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Abstract Genetic prediction for complex traits is usually

based on models including individual (infinitesimal) or

marker effects. Here, we concentrate on models including

both the individual and the marker effects. In particular, we

develop a ‘‘Mendelian segregation’’ model combining

infinitesimal effects for base individuals and realized

Mendelian sampling in descendants described by the

available DNA data. The model is illustrated with an

example and the analyses of a public simulated data file.

Further, the potential contribution of such models is

assessed by simulation. Accuracy, measured as the corre-

lation between true (simulated) and predicted genetic val-

ues, was similar for all models compared under different

genetic backgrounds. As expected, the segregation model

is worthwhile when markers capture a low fraction of total

genetic variance.

Keywords Genetic prediction � Genomic selection �
SNP � Mendelian sampling

Introduction

In recent years, new knowledge on molecular genetics and

the rapid evolution of sequencing and genotyping tech-

nology has renewed the interest on genetic prediction of

complex traits. It should be recalled, however, that genetic

prediction of complex traits has been a traditional field in

animal and plant breeding since the 40’s in the framework

of the Selection Index (SI) theory (e.g., Hazel 1943),

extended later to the ‘‘best linear unbiased prediction’’

(BLUP; Henderson 1975). These genetic prediction meth-

ods, without DNA data, were based on the ‘‘individual’’

model where covariances amongst phenotypes of related

individuals are translated into unobserved covariances

amongst genetic values, via theoretical relatedness coeffi-

cients amongst individuals. Anticipating the availability of

low-cost whole genome DNA data, Meuwissen et al.

(2001) proposed ‘‘marker’’ models where many markers’

genotypes represent genetic effects, while the individuals

are not explicitly specified in the model. We concentrate

here on a third group of models including both ‘‘marker’’

and ‘‘individual’’ effects. We first recall the families of

models proposed for genetic prediction and then we

develop a novel model, which is illustrated with an

example. Then, we assess the relative performance of the

novel model in relation to the marker model for different

genetic scenarios, and we report results of the analyses of a

public simulated sample. Finally, originality, limits and

possible extensions of the model are discussed.

Individual models for genetic prediction

Both SI and BLUP are applied to the ‘‘infinitesimal’’ (or

polygenic) genetic model which in its simplest version is
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‘‘phenotype = mean ? additive genetic value ? resid-

ual’’. This model has been called ‘‘polygenic’’ or ‘‘infini-

tesimal’’ since the additive genetic value is the sum of the

effects, assumed to be small and homogeneous, of

numerous genes on the phenotype. In the statistical model,

built from the genetic model, ‘‘individual effects’’ are used

to represent additive genetic effects, and they are assumed

random because genotype configurations of individuals

arise through random processes:

y ¼ lþ Zuþ e ð1Þ

y is a vector of phenotypes

l is a constant vector (assumed known in SI and esti-

mated in BLUP)

Z is an incidence matrix of order Ny phenotypesð Þ �
Ni individualsð Þ; relating each of the Ny phenotypes to each

of the measured individuals. For simplicity, we assume

only one measure per individual. In standard BLUP tech-

nology Z ¼ 0 I 0½ �, i.e., null columns for base indi-

viduals without phenotypes, the identity matrix for

individuals with phenotypes (when there is a single mea-

sure for each individual), and null columns for descendants

without phenotype, the usual target of prediction. In this

context of genetic prediction, base individuals are defined

for a given genealogy as the most distant known ancestors

of individuals with recorded phenotypes, i.e., they do not

have phenotypes and their parents are unknown.

u is a vector of additive genetic effects, with

Var uð Þ ¼ Ar2
u, with A being the relationship matrix

amongst individuals.

e is a vector of residuals, with Var eð Þ ¼ Ir2
e, with

I being an identity matrix

A further usual assumption is Covðe; uÞ ¼ 0.

The only information available to distinguish genetic

effects from residuals are the structures of the (co)variance

matrices of u and e. In other words, the model describes a

network of phenotypic covariances (observed) which are

translated into genetic covariances (unobserved) via the

theoretical genetic model, in particular the relatedness

coefficients in the relationship matrix A.

Marker and individual models

With molecular data available, prediction models evolved

to include this new information (e.g., Fernando and

Grossman 1989; Meuwissen et al. 2001). Fernando and

Grossman (1989) proposed a prediction model which

included several genetic effects: an infinitesimal effect u

plus haplotype effects of maternal and paternal origin at

marked quantitative trait loci (QTL) positions. Their model

was reasonably conservative, given the genomic tools

available by that time (say, 500 microsatellites to cover the

entire genome in farm animals). In this context, they

assumed that a marker allele may mark different QTL

alleles in different families. Later, with many more markers

(10,000 multi-allelic markers), Meuwissen et al. (2001)

switched from the previous conservative model to ‘‘mar-

ker’’ models exploiting linkage disequilibrium at the pop-

ulation level:

y ¼ lþ ZWmþ e ð2Þ

where:

m is a vector of marked genetic effects (usually termed

‘‘marker effects’’, although the usual hypothesis is that

markers do not have a true effect per se on the phenotype)

W is a matrix of marker genotypes of order

Ni individualsð Þ � Nm markersð Þ: With biallelic markers

such as SNP, usual elements of W are 0, 1 or 2, the number

of, say, the allele ‘‘1’’ of the marker genotype.

Usually assumed (co)variances are:

Var mð Þ ¼ INm
r2

m

Covðe;mÞ ¼ 0

where INm
is an identity matrix of order Nm.

If we further assume that u ¼Wm and

Var uð Þ ¼WW
0
r2

m, it is possible to compute predictions

for u with the individual model (1), amended such that the

relationship matrix A is replaced by the realized ‘‘genomic

relationship’’ matrix G ¼WW
0
(VanRaden 2008; Goddard

2009). Application of BLUP to this model has been termed

‘‘genomic BLUP’’ and improvements have been proposed

to make assumptions more realistic (departures from the

homogeneous variances for marked effects in model (2))

and practical implementations when only part of the indi-

viduals are genotyped making necessary to mix the A and

the G matrices for the combined analyses of individuals

with or without genotypes (e.g. Aguilar et al. 2011).

Marker plus individual model

Alternative assumptions in an outbred population are u 6¼
Wm and Var uð Þ 6¼WW

0
r2

m. There are theoretical reasons

and experimental results to support this point of view.

Theoretically, in a Bayesian context, Gianola et al. (2009)

claimed that the functional relationship between r2
u and r2

m

is elusive. They did propose simple approximations under

Hardy–Weinberg and linkage equilibria (LE) to relate the

marked genetic variance and the additive genetic variance

as r2
u ¼ 2

PNm

i¼1 piqir
2
m, where pi and qi are the allelic

frequencies for marker i. However, assuming LE is not

compatible with the essential assumption of linkage dis-

equilibrium in the context of genome-wide analysis. Fur-

thermore, in most experimental studies, the sum of
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variances due to marker associations does not add up to the

additive genetic variance due to individual infinitesimal

effects raising the problem of the ‘‘hidden heritability’’

(e.g., Yang et al. 2011).

The unknown vector m represents the effects of unob-

served genes that should be marked by observed markers.

This model should fit all genome-wide additive effects

simultaneously. However, it is not warranted that all the

actual additive genetic effects in the studied genome will

be effectively traced by the available markers (Yang et al.

2011). Potential problems are poor marker coverage (low

density but also insufficient representation of independent

DNA segments), rare alleles, small (infinitesimal) gene

effects, multi-allelic genes having additive effects that are

poorly traced by bi-allelic markers, or other molecular

genetics mechanisms. The main assumption is that each

marker allele or haplotype is associated with each unob-

served QTL allele in identical way for each individual in

the studied population. This may be true in some cases but

it is not true in general. While an association between a

marker and the QTL may be stable within parents and

progeny, open populations over several generations are

built up by subpopulations, each one with its own QTL

allele-marker allele association. Reintroduction of infini-

tesimal effects in the prediction model is one of the rec-

ommended ways to control partially the lack of perfect

association between marker alleles and causative alleles

(Goddard and Hayes 2009). The model becomes:

y ¼ lþ Zuþ ZWmþ e ð3Þ

with additional assumptions:

Var uð Þ ¼ Rr2
u; and Covðe; uÞ ¼ Covðu;mÞ ¼ 0;

where Rr2
u is the symmetric (co)-variance matrix of indi-

vidual effects of order Ni. Usually, as in model (1), R = A,

the additive relationship matrix computed theoretically

from genealogy data. Note that the terms in model (3) are

redundant if it is assumed that u = Wm.

The idea in model (3) is to include residual genetic

values not taken into account by the marked effects m. In

applications, this model gave better predictions than the

marker model (2) (e.g., De los Campos et al. 2009;

Duchemin et al. 2012).

Mendelian segregation model

Here, we develop a model where the genetic value of an

individual is a function of infinitesimal effects of ancestors

(individuals in the base, with unknown parents) and Men-

delian sampling which can be traced by DNA data. In the

following it is assumed that all individuals have complete

genotype data and all descendants have known parents. We

then discuss the departures from this complete data

situation.

The model starts as in (3):

y ¼ lþ Zuþ ZWmþ e

It is convenient to separate individuals in two groups:

the base ancestors with unknown parents (indexed by b)

and the descendants (indexed by d). We can now expand

and decompose the vector of infinitesimal values u as:

u ¼ ub

ud

� �

Let P be a Ni 9 Ni matrix with two 1’s in each row,

indicating the parents of each individual (rows of P for

base individuals are null).

We define the matrix M as:

M ¼ I� 1

2
P

� �

The matrix M is interpretable in biology (each row of

M represents the individual minus half the sum of parents)

and in mathematics since M has the form of a Laplacian

matrix, representing the pedigree graph, with P being the

adjacency matrix with elements equal to 1 at the

intersection of adjacent nodes (parent and progeny nodes)

or 0 otherwise.

Let / be a vector of infinitesimal mendelian sampling

effects which are deviations of individual genetic values

from their respective parental averages. Then, the matrix

operator M21 can be used to construct additive genetic

values u as linear combinations of ancestor genetic values

ub and mendelian sampling / of their descendants, as

illustrated in part (a) of Fig. 1, so we can write:

u ¼M�1 ub

/

� �

where u can be found by partitioning the M matrix in Mbb,

Mdd, Mdb and Mbd blocks, as:

M ¼ Mbb Mbd

Mdb Mdd

� �

;withMbb ¼ I; and Mbd ¼ 0:

Using known results about the inverse of a lower

triangular matrix, we obtain:

u ¼ I 0
�M�1

dd Mdb M�1
dd

� �
ub

/

� �

¼ ub

�M�1
dd Mdbub þM�1

dd /

� �

¼ ub

ud

� �

ð4Þ

Equation (4) uses standard results under infinitesimal

models developed when it was impossible to observe DNA,

and a theoretical distribution was assigned to the unknown

/ (see Quaas 1976). Availability of genotypes for progeny

and parents gives a realized ‘‘molecular’’ mendelian

Genetica (2013) 141:239–246 241
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sampling s, a predictor of / which can be approached as a

function of marked gene effects m:

s ¼ Mdb Mdd½ � Wb

Wd

� �

m ð5Þ

where matrices Wb and Wd contain the marker genotypes

of base and descendant individuals, respectively. Figure 1b

illustrates how expression (5) represents individual devia-

tions from parental means, in terms of marked genetic

effects, for a hypothetical genealogy of 5 individuals and 3

markers.

Then, replacing / by s in (4), and using (5) in (4), with

D ¼ �M�1
dd Mdb, we get:

ud ¼ Dub � DWbmþWdm ¼ Dub þ ðWd � DWbÞm
ð6Þ

And the model for phenotypes is then:

y ¼ lþ ZdDub þ Zdð2Wd � DWbÞmþ e ð7Þ

In the term ZdDub, Zd (of order Ny 9 Nd) relates

records to individuals (descendants d) and D relates

individual genetic values to ancestors’ genetic values ub

via simple coefficients of genome sharing (including

consanguinity, i.e., multiple contributions of an ancestor

to an individual). So this term in (7) concentrates all

phenotype information of descendants to estimate the

ancestors’ infinitesimal values. The term Zd (2Wd - DWb)

m in (7) groups two parts: Zd (Wd - DWb) m, the

‘‘molecular’’ mendelian sampling effects where individual

marked effects deviate from ancestors’ marked effects, and

ZdWd m which represents the direct relations between

markers and phenotypes.

Assumptions of the model

A set of possible assumptions is:

ub�N 0; Ir2
u

� �

m�N 0; Ir2
m

� �

Cov ub;mð Þ ¼ 0

The assumption of independent base individuals is usual in

quantitative genetics. With DNA information and complete

data it would be possible to make more general

1 2

4 

5

3

1 2 3 4 5
1 1
2 1
3 1
4 1/2 1/2 1
5 1/4 1/4 1/2 1/2 1

For an individual in the base, e.g. 1, 
For a descendant, e.g. 5, 

Snp1 Snp2 Snp3
1 0 1 1
2 2 1 0
3 1 1 1
4 1 2 0
5 2 1 1

1 2 3 4 5
1 1
2 1
3 1
4 -1/2 -1/2 1
5 -1/2 -1/2 1

For an individual, e.g. 4, + 

In general, for the ith individual,  , with , , and 
representing the j-th marker genotype for the individual, the father, and the mother, respectively.

(a)

(b)

Fig. 1 Genetic transmission and Mendelian sampling effects in the prediction model. a Transmission: genetic values of descendants are a

function of genetic values of base individuals ub and Mendelian sampling effects predicted by s. b Observed Mendelian sampling effects
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assumptions like ub�N lu; Hr2
u

� �
; where H represents a

genomic matrix, thus recognizing that individuals in the

base populations may share genes. Again, the model is

redundant if it is assumed that ub = Wbm and

H ¼WbW
0

br
2
m. Alternatively, model (7) can also accom-

modate fixed genetic values for individuals in the base

population.

Distribution of marked effects m is assumed normal but

other distributions such as the Gamma may be chosen, to

take into account experimental results indicating few loci

with large effects and many more loci with small effects

(Goddard and Hayes 2009).

Analyses of data

Firstly, repeated simulations were conducted to assess the

predictive ability of the Mendelian segregation model MS

(Eq. 7) relative to the marker model M (Eq. 2). Then, we

analyzed a public sample simulated for the 12th European

QTLMAS workshop by Lund et al. (2009), using several

models including individual and marked genetic effects.

We preferred to use simulated data at this exploratory

stage to understand the behavior of the compared models.

Also, to simplify interpretation at this stage, estimation and

prediction were limited to the unknowns in the models (l,

the vector of marked effects m and the vector of individual

genetic values u) by applying known variances used to

simulate the data.

We used the same statistical method BLUP to all models

compared, which have either one (Eqs. 1 and 2) or two

(Eqs. 3 and 7) random effects in addition to random

residuals. BLUP of random effects were computed as

detailed in the ‘‘Appendix’’.

Relative predictive performance of the Mendelian

segregation (MS) model

Data were simulated using the QMSim software (Sar-

golzaei and Schenkel 2009). The simulated population had

1 base generation (25 individuals), 3 training generations

(120 individuals) and the last generation (40 individuals)

taken as prediction target. Mating was at random and the

family size was 1. The simulated genome had 2 chromo-

somes of 1 Morgan each and 10 biallelic QTL/chromosome

were responsible for the QTL fraction of genetic variance.

Number of SNP markers used was either 2,000 or 200 per

chromosome. Phenotypes in the base and target generations

were simulated but not used to predict genetic values of the

target generation. The phenotypes had variance 1 and

overall heritability (infinitesimal ? QTL effects) was 0.4.

Three genetic scenarios were replicated 200 times: high

(90 %), intermediate (50 %), or low (10 %) proportion of

genetic variance explained by QTL.

Mean accuracies over 200 replicates when using 2,000

SNP markers are presented in Fig. 2 for 10, 50 and 90 % of

total genetic variance explained by QTL. Accuracies were

highest (0.76 for model M and 0.74 for model MS) in the

training data when the genetic variance explained by QTL was

high (90 %). The lowest correlations occurred for the test data

under scenario 10 % (0.36 for M vs. 0.40 for MS). The MS

model gave the best predictions when the infinitesimal effects

were important (scenario 10 %) and model M gave the best

predictions when QTL effects represented 90 % of genetic

variance. Differences between mean accuracies of two models

were small and non-significant (P \ 0.05).

When fewer markers were used (200 SNP per chromo-

some), all accuracies were lower but the methods ranked as

when using more (2,000 SNP per chromosome) markers

(Table 1). The accuracy of the MS model was 12 % higher

than that of the M model for the scenario with the 10 % of

genetic variance explained by QTL and 5 % lower when

the QTL explained the 90 % of total variance.

Analyses of a public simulated sample

In the data simulated for the 12th European QTLMAS

workshop (Lund et al. 2009), the simulated phenotypes

were influenced by 50 loci, including 15 major effect loci

and 35 minor effect loci with a total heritability of 0.3.

Marker information was available for 6,000 SNP (only

5,925 were polymorphic and used in our analyses) on 6

chromosomes. The population was simulated under ran-

dom mating and the absence of selection. Each male was

mated to 10 females and each mating pair produced 10

offspring. A data set of 4,665 individuals was split into a

training set (3,165 individuals) and a test set (1,500). In the

Fig. 2 Accuracy of the marker (M) and Mendelian segregation (MS)

models for the three simulation scenarios with 10, 50, or 90 % of the

total genetic variance explained by QTL
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training set, the base population (generation 0) included

165 individuals with unknown parents. The remaining

3,000 individuals had known parents and were born in

generations 1 and 2. The test set had 1,500 individuals born

in generation 3 with complete genealogy. The targets of

prediction were the simulated genetic values and pheno-

types of the test individuals. The data used in prediction

were the phenotypes of 3,000 individuals of generations 1

and 2, and the marker genotypes of all individuals.

Four models were compared using the known variances

used for the simulation: the marker model (M) as in (2), the

marker plus individual model (MI) as in (3), the marker plus

mendelian effects model (MS) given in (7), and the indi-

vidual model where the (co)-variance matrix of individual

effects was the additive relationship A (individual infini-

tesimal model; II). The method to estimate the unknowns of

all the models was BLUP. The known variances were given

by Lund et al. (2009): r2
e ¼ 3:15 and r2

u ¼ 1:35. The vari-

ance of marker effects was computed as r2
m ¼ r2

u=

2
P

j pjð1� pjÞ. Correlations between predicted values and

simulated genetic values and phenotypes for the training and

test populations are given in Table 2. The goodness of fit of

model (7) for the training data was moderate

r bu; yð Þ ¼ 0:53ð Þ but it yielded the best predictions for

genetic values r bu; uð Þ ¼ 0:94ð Þ and phenotypes r bu; yð Þ ¼
0:55 in the test sample. Model [7] was also the best to esti-

mate the marked effects m: the correlations between esti-

mates of m and the simulated allele substitution effects, in

absolute values, were 0.69 for Model [7] and 0.56 for both the

marker model and the ‘‘marker ? individual’’ model.

Discussion

As reviewed in the Introduction, there are plausible argu-

ments to combine marked effects models with other indi-

vidual effects when analyzing complex traits. To do so, the

strategy used in the MS model [7] is to decompose the

individual genetic value into two terms: a contribution

from base individuals, weighted by the transmission matrix

D, and a contribution from mendelian sampling occurring

at several meiosis from base individuals to their descen-

dants, instead of attempting to fit twice the additive genetic

value of an individual as in model [3]. In traditional

infinitesimal models, mendelian sampling is an unknown

theoretical random term, so predictions of future pheno-

types (of future progeny) are based on ancestor phenotypes

and random terms. At present, with the availability of

numerous markers, mendelian sampling is realized for each

individual and it can be used to improve predictions.

Model [7] builds on very well-known results in quanti-

tative genetics. Early work described how genetic trans-

mission operates in the additive relationship matrix A (e.g.,

Quaas 1976 and Henderson 1976, who presented detailed

factorizations of the A matrix). Subsequent models included

genetic transmission at unobserved segregating QTL (e.g.,

Fernando and Grossman 1989; Meuwissen and Goddard

2000; Legarra and Fernando 2009) and combined within

family and between family marker effects in the context of

methodology for QTL search (e.g., Abecasis et al. 2000). In

animal breeding, efforts have focused on combining geno-

type data with genealogy data in individual genomic mod-

els, as reviewed by Meuwissen et al. (2011). The model [7]

developed here builds on previous work by the simultaneous

inclusion of infinitesimal and marked genetic effects. In this

way the model might capitalize on two advantages of

molecular information: the improvement of the infinitesimal

prediction by the estimation of realized mendelian sampling

in descendant individuals, and by capturing marked gene

effects without bias due to family structure, i.e., to predict

marked effects and infinitesimal effects simultaneously and

without redundancy. Here, marked effects are estimated at

the level of the population (marked effects m in model MS

Table 1 Performance of the Mendelian segregation model: relative

accuracies in the training and the test data

Simulated scenario Training data (%)a Test data(%)a

QTL variance 10 %

200 SNP markers 103 112

2,000 SNP markers 102 108

QTL variance 50 %

200 SNP markers 100 100

2,000 SNP markers 100 98

QTL variance 90 %

200 SNP markers 99 95

2,000 SNP markers 97 97

a (%) is 100 times the ratio between the average accuracy under the

Mendelian segregation model and the average accuracy under the

marker model

Table 2 Correlations between the predicted genetic values buð Þ,
simulated genetic values (u), and simulated phenotypes (y) in the

training and test data

Modela M MI MS II

Training data

rðbu;uÞ 0.87 0.84 0.94 0.69

rðbu; yÞ 0.59 0.77 0.53 0.74

Test data

rðbu;uÞ 0.81 0.77 0.94 0.43

rðbu; yÞ 0.46 0.46 0.55 0.27

a Models. M: marker model (Eq. 2); MI: marker plus individual

effect model (Eq. 3); MS: Mendelian segregation model (Eq. 7); II:

individual infinitesimal model based on pedigree (Eq. 1)

244 Genetica (2013) 141:239–246
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[7] are not defined within family) but the family structure is

taken into account in the estimation model.

Results of simulations indicate that the predictive ability

of the MS model is comparable to that of the marker

model. On one hand, the accuracies obtained in different

genetic scenarios suggest that the MS model might be

useful when markers are not adequate to fully explain the

genetic background (low QTL variances with high infini-

tesimal variance, or low marker density).

On the other hand, the marker model M yielded slightly

higher predictive ability than MS when QTL were impor-

tant and marker density was high. This result might reflect

sub-optimality of the MS model to exploit favorable situ-

ations where markers do effectively capture much of total

genetic variance. This might be explained by the simple

distributional assumptions that we assumed at this explor-

atory stage for the base individuals and the marked effects

of model MS in [7] and accompanying assumptions. In

particular, the marker model [2], and, more explicitly, its

equivalent model ‘‘Genomic BLUP’’, capitalizes the com-

plete data setting studied here by estimating covariances

among base individuals, and covariances between base

individuals and descendants. So, for the MS model to be

fully competitive, its distributional assumptions should be

extended to take into account those relationships.

Results for the QTLMAS example are encouraging but

unique and different from those of replicated simulations.

At least two reasons may be advanced to explain these

different results: the more complicated genetic background

and the large family size, a full-sib design, simulated in the

QTLMAS data set. But the impact of such factors on

predictive ability needs further investigation.

Further investigation is also needed on variance com-

ponent estimation of models including marker and indi-

vidual effects. Duchemin et al. (2012) were able to estimate

both components of variance from real data using model

[3], i.e., the variance of individual effects and the variance

of marker effects. We are currently studying variance

components estimation for model [7], with infinitesimal

effects defined only for the base individuals and variance

structure designed to avoid identifiability problems.

Also, at this stage of model development, we are

assuming complete data, in particular genotypes of base

individuals. In some situations, it may possible to impute

missing data. Also, if genealogy is unknown and if all

individuals are in the genotyped sample, parent-progeny

pairs can be easily identified using DNA data (Rohlfs et al.

2012). However, to cover many variable situations in real

life, it should be necessary to expand model [7] to include

heterogeneous variances where mendelian sampling is

observed for some individuals but it remains a random

value for individuals without genotyped parents.

Another potential improvement of the MS model in [7]

is the representation of genetic transmission (as in

expression [5]) and marked genetic effects (as in [2] and

[7]) which may be certainly improved. Haplotypes can be

used instead of single non-phased SNP. The model is also

compatible with approaches where some QTL are known,

markers are preselected or markers are weighted by their

effects during prediction (e.g. Zhang et al. 2011).

Conclusions

According to the literature on prediction of complex traits,

it is justified to keep, both, individual (infinitesimal) and

marked gene effects in the statistical predictive model. We

gave a formal derivation of a mendelian sampling MS

model where individual effects are a function of infinites-

imal effects of base individuals and mendelian sampling in

descendants, traced using available DNA data. At this stage

of research, we are assuming complete data, simple dis-

tributional assumptions for individual and marked genetic

effects, and known variances. First simulation results

suggest that these simplifying assumptions should be

extended to render the MS model fully competitive.
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Appendix: Computation of individual and marked

genetic effects using BLUP

Let r2
i , r2

M, and r2
e be the variance of infinitesimal effects,

the genetic variance due to all QTL, and the residual var-

iance, respectively. Also the variance of individual markers

is r2
m ¼ r2

M=k, with k ¼ 2
P

j pj 1� pj

� 	
. Then:

au ¼ r2
e= r2

i þ r2
M

� �

am ¼ r2
e=r

2
m

ai ¼ r2
e=r

2
i

Solutions for models compared were:

For model [1]:
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bl
bu

� �

¼ 1
0
1 1

0
Z

Z
0
1 Z

0
Zþ auA�1

� ��1
1
0
y

Z
0
y

� �

where 1 is a vector of 1 and Z is the incidence matrix. bl is

the BLUE (best linear unbiased estimator) of the general

mean, and bu is the solution for individual effects.

For model [2]:

bl
bm

� �

¼ 1
0
1 1

0
X

X
0
1 X

0
Xþ amI

� ��1
1
0
y

X
0
y

� �

where X = ZW, i.e., the incidence matrix times the matrix

of genotypes, centered by column. bm is the solution for

marked effects.

Predictions from model [2] can be also obtained with the

individual model:

bl
bu

� �

¼ 1
0
1 1

0
Z

Z
0
1 Z

0
Zþ auG�1

� ��1
1
0
y

Z
0
y

� �

where G ¼WW
0
=k

For model [3]:

bl
bu
bm

2

4

3

5 ¼
1
0
1 1

0
X1 1

0
X2

X
0

11 X
0

1X1 þ auA�1 X
0

1X2

X
0

21 X
0

2X1 X
0

2X2 þ amI

2

4

3

5

�1
1
0
y

X
0

1y

X
0

2y

2

4

3

5

where X1 ¼ Z and X2 ¼ ZW. bu is the solution for indi-

vidual effects and bm is the solution for marked effects.

For model [7]:

bl
cub

bm

2

4

3

5 ¼
1
0
1 1

0
X1 1

0
X2

X
0

11 X
0

1X1 þ aiI X
0

1X2

X
0

21 X
0

2X1 X
0

2X2 þ amI

2

4

3

5

�1
1
0
y

X
0

1y

X
0

2y

2

4

3

5

where X1 ¼ ZdD and X2 ¼ Zd2 Wd � DWbð Þ; and bub is

the solution for base individuals and bm is the solution for

marked effects.
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