
a population, a larger proportion of the fixed sequencing 
budget could be allocated to the families of focal individ-
uals whose haplotypes are more frequent in the popula-
tion, and this is addressed by algorithm 2.

The inputs for algorithm 2 are:

  • The k focal individuals and the proportion of popula-
tion haplotypes that each one carries.

  • The accuracies of phasing each member of a focal 
family given a chosen ‘sequencing scenario’, i.e. the 
selected sequencing coverage for each member of 
a focal family. Expected phasing accuracies for a 
sequencing scenario may be calculated using algo-
rithms such as that implemented in AlphaFamSeq 
(Battagin and Hickey, unpublished), which has been 
developed by our group specifically for family-based 
phasing of haplotypes at the sequence level (for a 
brief description, see Additional file 1: Figure S1).

  • Population pedigree.
  • The cost of preparing and sequencing a DNA library 

at any coverage.
  • The total fixed sequencing budget (in monetary 

terms).
  • Information on any historically available sequence 

data.

The allocation of a fixed sequencing budget in algo-
rithm  2 is addressed using a differential evolution 
algorithm [18] that samples and evaluates different com-
binations of sequencing scenarios within and across the 
focal families. Algorithm 2 can be run for any number of 
rounds until convergence is reached or until no further 
improvements are made. An outline of algorithm  2 is 
given below.

1. For each member of a focal family, sample a sequenc-
ing coverage and determine the sequencing sce-
nario and haplotype phasing accuracy. Sampling of 
sequencing coverages is performed based on the 
multinomial probabilities of sequencing an individual 
at a defined coverage. The probabilities are obtained 
by logit transforms of the internal problem repre-
sentation in the differential evolution algorithm [18]. 
Haplotype phasing accuracies given a sequencing 
scenario were calculated using AlphaFamSeq (Batt-
agin and Hickey, unpublished) (see Additional file 1: 
Figure S1 for more information).

2. Calculate the overall cost of the selected set of 
sequencing scenarios across all focal families, tak-
ing into account pre-existing DNA libraries and/or 
sequence data.
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3. Compute a ‘goodness criterion’ for this combination 
of sequencing scenarios and associated cost. The cri-
terion takes into account:

a. The proportion of sequenced population haplotypes 
that would be phased at the sequence level.

b. The accuracy of phasing the haplotypes of focal 
individual given sampled sequencing scenarios 
[AlphaFamSeq (Battagin and Hickey, unpublished)].

c. The fixed sequencing budget. If the total cost is above 
the budget, then this combination of sequencing sce-
narios is penalised.

d. Any historically available sequence data.
4. Repeat steps 1 to 3 n times (n is the number of rounds).

The final result is an ordered list of focal individuals 
that carry the highest proportion of the most frequent 
haplotypes in the population and the sequencing cov-
erage for each focal individual, its parents and grand-
parents. For further details on both algorithms, see 
Additional file 2.

Examples of method implementation: description 
of datasets
To demonstrate the implementation of the algorithms, 
testing datasets were simulated to obtain genotype and 
pedigree information for six different populations. The 
first five resembled livestock populations with known 
structured pedigrees, and the sixth resembled a popu-
lation of unrelated individuals, which could represent a 
natural population or some livestock populations. A gen-
eralised description of each population is given below 
and summarised in Table 1.

Genotypic data
Sequence data was generated for 1000 base haplotypes 
for each of ten chromosomes using the Markovian Coa-
lescent Simulator [19] and AlphaSim [20, 21]. Chromo-
somes were simulated as 100 centiMorgans (cM) and  108 
bp in length, with a per site mutation rate of 2.5 × 10−8 
and a per site recombination rate of 1.0  ×  10−8. The 

effective population size (Ne) was set at specific points 
during the simulation based on previously estimated Ne 
values within the Holstein cattle population [22]. These 
set points were: 100 in the base generation, 1256 at 
1000  years ago, 4350 at 10,000  years ago, and 43,500 at 
100,000  years ago, with linear changes in between. The 
resulting sequence had approximately 650,000 segregat-
ing sites across the ten chromosomes.

Quantitative trait nucleotides
To enable the selection of parents to generate a pedigree 
in populations 1  to  5, a quantitative trait influenced by 
10,000 quantitative trait nucleotides (QTN) that are dis-
tributed equally across the ten chromosomes was simu-
lated. QTN positions were randomly chosen from the 
650,000 segregating sites and their effect sizes sampled 
from a normal distribution with a mean of zero and vari-
ance of 1.0 divided by the number of QTN. QTN effects 
were used to compute the true breeding value (TBV) for 
each individual.

Generation of a pedigree
To emulate the recent history of modern livestock breed-
ing, ten replicates of five pedigrees were simulated. Pedi-
grees were 5, 10, 15, 30 or 50 generations for populations 
1  to  5, respectively. All pedigrees and replicates were 
independently simulated and had the following general 
structure. Each generation comprised 1000 individu-
als with equal sex ratio, i.e. 500 males and 500 females. 
In the first generation, chromosomes for each individ-
ual were sampled from the 1000 haplotypes in the base 
generation. In subsequent generations, chromosomes 
of each individual were sampled from parental chromo-
somes, assuming recombination with no interference. 
In each generation, the 25 males with the highest TBV 
were selected as sires of the next generation. No selec-
tion was performed on females, and all 500 females were 
used as parents. The sixth population was simulated to 
obtain an unrelated population of 100,000 individuals 
directly from base haplotypes, i.e. individuals were nomi-
nally unrelated. This population was simulated to test the 
performance of the algorithm in extreme circumstances. 
Circumstances such as these may not typically arise in 
livestock breeding but could arise in human or other nat-
ural populations or in gene bank collections, which are 
especially topical in plant breeding (e.g. the Seeds of Dis-
covery project, CIMMYT: http://seedsofdiscovery.org/). 
We assumed that all individuals had genotypes for 10,000 
single nucleotide polymorphisms (SNPs) distributed 
equally across the ten chromosomes, i.e. 1000 SNPs per 
chromosome. Genotypes of all individuals were phased 
using AlphaPhase [23–25] as input. We also performed 
the same analysis with a pedigree from a real livestock 

Table 1 Summary of the parameters used to simulate the 
six populations

Populations Number of generations Number of individuals

1 5 6000

2 10 11,000

3 15 16,000

4 30 31,000

5 50 51,000

6 Unrelated 100,000

http://seedsofdiscovery.org/
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breeding program. Since the results showed the same 
trends as the simulated data and in the interests of brev-
ity, these results are not presented.

Selection and ranking of focal individuals
In each population, the parameters for selecting the focal 
individuals were:

  • Population haplotype libraries were created using 
individuals and SNPs with at least 90% phased geno-
type data.

  • Sharing of haplotypes was determined as 100% iden-
tity matches. A 100% identity match was chosen to 
overcome phasing errors and ensures that haplotypes 
with small differences are considered as independent 
haplotypes.

  • Haplotype lengths were set to 250 SNPs per chro-
mosome (see Additional file  3 for haplotype length 
choice).

For each population, we calculated the frequency of all 
haplotypes of the top 50 and 200 focal individuals selected 
by algorithm 1 in the population. For populations 1 to 5, 
we compared this to the frequency of all haplotypes of the 
top 50 and 200 focal individuals selected by the key ances-
tors approach and two haplotype-based approaches. We 
implemented the key ancestors approach using PEDIG 
[17], which selects focal individuals that cumulatively have 
the largest pedigree-inferred marginal contributions. The 
two haplotype-based approaches were those by Bickhart 
et  al. [15] and Gusev et  al. [16]. The algorithm of Bick-
hart et al. [15] attempts to select the least redundant set 
of individuals that represent the population haplotypes by 
scoring haplotypes based on their population frequency, 
whereas the algorithm of Gusev et  al. [16] attempts to 
select individuals that share a large proportion of the pop-
ulation haplotypes with other individuals IBD.

Allocate the fixed sequencing budget
For populations 1  to  5 with pedigree, we calculated the 
proportion of the fixed sequencing budget to allocate to 
each of the top 50 focal families using algorithm 2. The 
possible sequencing coverages were 0, 1, 2, 5, 10 and 
20x. Sequencing each member of a focal family at one of 
the above coverages gave a possible number of 281,728 
sequencing scenarios, thus the algorithm had to find the 
best combination of sequencing scenarios across the 50 
focal families out of a possible (281,728)50 combinations. 
The algorithm was run for 10,000 rounds.

We calculated the cost of each sequencing scenario 
assuming a DNA library cost of £40 GBP and 1x sequenc-
ing cost of £85 GBP. The expected haplotype phasing 
accuracy given a sequencing scenario was calculated using 

simulated genotype and sequence data and AlphaFamSeq 
(Battagin and Hickey, unpublished); (for a brief overview 
of AlphaFamSeq, see the description for Additional file 1: 
Figure S1). The expected haplotype phasing accuracy for a 
focal individual at the sequence level against the cost of a 
sequencing scenario is plotted in Additional file 1: Figure 
S1. Additional file 1: Figure S1 shows that increasing the 
sequencing budget allocated to a focal family increases 
the phasing accuracy, but the same phasing accuracy may 
also be achieved with a lower cost sequencing scenario. 
Therefore, there is a benefit in choosing the sequenc-
ing scenario for each focal family given a fixed sequenc-
ing budget for the population. Using this information, we 
calculated the combination of sequencing scenarios for 
the top 50 focal families at four budgets of £50,000 GBP, 
£75,000 GBP, £100,000 GBP and £150,000 GBP.

Results
The results show that Algorithm  1 in AlphaSeqOpt 
selects focal individuals that carry more of the haplotypes 
in the population than the key ancestors approach and 
the two haplotype-based methods by Bickhart et al. [15] 
and Gusev et  al. [16]. Since the three existing methods 
do not account for the ability to phase sequenced hap-
lotypes, we were unable to compare the performance of 
Algorithm 2 of AlphaSeqOpt with them. The results from 
Algorithm 2 show that the unequal distribution of a fixed 
sequencing budget across focal individuals and their 
families could enable phasing of a large proportion of the 
population haplotypes at the sequence level.

For ease of presentation, we have split the results into 
two sections to demonstrate the implementation and 
benefits of each algorithm individually. We present algo-
rithm  1 in light of sequencing the top 50 and 200 focal 
individuals and algorithm 2 in light of sequencing the top 
50 focal individuals only. In the description of the results, 
we use the terms ‘closely related’ to refer to individuals 
that share recent common ancestors and ‘distantly related’ 
to refer to individuals that do not share recent common 
ancestors (i.e. >10 generations apart). We use the terms 
‘shallow’ or ‘deep’ to refer to the size of the pedigree. We 
refer to the Bickhart et al. [15] algorithm as ‘Bickhart’ and 
to the Gusev et al. [16] algorithm as ‘Gusev’.

Algorithm 1: selection and ranking of focal individuals
Maximizing the proportion of population haplotypes 
sequenced
AlphaSeqOpt selects focal individuals whose haplotypes 
are more frequent in the population than existing meth-
ods. This is shown in Fig. 1, which plots the cumulative 
frequency of the haplotypes of the top 200 focal individu-
als selected by AlphaSeqOpt, the key ancestors approach 
or the two haplotype-based methods of Bickhart and 



Page 6 of 16Gonen et al. Genet Sel Evol  (2017) 49:47 

Gusev against the number of focal individuals sequenced 
for the 30-generation pedigree only. The values for all 
pedigrees for the top 50 and 200 focal individuals are 
in Additional file  4: Tables S1 and S2. These values are 
standardised according to the total number of individu-
als in each pedigree. The cumulative sum of the pedigree-
inferred marginal contributions of the top 50 and 200 
focal individuals selected by the key ancestors approach 
is in Additional file 4: Table S3.

Averaging across all pedigrees, the haplotypes of the 
top 50 focal individuals selected by AlphaSeqOpt are 
1.44 times more frequent than those selected by the key 
ancestors approach (5.84 vs. 4.05% of the population), 
1.20 times more frequent than those selected by Bick-
hart (5.84 vs. 4.87%), and 1.02 times more frequent than 
those selected by Gusev (5.84 vs. 5.68%). This frequency 
ratio, i.e. ratio of the frequencies in the population of the 
haplotypes carried by the selected individuals, is a con-
venient way to compare different selection methods and 
strategies. If we consider the top 200 focal individuals, 
the advantage increases furthermore: the frequency ratio 
is 1.90 (21.25 vs. 11.16%) compared to the key ancestor 
approach, 1.20 (21.25 vs. 17.89%) compared to Bickhart 
and 1.22 (21.25 vs. 17.40%) compared to Gusev.

Distribution of the top 50 and 200 focal individuals in the 
pedigree
AlphaSeqOpt selects focal individuals mainly from 
the middle generations of the pedigree whereas the 
key ancestors approach selects mainly from the oldest 

generations of the pedigree. The two haplotype-based 
methods of Bickhart and Gusev select focal individuals 
from across the pedigree, but with more emphasis on the 
older and younger generations. This is shown in Fig.  2, 
which plots the percentage of the top (a) 50 and (b) 200 
focal individuals against generation for the mid-range 
30-generation pedigree (the same diagrams for all other 
pedigrees are Additional file 5: Figures S2, S3, S4, S5 and 
S6 for the top 200 focal individual only). We can see this 
if we consider the generation from which the majority of 
the top focal individuals originate for each method. Fig-
ure  2 shows that approximately 50% of the top 50 focal 
individuals selected by AlphaSeqOpt were from genera-
tion 11 and 94% selected by the key ancestors approach 
were from generation 1. For the two haplotype-based 
methods by Bickhart and Gusev, almost all generations 
had at least one individual selected, but approximately 
50% were either from the first seven or last five genera-
tions. Approximately 50% of the top 200 focal individuals 
selected by AlphaSeqOpt were from generations 11 and 
12 and 97% selected by the key ancestors approach were 
from generation 1. As above for the two haplotype-based 
methods by Bickhart and Gusev, almost all generations 
had at least one individual selected, but the majority were 
from the first six or last seven generations.

Effect of relatedness on maximizing the proportion 
of haplotypes sequenced
In populations with some relatedness, AlphaSeqOpt 
selects focal individuals that carry a higher proportion of 

Fig. 1 Comparison of cumulative percentage of haplotypes carried by individuals selected by the four methods. A comparison of the cumulative 
percentage of haplotypes carried by the top 200 focal individuals selected by AlphaSeqOpt, the key ancestors approach, Bickhart et al. [15] or Gusev 
et al. [16] against the number of individuals sequenced for the 30‑generation pedigree
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the population haplotypes than in unrelated populations, 
but the difference decreases with increasing pedigree 
depth. This is shown in Fig.  3, which plots the cumula-
tive proportion of population haplotypes that are carried 
by the top focal individuals against the number of focal 
individuals for pedigrees of 5, 10, 15, 30 and 50 gen-
erations and for the unrelated population. This is clear 
from the order of the curves in Fig. 3 and we can com-
pare the curves more precisely by looking at the ratio of 
the proportion of haplotypes in the related compared to 
the unrelated population. If we consider the top 50 focal 
individuals, in the 5-generation pedigree the ratio is 8.24 

(20.36 vs. 2.47%), in the 30-generation pedigree the ratio 
is 3.69 (9.11 vs. 2.47%) and in the 50-generation pedi-
gree it is 2.98 (7.36 vs. 2.47%). These ratios only decrease 
slightly, if we consider the top 200 individuals, and were 
equal to 7.54 in the 5-generation pedigree (49.63 vs. 
6.58%), 3.20 in the 30-generation pedigree (21.06 vs. 
6.58%) and 2.56 in the 50-generation pedigree (16.87 vs. 
6.58%).

Figure  3 also shows that in shallow pedigrees, focal 
individuals that carry a higher proportion of the popula-
tion haplotypes are selected than in deep pedigrees. This 
is clear when we compare the ratio of the proportion of 

Fig. 2 Comparison of the positions of selected focal individuals in the pedigree. Percentage of the a top 50 and b top 200 focal individuals selected 
by AlphaSeqOpt, the key ancestors approach, Bickhart et al. [15] or Gusev et al. [16] against the number of generations for the 30‑generation pedi‑
gree
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haplotypes in the 5-generation pedigree to the 30- and 
50-generation pedigrees. If we consider the top 50 focal 
individuals, the ratio is equal to 2.24 when compared to 
the 30-generation pedigree (20.36 vs. 9.11%) and 2.77 
when compared to the 50-generation pedigree (20.36 
vs. 7.36%). These ratios are consistent when we con-
sider the top 200 focal individuals and were equal to 2.36 
when compared to the 30-generation pedigree (49.63 vs. 
21.06%) and 2.94 when compared to the 50-generation 
pedigree (49.63 vs. 16.87%).

Algorithm 2: allocation of the fixed sequencing budget
In populations with pedigree data, the sequenced haplo-
types of a focal individual could be phased if some of the 
fixed sequencing budget is allocated to its parents and 
grandparents. The proportion of the budget to allocate to 
each focal family is addressed in algorithm 2. For ease of 
presentation, we have split the results into two parts: (1) 
the allocation of £100,000 GBP, and (2) the allocation of 
varying budgets.

Fixed sequencing budget of £100,000 GBP
Realised proportion of haplotypes phased at the sequence 
level AlphaSeqOpt calculates the proportion of the fixed 
sequencing budget to allocate to each focal family so as to 
maximise the phasing accuracy of sequenced haplotypes, 
but is more effective in shallow pedigrees. This is shown 
in Fig.  4, which plots the expected proportion of popu-
lation haplotypes carried by the top 50 focal individuals 
that would be phased against the number of focal fami-

lies sequenced for a fixed sequencing budget of £100,000 
GBP. The expected maximum proportion of population 
haplotypes carried by the top 50 focal individuals are the 
solid lines and the expected proportion of these haplo-
types that would be phased at the sequence level are the 
dashed lines. In the 5-generation pedigree, 71.36% of the 
sequenced population haplotypes carried by the top 50 
focal individuals would be phased at the sequence level 
(21.33% of population haplotypes would be sequenced 
and 15.22% would be phased), 49.85% would be phased 
in the 30-generation pedigree (9.07 vs. 4.52%), and 46.57% 
would be phased in the 50-generation pedigree (7.85 vs. 
3.65%).

Accounting for  shared ancestry More of the fixed 
sequencing budget is allocated to the families of focal 
individuals whose haplotypes are more frequent in the 
population than to those whose haplotypes are less fre-
quent. An example of this is given in Fig.  5, which is a 
diagram showing (a) a focal individual whose haplotypes 
are very frequent and whose six immediate ancestors are 
frequently common ancestors of other focal individuals, 
and (b) a focal individual whose haplotypes are relatively 
less frequent and whose six immediate ancestors are 
rarely ancestors of other focal individuals. The magnitude 
of the unequal allocation of the fixed sequencing budget 
can be quantified by considering the ratio of the amount 
of money allocated to family (a) compared to family (b). 
Figure 5 shows that at the family level, this ratio is equal to 
3.47 (total costs of £4530 GBP for 50x coverage vs. £1305 

Fig. 3 Percentage of population haplotypes that would be sequenced in the individuals selected by AlphaSeqOpt. Percentage of population 
haplotypes that would be sequenced by sequencing the top 200 focal individuals selected by AlphaSeqOpt against the number of focal individuals 
sequenced for pedigrees of 5, 10, 15, 30 and 50 generations and for the unrelated population



Page 9 of 16Gonen et al. Genet Sel Evol  (2017) 49:47 

GBP for 13x coverage). For the focal individual itself, this 
ratio is equal to 4.24 (£890 GBP for 10x vs. £210 GBP for 
2x). For the parents and grandparents, the ratios are equal 
to 4.64 and 2.50 (£1950 GBP for 22x vs. £420 GBP for 4x 
for the parents; £1690 GBP for 18x versus £675 GBP for 
7x for the grandparents). This unequal allocation would 
enable more accurate phasing of the haplotypes of the 
focal individual whose haplotypes are more frequent and 
would improve the ability to impute sequence into the rest 
of the population.

Choice of ancestor to sequence at high coverage The fixed 
sequencing budget is allocated so that some individuals 
are sequenced at high coverage while some individuals are 
not sequenced at all. This is shown in Fig. 6, which plots 
the number of focal individuals, sires, dams and grand-
parents against sequencing coverage in the top 50 focal 
families for pedigrees of 5, 10, 15, 30 and 50 generations. 
For example, 18% of individuals were sequenced at 20x 
(34 of 188 individuals) and 25% were not sequenced (47 of 
188) in the 5-generation pedigree, 11% were sequenced at 
20x (25 of 228) and 25% were not sequenced (56 of 228) in 
the 30-generation pedigree and 6% were sequenced at 20x 
(17 of 271) and 25% were not sequenced (69 of 271) in the 
50-generation pedigree.

Figure 6 also shows that in shallow pedigrees, sires and 
grandsires were mainly selected to be sequenced at the 
highest coverage of 20x compared to deep pedigrees. We 
can see this by considering the proportion of individuals 
selected for sequencing at 20x that were sires or paternal/

maternal grandsires. This proportion was 88% in the 
5-generation pedigree, 67% in the 30-generation pedi-
gree and 64% in the 50-generation pedigree. In addition, 
regardless of the pedigree depth, dams and granddams 
were generally selected for sequencing at 2x or less. We 
can see this by considering the proportion of individuals 
selected for sequencing at 2x or less that were dams or 
paternal/maternal granddams. This proportion was 75% 
in the 5-generation pedigree, 51% in the 30-generation 
pedigree and 54% in the 50-generation pedigree.

Varying sequencing budgets
Realised proportion of haplotypes phased at the sequence 
level When the fixed sequencing budget is large, sequenc-
ing scenarios with better haplotype phasing accuracy are 
selected. This is shown in Fig. 7, which plots the proportion 
of the population haplotypes that are carried by the top 50 
focal individuals selected from the mid-range 30-genera-
tion pedigree that would be phased at the sequence level 
against the number of focal families sequenced for budgets 
of £50,000 GBP, £75,000 GBP, £100,000 GBP and £150,000 
GBP. This is clear from the order of the curves in Fig. 7 and 
we can compare the curves by looking at the ratio of the 
proportion of the haplotypes captured in the top 50 focal 
individuals that would be phased at the highest budget of 
£150,000 GBP compared to the other budgets. The ratio 
was equal to 1.26 when compared to £100,000 GBP (62.83 
vs. 49.85%), 2.56 when compared to £75,000 GBP (62.83 
vs. 24.55%) and 5.38 when compared to £50,000 GBP 
(62.83 vs. 11.68%). Figure 7 also shows that doubling the 

Fig. 4 Percentage of population haplotypes that would be sequenced and phased with £100,000 GBP. Expected percentage of population haplo‑
types carried by the top 50 focal individuals that would be sequenced (solid lines) and phased at the sequence level at a fixed sequencing budget of 
£100,000 GBP (dashed lines) against the number of focal individuals sequenced for pedigrees of 5, 10, 15, 30 and 50 generations
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fixed sequencing budget more than doubles the percent-
age of population haplotypes that would be phased at 
the sequence level. The ratio was equal to 4.27 when the 

budget was doubled from £50,000 GBP to £100,000 GBP 
(11.68 vs. 49.85%), and 2.56 from £75,000 GBP to £150,000 
GBP (24.55 vs. 62.83%).

Fig. 5 Comparison of budget allocation in two families that carry different proportions of the population haplotypes. a This panel shows a focal 
individual whose haplotypes are very frequent in the population and whose six immediate ancestors are frequently ancestors of other focal individ‑
uals. b  This panel shows a focal individual whose haplotypes are relatively less frequent in the population and whose six immediate ancestors are 
rarely ancestors of other focal individuals. For each family member, the chosen sequencing coverage at a fixed sequencing budget of £100,000 GBP 
(text in the circles indicating each individual) and the number of times it is an ancestor of another focal individual (numbers in brackets) are given
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Number of  individuals sequenced When the fixed 
sequencing budget is large, slightly more individuals are 
selected for sequencing at a coverage of 1x or more and 
more individuals are selected for sequencing at 20x cover-
age than when the budget is small. This is shown in Fig. 8, 
which is similar to Fig. 6 and shows the number of focal 
individuals, sires, dams and grandparents against sequenc-
ing coverage for the top 50 focal families selected from 
the mid-range 30-generation pedigree. Figure 8 has four 
panels, one for each fixed sequencing budget of £50,000 
GBP, £75,000 GBP, £100,000 GBP and £150,000 GBP. We 
can see this clearly when we consider the effect of dou-
bling the sequencing budget on the ratio of the number 
of individuals sequenced. When the budget was doubled 
from £50,000 GBP to £100,000, the ratios were equal to 

1.03 with at least 1x (173 vs. 178) and 12.33 at exactly 20x 
(3 vs. 37) and when it was doubled from £75,000 GBP to 
£150,000 GBP they were equal to 1.06 with at least 1x (180 
vs. 191) and 6.10 at exactly 20x (10 vs. 61).

Discussion
The results highlight four main points for discussion: (1) 
the advantages of AlphaSeqOpt over existing methods; 
(2) factors affecting performance; (3) downstream appli-
cations of sequence data; and (4) potential use cases.

Advantages over existing methods
In this study, we compared the performance of Algo-
rithm 1 in AlphaSeqOpt with three existing methods and 
showed that AlphaSeqOpt performed better in all cases 

Fig. 6 Distribution of sequencing coverage across focal families with £100,000 GBP. Number of focal individuals, sires, dams and paternal and 
maternal grandparents against sequencing coverage for the top 50 focal families selected from pedigrees of 5, 10, 15, 30 and 50 generations
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tested. The first method used for the comparison was the 
key ancestors approach as implemented in PEDIG, which 
selects key ancestors that cumulatively have the largest 
marginal contributions inferred using pedigree relation-
ships only. The second and third methods, that of Bick-
hart et  al. [15] and Gusev et  al. [16], are more similar 
to AlphaSeqOpt in that they use existing genomic data 
to select individuals based on realised sharing of haplo-
types. Our results show that AlphaSeqOpt outperforms 
all three methods in the proportion of population haplo-
types that could be sequenced. We discuss these advan-
tages furthermore below.

If no genomic data is available and cannot be gener-
ated, then the key ancestors approach is a useful way of 
selecting individuals that may be most representative of 
the haplotype diversity in the population. However, when 
genomic data is available, methods that use them such 
as AlphaSeqOpt and the two haplotype-based methods 
of Bickhart et al. [15] and Gusev et al. [16] are expected 
to be more powerful and our results support this. In our 
simulated datasets, AlphaSeqOpt was able to capture 
slightly more (in general approximately 1.20 times more) 
of the population haplotypes in the same number of indi-
viduals compared to the algorithms of Bickhart et al. [15] 
and Gusev et  al. [16]. This slight advantage of AlphaSe-
qOpt may be because it explicitly accounts for the 
realised Mendelian sampling of an individual, the hap-
lotype inheritance across generations, haplotype sharing 
between individuals and explicitly uses common features 

of livestock populations such as known close relation-
ships between families and the large genetic footprint 
of males on the population caused by the high selection 
intensity on males. Although the methods of Bickhart 
et al. [15] and Gusev et al. [16] do these things implicitly 
to some degree, it is perhaps the explicitness of AlphaSe-
qOpt that gives it its advantage.

Regardless of the way in which the subset of individuals 
is selected, the generated sequence data is of little value 
for sequence imputation into non-sequenced individu-
als if the constituent haplotypes cannot be phased at the 
sequence level. In our view, the fact that AlphaSeqOpt 
addresses this directly, is its major advantage over exist-
ing methods. To our knowledge, all of the existing meth-
ods that select individuals to be sequenced assume equal 
sequencing coverage across all individuals. In contrast, 
Algorithm 2 of AlphaSeqOpt distributes a fixed sequenc-
ing coverage across selected individuals and their imme-
diate ancestors with the aim of maximising the ability to 
phase haplotypes carried by the sequenced individuals. 
The allocation of some of the fixed sequencing budget 
to immediate ancestors of focal individuals has an addi-
tional advantage in that sequence data will be available 
for more individuals, and so more of the population hap-
lotypes will be sequenced and potentially phased to some 
extent.

In Algorithm 2, we assume that the ancestors of focal 
individuals are known and that all family members have 
DNA available. This means that Algorithm  1 is more 

Fig. 7 Percentage of population haplotypes that would be sequenced and phased with four different budgets. Expected percentage of population 
haplotypes that would be sequenced (solid line) and phased at the sequence level (dashed lines) against the number of focal individuals sequenced 
for fixed sequencing budgets of £50,000 GBP, £75,000 GBP, £100,000 GBP and £150,000 GBP. The figure shows the case for the top 50 focal individu‑
als selected from the mid‑range 30‑generation pedigree. All values have been standardised by the proportion of population haplotypes that would 
be sequenced by sequencing the top 50 focal individuals (i.e. the solid line reaches 100%)
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likely to select individuals from later generations with 
more complete pedigree and genomic information. In 
comparison, the key ancestors approach (and to some 
extent, the haplotype-based methods by Bickhart et al. 
[15] and Gusev et al. [16]) select from older generations. 
This is important in livestock breeding programs that 
have been running for several decades with pedigrees 
that extend for many generations (e.g. a 20- to 30-gen-
eration pedigree in cattle or swine), where sequencing 
individuals from older generations is unlikely to be use-
ful for sequence imputation in the younger generations. 
This is because (i) DNA samples for older individuals 
are often unavailable or the quality of DNA is not high 
enough for whole-genome sequencing, (ii) ancestors of 

older individuals are usually unknown and the individu-
als themselves are by design unrelated and do not share 
haplotypes amongst themselves (which makes phasing 
of their haplotypes more difficult), and (iii) the many 
generations of meiosis and recombinations separating 
older individuals and the imputation targets in younger 
generations reduce the expectation of finding shared 
long-range haplotypes. Selecting individuals from 
across the pedigree whose ancestors are more likely to 
be known will improve the ability to phase haplotypes 
and increase the likelihood of finding shared haplotypes 
with both older and younger generations, thus improv-
ing the ability to impute sequence into more of the 
population.

Fig. 8 Distribution of sequencing coverage across focal families with varying budgets. Number of focal individuals, sires, dams and paternal and 
maternal grandparents against sequencing coverage for the top 50 focal families selected from the mid‑range 30‑generation pedigree. The figure 
shows four panels representing fixed sequencing budgets of £50,000 GBP, £75,000 GBP, £100,000 GBP and £150,000 GBP
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Factors affecting performance
The proportion of haplotypes captured and phased 
depends on the structure of the population and dataset 
and is influenced by the availability of phased genomic 
data for all individuals, the degree of relatedness between 
individuals, and the number of rounds. We discuss these 
factors further below.

Availability of phased genomic data for all individuals
Algorithm 1 uses existing phased genomic (i.e. genotype, 
haplotype or sequence) data to infer sharing of haplo-
types between individuals. This assumes that phased 
genomic data is available or can be accurately imputed 
for all individuals in the population, which is the case 
for many livestock populations (e.g. [4]). However, these 
datasets will generally exclude individuals from the older 
generations if tissue or DNA samples for these indi-
viduals do not exist or because these individuals are no 
longer important for informing breeding decisions in the 
younger generations. In this case, focal individuals from 
younger generations may be selected, which is advan-
tageous since they are more likely to have good quality 
DNA or tissue samples available, are more likely to carry 
the most frequent haplotypes segregating in the current 
breeding population, and any haplotypes and sequence 
variants identified using their sequence data will be 
most relevant and are likely to be still segregating in the 
younger generations. This is particularly important if the 
sequence data will be used for sequence imputation and 
for informing breeding decisions in younger generations.

Degree of relatedness
In populations in which individuals are closely related, 
the majority of the population haplotypes may be cap-
tured by sequencing a few focal families in which indi-
viduals are also ancestors in other non-sequenced 
families. In this case, a larger proportion of the fixed 
sequencing budget could be allocated to these few focal 
families and the individuals that are shared ancestors of 
other families. This would enable more accurate phas-
ing of the shared ancestor’s haplotypes at the sequence 
level, increase the accuracy of phasing the haplotypes of 
focal individuals that share this ancestor, and improve 
sequence imputation.

In shallow pedigrees, focal individuals whose haplo-
types are more frequent in the population are selected 
compared to deep pedigrees. The magnitude of this 
difference may be an overestimate caused by the long 
haplotype length, which we set to a quarter of the chro-
mosome across all pedigrees. A better solution may be 
to choose haplotype lengths according to the population 
structure and degree of relatedness between individuals. 
This would allow the selection of focal individuals so as 

to maximise the use and benefit of the sequence data for 
imputation in a target set of individuals. For example, 
short haplotype lengths may bias selection and be more 
beneficial for imputation in older generations, whereas 
long haplotype lengths may be more relevant for selec-
tion from and imputation in younger generations. If the 
individuals in a population are unrelated, short haplotype 
lengths may be favored.

Number of rounds
Internally, algorithm 2 is a differential evolution algorithm 
[18] that samples and evaluates different combinations of 
sequencing scenarios for the focal families. The number of 
rounds required for convergence of the algorithm depends 
on the number and possible combinations of sequencing 
scenarios that may be sampled. The number and possi-
ble combinations of sequencing scenarios depend on the 
number of focal families selected for sequencing and the 
number of possible sequencing scenarios.

Currently, focal families are considered for sequencing 
by starting from the focal individual whose haplotypes 
are most frequent in the population. A potentially bet-
ter strategy may be to select how many and which focal 
families to sequence across the whole population. This 
strategy could additionally account for shared ancestry 
across focal individuals, which would improve the phas-
ing accuracy of haplotypes when using family-based 
sequence phasing algorithms [e.g. AlphaFamSeq (Batt-
agin and Hickey, unpublished)]. We are currently devel-
oping methods to consider this.

Increasing the number of possible sequencing cover-
ages to select from will increase the number of possi-
ble sequencing scenarios. In our analyses, with a choice 
of coverages of 0, 1, 2, 5, 10 and 20x, 281,728 sequenc-
ing scenarios and (281,728)50 possible combinations of 
sequencing scenarios could be evaluated across the 50 
focal families. Estimating the phasing accuracies for each 
member of a focal family given a sequencing scenario 
is not a limitation if fast and efficient algorithms [e.g. 
AlphaFamSeq (Battagin and Hickey, unpublished)] are 
used, but evaluating all possible sequencing scenarios 
and combinations is computationally intensive and time 
consuming. Instead, the algorithm searches and samples 
from this vast space to find a solution. We are currently 
developing and testing other algorithms for sampling 
from large search spaces within reasonable time frames.

Downstream analysis of sequence data
The main downstream applications of sequence data are 
to genotype known variants and/or identify novel vari-
ants, conduct GWAS analyses and fine-map causative 
mutations for traits of interest. To do this, many stud-
ies conduct high-coverage sequencing (i.e. 20 to 30x) 
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on a few key individuals in the population (e.g. the key 
ancestors approach [4, 11–13]). Our results suggest that 
a better strategy to sequence and phase as many of the 
population haplotypes could be to sequence more indi-
viduals at a range of high, medium and low coverages. 
Many studies assume that low-coverage sequencing 
may not be sufficient for accurate variant identification, 
which would be true if a small number of individuals 
was sequenced. If a large number of individuals (e.g. a 
few hundred/thousand) was sequenced at low coverage, 
variant identification at the level of the population is pos-
sible, and has been demonstrated and successfully imple-
mented in a number of studies (e.g. with 0.1x and 1x 
sequencing strategies [16, 26, 27]). This approach could 
detect low minor allele frequency variants, especially if a 
large number of individuals is sequenced [26].

Summary of use cases and availability
A variety of data types with different features can be used. 
Populations can be unrelated, partially or highly related. 
Input data can be different densities and types (e.g. true or 
imputed genotypes, haplotypes or sequence). For example 
in practice, all individuals genotyped at high-density could 
be phased using AlphaPhase and all individuals genotyped 
at low-density could be imputed using AlphaImpute [16–
19]. The options to provide a file of individuals that (a) have 
already been sequenced (thus their haplotypes are already 
accounted for), (b) should not be sequenced because they 
have no sample available (thus their haplotypes could be 
sequenced in other individuals), and (c) prior sequenc-
ing coverage (so that if an individual is selected to be 
sequenced at 10x but has already 2x sequence data, this 
is subtracted from the cost of sequencing this individual), 
is available. In addition, any non-linearity in sequencing 
costs that may arise due to different pricing structures 
for different sequencing technologies can be accounted 
for. Algorithm  2 is currently limited to populations with 
pedigree data and we are developing ways to extend this to 
populations without pedigree data. AlphaSeqOpt is avail-
able for download at http://www.alphagenes.roslin.ed.ac.
uk/alphaseqopt/ along with a detailed user manual.

Conclusions
We present two algorithms to select focal individu-
als whose haplotypes are more frequent in the popula-
tion and to allocate a fixed sequencing budget across 
focal families to enable phasing of sequenced population 
haplotypes. The final aim of both algorithms is that as 
much as possible of the population haplotype diversity is 
sequenced and phased at the sequence level for a given 
fixed sequencing budget.
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