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Abstract
Key message New fast and accurate method for phasing and imputation of SNP chip genotypes within diploid bi-
parental plant populations.
Abstract This paper presents a new heuristic method for phasing and imputation of genomic data in diploid plant species. 
Our method, called AlphaPlantImpute, explicitly leverages features of plant breeding programmes to maximise the accu-
racy of imputation. The features are a small number of parents, which can be inbred and usually have high-density genomic 
data, and few recombinations separating parents and focal individuals genotyped at low density (i.e. descendants that are 
the imputation targets). AlphaPlantImpute works roughly in three steps. First, it identifies informative low-density genotype 
markers in parents. Second, it tracks the inheritance of parental alleles and haplotypes to focal individuals at informative 
markers. Finally, it uses this low-density information as anchor points to impute focal individuals to high density. We tested 
the imputation accuracy of AlphaPlantImpute in simulated bi-parental populations across different scenarios. We also 
compared its accuracy to existing software called PlantImpute. In general, AlphaPlantImpute had better or equal imputation 
accuracy as PlantImpute. The computational time and memory requirements of AlphaPlantImpute were tiny compared to 
PlantImpute. For example, accuracy of imputation was 0.96 for a scenario where both parents were inbred and genotyped at 
25,000 markers per chromosome and a focal F2 individual was genotyped with 50 markers per chromosome. The maximum 
memory requirement for this scenario was 0.08 GB and took 37 s to complete.

Abbreviations
LD  Low density
HD  High density
SNP  Single-nucleotide polymorphism
cM  Centimorgan

Introduction

This paper presents a new heuristic method for phasing and 
imputation of single-nucleotide polymorphism (SNP) array 
data in diploid plant species. High-density SNP array data 
in plant breeding populations is increasingly valuable for 
genomic selection and for identifying regions of the genome 
that underlie traits of interest in genome-wide association 
studies. The accuracy of genomic selection and power of 
association studies increases with the number of individuals 
and with the density of SNP markers. However, the cost of 
genotyping many individuals at high-density is high. This 
high cost is a barrier to the adoption of genomic selection 
in plant breeding programmes where the number of selec-
tion candidates in each cycle can be very large. An effective 
strategy to overcome this cost barrier is to genotype a pro-
portion of the population at high-density, phase their geno-
types, and use this data for imputation of large numbers of 
individuals genotyped at low-density (Jacobson et al. 2014, 
2015; Gorjanc et al. 2017a, b). This strategy has been widely 
adopted in livestock and human populations, partly because 
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genotype imputation tools that work well in these popula-
tions are widely available (Kong et al. 2008; Howie et al. 
2009; Druet and Georges 2010; Li et al. 2010; Sargolzaei 
et al. 2011; Hickey et al. 2011; Cleveland and Hickey 2013; 
Hickey and Kranis 2013; Van Raden et al. 2015; O’Connell 
et al. 2016; Loh et al. 2016; Antolín et al. 2017).

Bi-parental populations that are widely used in plant 
breeding have four features that make them ideal for impu-
tation. First, they are derived from only two parents. High-
density genotyping of the two parents and low-density gen-
otyping of focal individuals (i.e. descendants that are the 
imputation targets) is an effective low-cost strategy in these 
populations. Second, the number of meiosis separating par-
ents and focal individuals is small. This means that parental 
haplotypes remain largely intact in focal individuals, which 
simplifies imputation. Third, they have well-known crossing 
structures that could be informative for imputation, although 
the process of selfing or the creation of doubled haploids 
can add complications that are not present in human and 
livestock settings. However, these “complications” can in 
certain situations empower imputation. Finally, parents that 
contribute to a bi-parental population are usually inbred. 
This means that they are homozygous at many loci and the 
majority of their genome is phased de facto.

A recent simulation study demonstrated that achieving 
high imputation accuracies could empower genomic selec-
tion in bi-parental populations (Gorjanc et al. 2017a, b). 
The high imputation accuracies with SNP array data were 
achieved using the PlantImpute software (Nettelblad et al. 
2009; Hickey et al. 2015). The main drawback of PlantIm-
pute is that it has large computational requirements in terms 
of time and memory. This makes it impractical for routine 
use in breeding programmes. Existing software for imputa-
tion in livestock or human populations do not have large 
computational requirements. However, software for imputa-
tion in livestock or human populations are not designed to 
leverage features of plant breeding programmes, and in some 
cases, cannot work where selfing and bi-sexuality is com-
mon. To our knowledge, existing imputation software for 
plant breeding programmes (e.g. Swarts et al. 2014) are not 
explicitly designed for imputation of SNP array genotypes 
in bi-parental populations.

This paper presents a new heuristic method, called Alp-
haPlantImpute, for phasing and imputation of SNP array 
data in diploid plant species. AlphaPlantImpute works 
roughly in three steps. First, it identifies markers fully or 
partially informative for parent-of-origin. Second, it tracks 
the inheritance of parental alleles and haplotypes to focal 
individuals at informative markers. Finally, it uses this low-
density information as anchor points to impute focal indi-
viduals to high-density.

We tested the accuracy of AlphaPlantImpute in simulated 
bi-parental populations across different scenarios. These 

scenarios varied in the levels of inbreeding in the parents, 
the number of selfing events separating parents and focal 
individuals, the chromosome size (i.e. recombination rate) 
and the number of markers on the low-density array. We 
calculated the accuracy of imputation within each scenario 
as the correlation between the true and imputed genotypes. 
In general, AlphaPlantImpute gave excellent accuracy of 
imputation and typically outperformed or performed equally 
as well as PlantImpute for the accuracy of imputation. The 
computational time and memory requirements of AlphaPlan-
tImpute were always tiny compared to that of PlantImpute.

Materials and methods

Definitions

A focal individual is an individual that is to be imputed. 
A fully informative marker is one where the two parents 
have opposing homozygous genotypes, i.e. genotypes 0 and 
2 (note that the method is agnostic of which allele is the ref-
erence allele). A partially informative marker is where one 
parent is homozygous and the other is heterozygous. Mark-
ers where parents are fixed for the same allele or where both 
parents are heterozygous are uninformative. AlphaPlantIm-
pute considers only bi-allelic loci. Genotypes are coded as 0, 
1, and 2, and alleles are coded as 0 and 1. A diplotype refers 
to the genotypes of a pair of SNPs and a haplotype refers to 
the alleles of a pair of SNPs. The high-density (HD) array is 
the array at which parents have genotypes and is the target 
array for imputation. In our test datasets, the HD array con-
sisted of 25,000 SNP markers. The low-density (LD) array 
is the array at which focal individuals have genotypes. We 
tested eight LD arrays (see below), all of which were nested 
subsets of the HD array.

Description of the method

We present a new heuristic method, called AlphaPlantIm-
pute, for phasing and imputation of SNP array data in dip-
loid plant species. In detail, our method has five steps: (1) 
identify markers that are informative for parent-of-origin of 
alleles in focal individuals; (2) infer the most likely linked 
alleles at two markers; (3) phase and assign parent-of-origin 
for focal individual’s alleles; (4) impute focal individual to 
high-density using low-density anchors captured in step 
3; and (5) impute markers in recombined regions. Impute 
markers adjacent to recombination locations. Step 1 is the 
only step applied to groups of focal individuals together. 
Steps 2, 3, 4 and 5 are applied for each focal individual sepa-
rately. A description of the definitions used and of each step 
is given below, and a detailed schematic is given in Fig. 1.
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Method steps

Step 1: Identify informative low‑density markers in parents

In the first step, we determine which low-density markers 
are fully or partially informative in parents, which is used in 
the following steps to infer parent-of-origin of phased alleles 
in focal individuals. For example, in Fig. 1 eight of the ten 
markers on the HD array genotyped in the parents are fully 
informative and two (markers 2 and 9) are uninformative. 
Of the ten HD markers, five (markers 1, 3, 5, 7, 9) are also 
on the LD array, which was used to genotype focal individu-
als. Of these five LD markers, four are informative and one 
(marker 9) is uninformative.

Step 2: Infer the most likely linked alleles at two markers

In the second step, we infer the most likely linked alleles for 
all possible marker pairs for all informative markers. This 
information on linkage relationships between markers is 
used in later steps to phase and assign parent-of-origin to 
heterozygous markers of focal individuals. If parent hap-
lotypes are inherited directly without recombination, the 
most likely linked alleles at two markers recover the parent 
haplotypes. When this is not the case, the most likely linked 
alleles at two markers indicate a potential recombination 
hotspot or marker map error for the population. For each pair 
of informative markers, we perform three steps.

(2a) First, identify focal individuals that are homozygous 
at the first and the second marker.

(2b) Second, count the number of times focal individuals 
have genotype:

• 0 for the first and 0 for the second marker (diplotype 0-0),
• 0 for the first and 2 for the second marker (diplotype 0-2),
• 2 for the first and 0 for the second marker (diplotype 2-0), 

and
• 2 for the first and 2 for the second marker (diplotype 2-2).

(2c) Third, compare the count of diplotype 0-0 to diplo-
type 0-2 and of diplotype 2-2 to diplotype 2-0. If the count 
of 0-0 is higher than 0-2 and 2-2 is higher than 2-0, then the 
0 allele at the first marker is more frequently linked to the 0 
allele at the second marker (haplotype 0-0) and the 1 allele 
at the first marker is more frequently linked to the 1 allele at 
the second marker (haplotype 1-1). If the count of diplotype 
0-2 is higher than diplotype 0-0 and diplotype 2-0 is higher 
than diplotype 2-2, then the 0 allele at the first marker is 
more frequently linked to the 1 allele at the second marker 
(haplotype 0-1) and the 1 allele at the first marker is more 
frequently linked to the 0 allele at the second marker (hap-
lotype 1-0). For example, in Fig. 1, 2-2 and 0-0 are the two Fig. 1  Schematic of heuristic algorithm of AlphaPlantImpute
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most frequent diplotypes at markers 1 and 3, which suggests 
the most likely haplotypes are 1-1 and 0-0.

Step 3: Phase and assign parent‑of‑origin for focal 
individual’s alleles

In the third step, we phase alleles in focal individuals and 
assign their parent-of-origin. We perform this first for the 
homozygous markers and then for the heterozygous markers.

(3a) Phase homozygous markers

We phase alleles at homozygous markers as the 0 allele 
for both haplotypes when the genotype is 0 and as the 1 
allele when the genotype is 2. For example, in Fig. 1, the 
focal individual ID_Y has genotype 2 for marker 7 and we 
phase it as the 1 allele for both haplotypes.

(3b) Assign parent-of-origin to alleles at homozygous 
markers

We assign parent-of-origin for phased alleles in the 
step 3a based on the informative markers in the step 1. For 
example, in Fig. 1 marker 7 is informative. At this marker, 
the Parent_A has the 0 allele, while the Parent_B has the 1 
allele. Focal individual ID_Y has genotype 2, which suggests 
that both of the 1 alleles were inherited from the Parent_B. 
Focal individual ID_Y is also homozygous at marker 9, with 
genotype 0, but this marker is not informative and we cannot 
assign parent-of-origin to phased alleles.

(3c) Phase heterozygous marker

We phase alleles at heterozygous markers iteratively 
based on the most likely linked alleles in the step 2. Specifi-
cally, we perform four steps. We start at the first heterozy-
gous marker. For example, in Fig. 1, the first marker for 
which the focal individual ID_Y is heterozygous is marker 1.

(3c1) First, phase the first heterozygous marker randomly 
as the 1 allele for the first haplotype and the 0 allele for the 
second haplotype.

(3c2) Second, phase the second heterozygous marker 
based on the most likely linked alleles in the step 2. For 
example, in Fig.  1, the second heterozygous marker is 
marker 3. Information from the most likely linked alleles 
suggest that the 0 (1) allele at marker 1 is linked to the 0 (1) 
allele at marker 3. Using this information, we phase marker 3 
alleles of ID_Y as the 1 allele for the first haplotype and the 
0 allele for the second haplotype. We continue moving from 
left-to-right until the last heterozygous marker is phased.

(3c3) Third, we repeat steps 3c1 and 3c2, but this time 
starting from the last heterozygous marker and progressing 
to the first heterozygous marker.

(3c4) Finally, we derive a consensus between the hap-
lotypes derived from moving left-to-right and right-to-left 
along the chromosome. If they disagree, set the consensus 
haplotypes to missing. If only one is filled, set the consensus 
haplotype to the filled information.

(3d) Assign parent-of-origin to alleles at heterozygous 
marker

We assign parent-of-origin for phased alleles in the 
step 3c based on the informative markers in the step 1. For 
example, in Fig. 1, focal individual ID_Y is heterozygous at 
marker 1. At this marker, the 1 allele on ID_Y’s first haplo-
type is inherited from Parent_A and the 0 allele on ID_Y’s 
second haplotype is inherited from Parent_B. If the marker 
is partially informative, we assign both the parent-of-origin 
and the haplotype-of-origin (i.e. first or second haplotype of 
the parent that is heterozygous for that marker).

Step 4: Impute focal individual to high‑density using 
anchors from the step 3

(4a) Fill uninformative homozygous markers

For uninformative homozygous markers at HD that are 
not genotyped in the focal individual at LD, we phase and 
impute the focal individual with the parental information. 
For example, in Fig. 1, both parents have genotype 0 for 
marker 2, so focal individual ID_Y is imputed as genotype 0.

(4b) Assign parent-of-origin to HD marker alleles

For markers on the HD array, assign parent-of-origin to 
marker alleles based on the parent-of-origin assignment of 
the two nearest marker alleles on the LD array. For example, 
in Fig. 1, marker 6 is not genotyped on the LD array, but 
the two neighbouring markers 5 and 7 are genotyped on the 
LD array. We have assigned the second haplotype of focal 
individual ID_Y to Parent_B for both markers 5 and 7. We 
therefore also assign marker 6 to Parent_B for the second 
haplotype. We have assigned the first haplotype of focal indi-
vidual ID_Y to Parent_A for marker 5 and to Parent_B for 
marker 7. We conclude that there was a potential recombi-
nation around marker 6 at the first haplotype and we do not 
assign parent-of-origin for this allele.

(4c) Phase and impute HD markers using parent-of-origin 
assignment from step 4b

For HD markers with assigned parent-of-origin in step 
4b, we phase the allele inherited from that parent for the 
haplotype of the focal individual. If we have phased both 
alleles at a marker, we impute the genotype as the sum of the 
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two alleles on the two haplotypes of the focal individual. If 
parent-of-origin has not been assigned for one or both alleles 
of the focal individual, we leave the genotype as missing.

Step 5: Impute markers in recombined regions

We phase and impute missing HD markers in potentially 
recombined regions in one of two ways. We either (1) impute 
expected genotype dosage as the average of the alleles of 
the two parents; or (2) phase and impute using information 
from a genetic or physical map. For (2), we first identify the 
two closest neighbouring markers that were informative and 
phased, second use the distance between these two markers 
as a weight to phase the missing alleles as the weighted 
average of the alleles of the two parent haplotypes, and third 
impute expected genotype dosage as in (1).

Implementation

We have implemented the method in a programme called 
AlphaPlantImpute, which is controlled by a specification 
file that contains some user specified thresholds and the 
addresses of input files. The required input data are member-
ship of individuals to the bi-parental populations, HD geno-
types for parents, and LD genotypes of focal individuals. 
The output data are imputed genotypes, phased haplotypes, 
inferred parent-of-origin for focal individual haplotypes, and 
information on whether a marker is informative. AlphaPlan-
tImpute implements some data editing checks, which are 
described in the user manual.

Examples of implementation: description 
of datasets

To test the imputation accuracy of AlphaPlantImpute, test-
ing datasets of a subset of the scenarios described in Hickey 
et al. (2015) were simulated. This enabled the comparison 
of AlphaPlantImpute with PlantImpute without re-running 
PlantImpute with its large computational cost. Although the 
simulation design is largely a replication of that in Hickey 
et al. (2015), a brief description of the general structure and 
simulation method of the different scenarios tested is given 
below for completeness.

Simulation of genomic data

Sequence data for 100 base haplotypes for a single chromo-
some were simulated using the Markovian Coalescent Simu-
lator (Chen et al. 2009) and AlphaSim (Faux et al. 2016). 
The base haplotypes were  108 base pairs in length, with a per 
site mutation rate of 1.0 × 10−8 and a per site recombination 
rate that varied across scenarios. The different recombina-
tion rates simulated were 0.25 × 10−8, 0.5 × 10−8, 1.0 × 10−8, 

1.5 × 10−8, 2.0 × 10−8, 3.0 × 10−8, and 4.0 × 10−8, resulting 
in chromosome sizes of 25, 50, 100, 150, 200, 300, and 
400 cM, respectively. The effective population size (Ne) was 
set at specific points during the simulation to mimic changes 
in Ne in a crop such as maize (Zea mays L.). These set points 
were: 100 in the base generation, 1000 at 100 generations 
ago, and 10,000 at 2000 generations ago, with linear changes 
in between. The resulting whole-chromosome haplotypes 
had approximately 80,000 segregating sites in total.

Simulation of a pedigree

A pedigree of 11,266 individuals was constructed. The 
pedigree was initiated from six outbred founders (A, B, C, 
D, E, F). These six founders were crossed to generate the 
founder bi-parental populations (A × B, C × D, E × F). These 
founder bi-parental populations were selfed to F1, F2, F4, 
F10, or F20, resulting in different levels of inbreeding in the 
parents. To properly propagate the residual heterozygosity 
in these parents, they were crossed to generate 100 pairs of 
F1 individuals. F1 individuals were selfed to generate 100 
F2 individuals. F2 individuals were selfed to generate 100 
F3 individuals, and selfing continued through to F10. The 
focal individuals (i.e. descendants that were the imputation 
targets) were F2, F4, F6, or F10 descendants.

In the base generation, the six founders had their chromo-
somes sampled from the 100 base haplotypes. In subsequent 
generations, the chromosomes of each individual were sam-
pled from parental chromosomes with recombination. The 
recombination rate varied depending on the scenario result-
ing in chromosome sizes of 25, 50, 100, 150, 200, 300, and 
400 cM. Recombinations occurred with a 1% probability per 
cM and were uniformly distributed along the chromosome.

Simulated SNP marker arrays

A single HD array of 25,000 SNP markers for the single 
chromosome was simulated. To test the effect of the number 
of markers on the LD array, eight LD arrays of 3, 5, 10, 20, 
50, 100, 200, and 400 markers for the single chromosome 
were simulated. Arrays were constructed by aiming to select 
a set of markers that segregated in the parents and that were 
evenly distributed across the chromosome. All LD arrays 
were nested within each other and within the HD array.

Scenarios

The imputation accuracy of AlphaPlantImpute and PlantIm-
pute were compared in four different scenarios (scenario 1, 
2, 3, and 4). Scenarios 1, 2, and 3 were the same as scenarios 
2, 4, and 5 in Hickey et al. (2015). A description of all four 
scenarios is provided below. In all scenarios, focal individu-
als genotyped at LD were imputed to the single HD array of 
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25,000 SNP markers. Ten replications of each scenario were 
performed, and the average of each replication is reported 
in the results.

Scenario 1: The effect of the number of selfing events 
separating parents and focal individuals. Parents were almost 
fully inbred (F20) and chromosomes were 100 cM in length. 
The accuracy of imputation was assessed for F2, F4, F6, and 
F10 focal individuals.

Scenario 2: The effect of the level of inbreeding in par-
ents. Parents were F1, F2, F4, F10, or F20 and chromosomes 
were 100 cM in length. The accuracy of imputation was 
assessed for F2 focal individuals.

Scenario 3: The effect of chromosome size. Parents 
were fully inbred (F20) and the accuracy of imputation was 
assessed for F2 focal individuals. Chromosomes were 25, 50, 
100, 150, 200, 300, or 400 cM in size.

Scenario 4: The effect of number of focal individuals in 
the bi-parental population. Parents were fully inbred (F20) 
and the accuracy of imputation was assessed for F2 focal 
individuals. Subsets of focal individuals were randomly 
selected from the 100 focal individuals to generate bi-paren-
tal population sizes of 1, 5, 10, 25, and 50 focal individuals.

Analysis

Imputation was performed within each bi-parental popu-
lation. Parents were assumed genotyped at HD and focal 
individuals were assumed genotyped at LD. The imputa-
tion accuracy was calculated for each focal individual as the 
correlation between the true and imputed genotypes. The 
precision in imputation accuracy was calculated as the log 
of the inverse of the variance in imputation accuracy within 
each bi-parental population.

Results

For each scenario, we first present the imputation accuracy 
of AlphaPlantImpute and then compare it to PlantImpute 
(Nettelblad et al. 2009; Hickey et al. 2015).

Effect of the number of markers on the low‑density 
array

Increasing the number of LD markers increases the imputa-
tion accuracy of AlphaPlantImpute. Figure 2 plots the num-
ber of LD markers against the accuracy of imputation for F2 
focal individuals of an F20 × F20 bi-parental cross. Figure 2 
shows that increasing the number of LD markers from 3 
to 20 SNP increased the average imputation accuracy from 
0.85 to 0.96. Increasing the number of markers beyond 20 
achieved only a slight increase in the accuracy of imputa-
tion from 0.96 with 20 markers to > 0.99 with 400 markers.

Scenario 1: Effect of the number of selfing events 
separating parents and focal individuals

Increasing the number of selfing events separating parents 
and focal individuals slightly decreases the imputation accu-
racy of AlphaPlantImpute. Figure 3a plots the accuracy of 
imputation in F2, F4, F6 and F10 focal individuals of a bi-
parental population where the parents were F20. Figure 3a 
shows that with 3 LD markers, the average imputation accu-
racy decreased from 0.85 for F2 focal individuals to 0.77 for 
F10 focal individuals. Increasing the number of LD markers 
beyond 10 markers mitigates the decrease in the average 
imputation accuracy between F2 focal individuals and F10 
focal individuals. Figure 3a shows that with 20 LD markers, 
the average imputation accuracy decreased from 0.96 for F2 
focal individuals to 0.95 for F10 focal individuals.

Regardless of the number of selfing events separating 
parents and focal individuals, the accuracy of imputation 
for AlphaPlantImpute was higher than for PlantImpute when 
the number of LD markers was low. Figure 3b plots the aver-
age imputation accuracy of AlphaPlantImpute on the y-axis 
and for PlantImpute on the x-axis. The colours represent 
the different number of LD markers and the shapes repre-
sent the number of selfing events separating the parents and 
the focal individuals. The red diagonal line indicates when 
the imputation accuracy of the two methods is equal. Points 
above the line indicate when the accuracy of imputation was 
higher for AlphaPlantImpute than for PlantImpute and vice 
versa. Figure 3b shows that with 3 LD markers, the average 
accuracy of imputation was 0.85 for AlphaPlantImpute and 
0.76 for PlantImpute for F2 focal individuals and was 0.77 

Fig. 2  Effect of the number of SNP on the low-density array. The 
number of SNP on the LD array against the genotype imputation 
accuracy using AlphaPlantImpute for F2 focal individuals of a bi-
parental cross where the parents are F20 inbred individuals
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for AlphaPlantImpute and 0.70 for PlantImpute for F10 focal 
individuals.

For all numbers of selfing events separating parents and 
focal individuals, increasing the number of LD markers 
reduced and in some cases reversed the advantage of Alp-
haPlantImpute over PlantImpute. This was most obvious 
for F10 focal individuals for medium number of LD mark-
ers where the imputation accuracy with PlantImpute was 
slightly higher than with AlphaPlantImpute. Figure 3b shows 
that with 10 LD markers, the average imputation accuracy 
was 0.93 for AlphaPlantImpute and 0.94 for PlantImpute for 
F2 focal individuals and was 0.90 for AlphaPlantImpute and 
0.92 for PlantImpute for F10 focal individuals. Increasing 
the number of LD markers beyond 100 markers meant that 
the average accuracy of imputation for AlphaPlantImpute 
equalled that for PlantImpute. Figure 3b shows that with 100 
LD markers, the average imputation accuracy was 0.99 for 
both AlphaPlantImpute and PlantImpute for F2 focal indi-
viduals and for F10 focal individuals.

For all numbers of selfing events separating parents and 
focal individuals, the precision of imputation accuracy (i.e. 
consistency across focal individuals) for AlphaPlantImpute 
was higher than for PlantImpute when the number of LD 
markers was low. Figure 3c is similar to Fig. 3b and plots 
the log of the precision of imputation accuracy for AlphaP-
lantImpute on the y-axis and PlantImpute on the x-axis. 
Points above the line indicate better precision (i.e. less vari-
ance) for AlphaPlantImpute than for PlantImpute, and vice 
versa. Figure 3c shows that with 3 LD markers, the preci-
sion of imputation was 1.62 for AlphaPlantImpute and 1.08 
for PlantImpute for F2 focal individuals and was 1.32 for 
AlphaPlantImpute and 1.11 for PlantImpute for F10 focal 
individuals.

Figure 3c also shows that for medium number of LD 
markers, the precision of imputation accuracy for AlphaP-
lantImpute was higher than for PlantImpute for F2 focal indi-
viduals but was lower when the number of selfing events was 
higher. With 20 LD markers, the precision of imputation 
accuracy was 2.48 for AlphaPlantImpute and 2.00 for Plan-
tImpute for F2 focal individuals and was 2.57 for AlphaPlan-
tImpute and 2.80 for PlantImpute for F10 focal individuals. 
With the highest number of LD markers (400), the precision 
of imputation accuracy was 3.84 for AlphaPlantImpute and 
4.00 for PlantImpute for F2 focal individuals and was 5.40 
for both AlphaPlantImpute and PlantImpute for F10 focal 
individuals.

Scenario 2: Effect of the level of inbreeding 
in parents

Increasing the level of inbreeding in the parents increases 
the imputation accuracy for AlphaPlantImpute. Figure 4a 
plots the accuracy of imputation in F2 focal individuals of a 

Fig. 3  Effect of level of inbreeding in focal individuals. a The genotype 
imputation accuracy using AlphaPlantImpute in F2, F4, F6 and F10 focal 
individuals from a bi-parental cross where the parents are F20 inbred indi-
viduals. b Comparison of the average genotype imputation accuracy using 
AlphaPlantImpute (y-axis) versus PlantImpute (x-axis). The colours repre-
sent the different LD arrays. The shapes represent the level of inbreeding 
in the focal individuals. The red diagonal line indicates when the accuracy 
of PlantImpute equals AlphaPlantImpute. Points above the line are when 
imputation accuracy is higher with AlphaPlantImpute and points below 
the line are when imputation accuracy is higher with PlantImpute. c Com-
parison of the precision in imputation accuracy using AlphaPlantImpute 
(y-axis) versus using PlantImpute (x-axis). The colours represent the dif-
ferent LD arrays. The shapes represent the level of inbreeding in the focal 
individuals. The red diagonal line indicates when the precision of Plant-
Impute equals AlphaPlantImpute. Points above the line indicate when the 
precision in accuracies is higher in AlphaPlantImpute and points below 
the line are when the precision in accuracies is higher in PlantImpute
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bi-parental population where the parents were F1, F2, F4, F10 
or F20. Figure 4a shows that with 20 LD markers, the average 
imputation accuracy increased from 0.81 for F1 parents to 
0.96 for F20 parents. Figure 4a also shows that increasing the 
level of inbreeding in the parents beyond F4 did not increase 
the average accuracy of imputation for F2 focal individuals. 
The average imputation accuracy with 20 LD markers was 
approximately 0.96 for F2 focal individuals when parents 
were F4, F10, and F20.

For all levels of inbreeding in the parents and all num-
bers of LD markers, the average imputation accuracy with 
AlphaPlantImpute was almost always higher than with Plan-
tImpute. Figure 4b is similar to Fig. 3b and plots the aver-
age imputation accuracy for AlphaPlantImpute on the y-axis 
and for PlantImpute on the x-axis. The shapes represent the 
level of inbreeding in the parents. Figure 4b shows that with 
20 SNP LD markers, the average imputation accuracy was 
0.81 for AlphaPlantImpute and 0.74 for PlantImpute for F2 
focal individuals when parents were F1, 0.95 for AlphaP-
lantImpute and 0.91 for PlantImpute when parents were F4, 
and 0.96 for AlphaPlantImpute and 0.94 for PlantImpute 
when parents were F10. In two cases, the average imputa-
tion accuracy with PlantImpute was slightly higher than with 
AlphaPlantImpute. This was when parents were F4 and with 
3 and 5 LD markers. The average imputation accuracy was 
0.84 for AlphaPlantImpute and 0.80 for PlantImpute with 3 
LD markers and was 0.87 for AlphaPlantImpute and 0.85 for 
PlantImpute with 5 LD markers.

For all levels of inbreeding in the parents and all num-
bers of LD markers, the precision of imputation accuracy 
with AlphaPlantImpute was almost always higher than with 
PlantImpute. Figure 4c is similar to Fig. 3c and plots the log 
of the precision of imputation accuracy for AlphaPlantIm-
pute on the y-axis and PlantImpute on the x-axis. Figure 4c 
shows that with 20 LD markers, the precision of imputa-
tion accuracy was 2.16 for AlphaPlantImpute and 1.92 for 
PlantImpute for F2 focal individuals when parents were F1, 
2.54 for AlphaPlantImpute and 1.84 for PlantImpute when 
parents were F4, and 2.52 for AlphaPlantImpute and 1.71 for 
PlantImpute when parents were F10. In a few cases, the pre-
cision of imputation accuracy for PlantImpute was slightly 
higher than AlphaPlantImpute. This was mainly when par-
ents were F20 and with 50, 200, and 400 LD markers. The 
precision of imputation accuracy was 3.04 for AlphaPlant-
Impute and 3.40 for PlantImpute with 50 LD markers, was 
3.71 for AlphaPlantImpute and 4.00 for PlantImpute with 
200 LD markers, and was 3.84 for AlphaPlantImpute and 
4.00 for PlantImpute with 400 LD markers.

Scenario 3: Effect of chromosome size

Increasing the chromosome size (in cM) decreased the 
imputation accuracy for AlphaPlantImpute. This was most 

Fig. 4  Effect of the level of inbreeding in parents. a The genotype impu-
tation accuracy using AlphaPlantImpute in F2 focal individuals of a bi-
parental cross where the parents are F1, F2, F4, F10 or F20. b Comparison 
of the average genotype imputation accuracy using AlphaPlantImpute 
(y-axis) versus using PlantImpute (x-axis). The colours represent the dif-
ferent LD arrays. The shapes represent the level of inbreeding in the par-
ents. The red diagonal line indicates when the accuracy of PlantImpute 
equals AlphaPlantImpute. Points above the line are when imputation 
accuracy is higher with AlphaPlantImpute and points below the line are 
when imputation accuracy is higher with PlantImpute. c Comparison of 
the precision in imputation accuracy using AlphaPlantImpute (y-axis) 
versus using PlantImpute (x-axis). The colours represent the different LD 
arrays. The shapes represent the level of inbreeding in the parents. The 
red diagonal line indicates when the precision of PlantImpute equals Alp-
haPlantImpute. Points above the line indicate when the precision in accu-
racies is higher in AlphaPlantImpute and points below the line are when 
the precision in accuracies is higher in PlantImpute
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apparent when the number of LD markers was 10 or less. 
Figure 5a plots the imputation accuracy for seven chromo-
some sizes of 25, 50, 100, 150, 200, 300, and 400 cM for 
F2 focal individuals of a bi-parental population where the 
parents were F20. Figure 5a shows that with 3 LD mark-
ers, quadrupling the chromosome size from 25 to 100 cM 
decreased the average imputation accuracy from 0.95 to 
0.85, and quadrupling from 100 to 400 cM decreased the 
average imputation accuracy from 0.85 to 0.55. The reduc-
tion in the imputation accuracy was less or non-existent 
when the number of LD markers was higher than 10. Fig-
ure 5a shows that the imputation accuracy was approxi-
mately 0.98 for all chromosome sizes when the number of 
LD markers was 50.

When the chromosome size was 300 cM or less, the aver-
age imputation accuracy was higher for AlphaPlantImpute 
than for PlantImpute. Figure 5b is similar to Fig. 3b and 
plots the average imputation accuracy for AlphaPlantImpute 
on the y-axis and for PlantImpute on the x-axis. The shapes 
represent the chromosome sizes. Figure 5b shows that with 
3 LD markers, the average imputation accuracy was 0.95 for 
AlphaPlantImpute and 0.69 for PlantImpute when the chro-
mosome size was 25 cM and was 0.61 for AlphaPlantImpute 
and 0.57 for PlantImpute when the chromosome size was 
300 cM. The exception to this was when the chromosome 
size was 150 cM, where the average imputation accuracy 
was 0.70 for AlphaPlantImpute and 0.83 for PlantImpute. 
When the chromosome size was 400 cM, the average impu-
tation accuracy was 0.55 for AlphaPlantImpute and 0.51 for 
PlantImpute when 3 LD markers were used but was 0.61 
for AlphaPlantImpute and 0.68 for PlantImpute when 5 LD 
markers were used.

For all chromosome sizes and numbers of LD markers, 
the precision of imputation accuracy for AlphaPlantImpute 
was generally higher than for PlantImpute. Figure 5c is simi-
lar to Fig. 3c and plots the precision of imputation accuracy 
for AlphaPlantImpute on the y-axis and for PlantImpute on 
the x-axis. Figure 5c shows that with 3 LD markers, the 
precision of imputation accuracy was 0.71 for AlphaPlan-
tImpute and 1.78 for PlantImpute when the chromosome 
size was 25 cM, was 1.08 for AlphaPlantImpute and 1.62 
for PlantImpute when the chromosome size was 100 cM and 
was 1.59 for AlphaPlantImpute and 1.20 for PlantImpute 
when the chromosome size was 400 cM. The exception to 
this was when the chromosome size was 150 cM, where the 
precision of imputation accuracy was 1.17 for AlphaPlant-
Impute and 1.46 for PlantImpute.

Scenario 4: Effect of the number of focal individuals 
in the bi‑parental population

Increasing the number of focal individuals in the bi-parental 
population slightly increased the imputation accuracy for 

Fig. 5  Effect of chromosome size. a The genotype imputation accuracy 
using AlphaPlantImpute in F2 focal individuals from a bi-parental cross of 
F20 parents against seven chromosome sizes of 25, 50, 100, 150, 200, 300, 
and 400 cM. b Comparison of the average genotype imputation accuracy 
using AlphaPlantImpute (y-axis) versus using PlantImpute (x-axis). The 
colours represent the different LD arrays. The shapes represent the chro-
mosome size. The red diagonal line indicates when the accuracy of Plant-
Impute equals AlphaPlantImpute. Points above the line are when imputa-
tion accuracy is higher with AlphaPlantImpute and points below the line 
are when imputation accuracy is higher with PlantImpute. c Comparison 
of the precision in imputation accuracy using AlphaPlantImpute (y-axis) 
versus using PlantImpute (x-axis). The colours represent the different LD 
arrays. The shapes represent the chromosome size. The red diagonal line 
indicates when precision of PlantImpute equals AlphaPlantImpute. Points 
above the line indicate when the precision in accuracies is higher in Alp-
haPlantImpute and points below the line are when the precision in accura-
cies is higher in PlantImpute
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AlphaPlantImpute. This was most apparent when the num-
ber of LD markers was low. Figure 6 plots the accuracy 
of imputation for F2 focal individuals of an F20 × F20 bi-
parental cross with 1, 5, 10, 25, 50 or 100 focal individuals. 
Figure 6 shows that increasing the number of focal individu-
als from 5 to 100 increased the average imputation accuracy 
from 0.83 to 0.85 when 3 LD markers were used. Figure 6 
also shows that when the 10 or more LD markers were used, 
increasing the number of focal individuals had no effect on 
the imputation accuracy. When the number of LD markers 
was 400, the average imputation accuracy was 0.96 with 5 or 
100 focal individuals in the bi-parental population.

Figure 6 also shows that when we only imputed one focal 
individual, the imputation accuracy fluctuated according to 
the focal individual that was sampled. As a result, increas-
ing the number of LD markers did not always increase the 
imputation accuracy. For example, the average imputation 
accuracy was 0.95, 0.91, or 0.94 when 3, 5, or 10 LD mark-
ers were used. When 400 LD markers were used, the average 
accuracy of imputation was 0.997.

Computational requirements of AlphaPlantImpute

Table 1 summarises the computational requirements of Alp-
haPlantImpute for twelve datasets across the three scenarios. 
Datasets were chosen to reflect the extremes in the number 
of selfing events separating parents and focal individuals (F2 
vs. F10), the level of inbreeding in the parents (F1 vs. F20) 
and the number of LD markers (3, 50, or 400). Table 1 shows 
that the average run time for AlphaPlantImpute was 22.13 s 
with a maximum of 49.33 s. The average memory require-
ment for AlphaPlantImpute was 0.08 GB with a maximum 
of 0.082 GB.

Discussion

Our results highlight three points for discussion: (1) the 
performance of AlphaPlantImpute; (2) the performance of 
AlphaPlantImpute compared to PlantImpute; and (3) future 
development of AlphaPlantImpute.

Performance of AlphaPlantImpute

This paper presents a new heuristic method, called AlphaP-
lantImpute, for phasing and imputation of SNP array data 
in diploid plant species. AlphaPlantImpute explicitly lever-
ages features of plant breeding programmes to impute LD 
focal individuals to HD. The explicit utilisation of pedigree 
information and heuristics developed specifically to track the 
inheritance of parental haplotypes using the LD genotypes 
of focal individuals are likely to be the reasons for AlphaP-
lantImpute’s robust and consistent performance across all 
tested scenarios. AlphaPlantImpute achieves high imputa-
tion accuracy of between 0.8 and 1.0 for the majority of 
scenarios. For scenarios where the imputation accuracy was 
below 0.8, increasing the number of LD markers increased 
the imputation accuracy.

Increasing number of selfing events separating parents 
and focal individuals from F2 to F10 only slightly decreases 
the imputation accuracy. Decreasing the level of inbreeding 
in the parents or increasing the chromosome size decreases 
the imputation accuracy when the number of LD markers 
is 10 or less. However, in both cases, the decrease in the 
imputation accuracy could be mitigated by increasing the 
number of LD markers to 20 SNP or more.

Decreasing the number of focal individuals in the bi-
parental population slightly decreases the imputation accu-
racy. This was most evident when the number of LD markers 

Fig. 6  Effect of the number of focal individuals in the bi-parental 
population. The number of focal individuals in the bi-parental popu-
lation against the genotype imputation accuracy using AlphaPlantIm-
pute for F2 focal individuals of a bi-parental cross where the parents 
are F20 inbred individuals

Table 1  Computational requirements of AlphaPlantImpute

Parents Focal indi-
viduals

LD array Time (s) Memory (GB)

F20 F2 3 37.41 0.079
F20 F2 50 8.14 0.080
F20 F2 400 7.95 0.082
F20 F10 3 49.33 0.079
F20 F10 50 8.48 0.080
F20 F10 400 9.40 0.082
F1 F2 3 26.70 0.080
F1 F2 50 35.10 0.080
F1 F2 400 12.58 0.082
F1 F10 3 24.66 0.079
F1 F10 50 35.41 0.080
F1 F10 400 10.35 0.082

Average 22.13 0.080
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was 10 SNP or less. The likely cause of this is that infer-
ring the most likely linkage between alleles for two markers 
is difficult with fewer focal individuals, since fewer indi-
viduals will be homozygous at the markers. In this case, 
the algorithm defaults to the linkage pattern of alleles in 
the parents. This may be sub-optimal for imputing markers 
in regions with elevated recombination rates, i.e. hotspots. 
When there was a single focal individual in the focal family, 
the accuracy of imputation for that individual varied. The 
likely cause of this is whether an individual had a recom-
bination or whether it had inherited the parental haplotypes 
without recombination. One solution to this situation could 
be to utilise the most likely linkage from related families 
with more genotyped focal individuals (see section: Future 
work and developments).

Overall, the results suggest that for a given population, 
high imputation accuracy can be achieved even when the 
number of LD markers is low, and small increases in the 
number of markers can achieve high accuracies depending 
on the biology of the species (i.e. recombination rate, obli-
gate outcrossing) and the pedigree design (outbred, inbred, 
level of selfing).

In this study, we tested a maximum LD marker array size 
of 400 SNP. With declining genotyping and sequencing 
costs, the number of markers on an LD array may increase to 
a few thousand. To test the scalability of AlphaPlantImpute 
with denser SNP panels, we performed an additional simula-
tion of a bi-parental population with two inbred parents and 
100 F2 focal individuals for imputation. Parents had HD 
genotypes for 25,000 SNP on a single chromosome, and F2 
focal individuals had genotypes at LD for 1000, 3000 and 
5000 SNP. The time and memory requirements for AlphaP-
lantImpute for imputing the F2 focal individuals to HD was 
17 s and 0.094 GB for 1000 SNP, 28 s and 0.114 GB for 
3000 SNP and 644 s and 0.137 GB for 5000 SNP. We are 
working on further optimisation of the time and memory 
requirements of AlphaPlantImpute for larger SNP panels.

Performance of AlphaPlantImpute compared 
to PlantImpute

The imputation accuracy for AlphaPlantImpute was com-
pared to that for PlantImpute (Nettelblad et al. 2009; Hickey 
et al. 2015). In the majority of cases, the imputation accu-
racy was higher for AlphaPlantImpute than for PlantImpute. 
One exception to this was when the chromosome size was 
400 cM and when the number of LD markers was 20 or 
less (e.g. 0.88 vs. 0.90 when the number of LD markers 
was 20). One reason for this could be that unless there is 
enough information in the genotypes of focal individual on 
the LD array, the heuristic algorithm in AlphaPlantImpute 
is inherently more conservative in determining recombi-
nation regions compared to the probabilistic algorithm in 

PlantImpute. As such, AlphaPlantImpute is more likely to 
leave positions as missing and fill them in as the parent aver-
age in the final step.

The precision of imputation accuracy (calculated as the 
log of the inverse of the variance in imputation accuracy 
within each bi-parental population) was also higher in the 
majority of cases for AlphaPlantImpute than for PlantIm-
pute. This was most apparent with small number of LD 
markers. The higher precision of imputation accuracy for 
AlphaPlantImpute is likely a consequence of directly calling 
allele phase and parent-of-origin and imputed genotypes in 
turn. The probabilistic algorithm of PlantImpute is margin-
alising over the all possible phase and genotype, which is 
probabilistically correct and handles the uncertainty prop-
erly, but it seems this is lowering the imputation accuracy. 
One exception to this was when the chromosome size was 
150 cM, where the precision of imputation accuracy was 
higher for PlantImpute than for AlphaPlantImpute for all 
LD arrays.

The biggest advantage of AlphaPlantImpute compared to 
PlantImpute relates to computational requirements. Hickey 
et al. (2015) report that to perform imputation within a sin-
gle bi-parental population of 100 F2 focal individuals, Plan-
tImpute required a minimum of 3 h and in excess of 100 GB 
of memory. In comparison, AlphaPlantImpute required 
on average ~ 22 s and ~ 0.08 GB of memory for all tested 
scenarios.

The high and consistent accuracies achieved with very 
low computational requirements makes AlphaPlantImpute 
an attractive, reliable and practical tool for routine use in 
plant breeding programmes that are already using or will 
include SNP array data to inform selection decisions.

Future work and developments

At present, the heuristic method in AlphaPlantImpute works 
within the most common plant breeding programme design 
of bi-parental populations and it works best when parents are 
fully inbred or close to being fully inbred. AlphaPlantImpute 
could be extended in multiple ways. For example, instead 
of treating each bi-parental population as an independent 
unit it could simultaneously work across bi-parental popula-
tions that share parents. This could increase the imputation 
accuracy in three ways: (1) information between bi-parental 
populations could be shared for imputation of focal individu-
als that are effectively half-sibs (one common parent); (2) 
information between bi-parental populations could be used 
to resolve phase where one or both parents are heterozygous 
at one or more consecutive markers; and (3) if a common 
parent has no or LD genotypes available, information from 
its descendants across half-sib bi-parental populations could 
be leveraged to phase and impute it to high density.
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AlphaPlantImpute could also be extended to include 
ancestral pedigree information (such as grandparents and 
great-grandparents). This could be useful for improving 
phasing and imputation of parents with missing informa-
tion or that are highly outbred. More simply, AlphaPlant-
Impute could also be extended so that it can directly read 
in and exploit phased information for the fully or partially 
outbred parents. Such phased information could be gener-
ated for parents by running AlphaPlantImpute on the bi-
parental family from which the fully or partially outbred 
parent derived.

AlphaPlantImpute could be extended so that it reads 
in previously inferred most likely linked alleles at two 
markers. It is likely that linkage patterns are shared across 
families, especially if the families are related. Using this 
information across families would be especially suited to 
imputation situations in bi-parental populations that have 
only a few genotyped focal individuals (e.g. one genotyped 
individual per family).

Finally, although SNP arrays for the many domesticated 
plant species exist, low-coverage sequencing methods such 
as genotyping-by-sequencing are also used. The heuristics 
of AlphaPlantImpute might be extended to enable imputa-
tion with such data.

Software availability

We implemented our method in a software package called 
AlphaPlantImpute, which is available for download at 
http://www.Alpha Genes .rosli n.ed.ac.uk/Alpha Plant Imput 
e/ along with a user manual.
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