267 research outputs found

    An Empirical Calibration of the Completeness of the SDSS Quasar Survey

    Get PDF
    Spectra of nearly 20000 point-like objects to a Galactic reddening corrected magnitude of i=19.1 have been obtained to test the completeness of the SDSS quasar survey. The spatially-unresolved objects were selected from all regions of color space, sparsely sampled from within a 278 sq. deg. area of sky covered by this study. Only ten quasars were identified that were not targeted as candidates by the SDSS quasar survey (including both color and radio source selection). The inferred density of unresolved quasars on the sky that are missed by the SDSS algorithm is 0.44 per sq. deg, compared to 8.28 per sq. deg. for the selected quasar density, giving a completeness of 94.9(+2.6,-3.8) to the limiting magnitude. Omitting radio selection reduces the color-only selection completeness by about 1%. Of the ten newly identified quasars, three have detected broad absorption line systems, six are significantly redder than other quasars at the same redshift, and four have redshifts between 2.7 and 3.0 (the redshift range where the SDSS colors of quasars intersect the stellar locus). The fraction of quasars missed due to image defects and blends is approximately 4%, but this number varies by a few percent with magnitude. Quasars with extended images comprise about 6% of the SDSS sample, and the completeness of the selection algorithm for extended quasars is approximately 81%, based on the SDSS galaxy survey. The combined end-to-end completeness for the SDSS quasar survey is approximately 89%. The total corrected density of quasars on the sky to i=19.1 is estimated to be 10.2 per sq. deg.Comment: 37 pages, 10 figures, accepted for publication in A

    Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample

    Get PDF
    We describe the algorithm for selecting quasar candidates for optical spectroscopy in the Sloan Digital Sky Survey. Quasar candidates are selected via their non-stellar colors in "ugriz" broad-band photometry, and by matching unresolved sources to the FIRST radio catalogs. The automated algorithm is sensitive to quasars at all redshifts lower than z=5.8. Extended sources are also targeted as low-redshift quasar candidates in order to investigate the evolution of Active Galactic Nuclei (AGN) at the faint end of the luminosity function. Nearly 95% of previously known quasars are recovered (based on 1540 quasars in 446 square degrees). The overall completeness, estimated from simulated quasars, is expected to be over 90%, whereas the overall efficiency (quasars:quasar candidates) is better than 65%. The selection algorithm targets ultraviolet excess quasars to i^*=19.1 and higher-redshift (z>3) quasars to i^*=20.2, yielding approximately 18 candidates per square degree. In addition to selecting ``normal'' quasars, the design of the algorithm makes it sensitive to atypical AGN such as Broad Absorption Line quasars and heavily reddened quasars.Comment: 62 pages, 15 figures (8 color), 8 tables. Accepted by AJ. For a version with higher quality color figures, see http://archive.stsci.edu/sdss/quasartarget/RichardsGT_qsotarget.preprint.p

    Double-Peaked Low-Ionization Emission Lines in Active Galactic Nuclei

    Full text link
    We present a new sample of 116 double-peaked Balmer line Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey. Double-peaked emission lines are believed to originate in the accretion disks of AGN, a few hundred gravitational radii (Rg) from the supermassive black hole. We investigate the properties of the candidate disk emitters with respect to the full sample of AGN over the same redshifts, focusing on optical, radio and X-ray flux, broad line shapes and narrow line equivalent widths and line flux-ratios. We find that the disk-emitters have medium luminosities (~10^44erg/s) and FWHM on average six times broader than the AGN in the parent sample. The double-peaked AGN are 1.6 times more likely to be radio-sources and are predominantly (76%) radio quiet, with about 12% of the objects classified as LINERs. Statistical comparison of the observed double-peaked line profiles with those produced by axisymmetric and non-axisymmetric accretion disk models allows us to impose constraints on accretion disk parameters. The observed Halpha line profiles are consistent with accretion disks with inclinations smaller than 50 deg, surface emissivity slopes of 1.0-2.5, outer radii larger than ~2000 Rg, inner radii between 200-800Rg, and local turbulent broadening of 780-1800 km/s. The comparison suggests that 60% of accretion disks require some form of asymmetry (e.g., elliptical disks, warps, spiral shocks or hot spots).Comment: 60 pages, 19 figures, accepted for publication in AJ. For high quality figures and full tables, please see http://astro.princeton.edu/~iskra/disks.htm

    Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales

    Full text link
    We present a sample of 218 new quasar pairs with proper transverse separations R_prop < 1 Mpc/h over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R_prop < 50 kpc/h (theta < 10 arcseconds), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 kpc/h < R_prop < 400 kpc/h is presented. For R_prop < 40 kpc/h, we detect an order of magnitude excess clustering over the expectation from the large scale R_prop > 3 Mpc/h quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to ~ 30 at R_prop ~ 10 kpc/h, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.Comment: 25 pages, 12 figures, 9 tables. Submitted to the Astronomical Journa

    Evidence for Reionization at z ~ 6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar

    Get PDF
    We present moderate resolution Keck spectroscopy of quasars at z=5.82, 5.99 and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the Ly Alpha absorption in the spectra of these quasars evolves strongly with redshift. To z~5.7, the Ly Alpha absorption evolves as expected from an extrapolation from lower redshifts. However, in the highest redshift object, SDSSp J103027.10+052455.0 (z=6.28), the average transmitted flux is 0.0038+-0.0026 times that of the continuum level over 8450 A < lambda < 8710 A (5.95<z(abs)<6.16), consistent with zero flux. Thus the flux level drops by a factor of >150, and is consistent with zero flux in the Ly Alpha forest region immediately blueward of the Ly Alpha emission line, compared with a drop by a factor of ~10 at z(abs)~5.3. A similar break is seen at Ly Beta; because of the decreased oscillator strength of this transition, this allows us to put a considerably stronger limit, tau(eff) > 20, on the optical depth to Ly Alpha absorption at z=6. This is a clear detection of a complete Gunn-Peterson trough, caused by neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen fraction in the intergalactic medium would result in an undetectable flux in the Ly Alpha forest region. Therefore, the existence of the Gunn-Peterson trough by itself does not indicate that the quasar is observed prior to the reionization epoch. However, the fast evolution of the mean absorption in these high-redshift quasars suggests that the mean ionizing background along the line of sight to this quasar has declined significantly from z~5 to 6, and the universe is approaching the reionization epoch at z~6.Comment: Revised version (2001 Sep 4) accepted by the Astronomical Journal (minor changes

    First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets

    Get PDF
    We present an analysis of the luminosity distances of Type Ia Supernovae from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey in conjunction with other intermediate redshift (z<0.4) cosmological measurements including redshift-space distortions from the Two-degree Field Galaxy Redshift Survey (2dFGRS), the Integrated Sachs-Wolfe (ISW) effect seen by the SDSS, and the latest Baryon Acoustic Oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed the SDSS-II SN data alone using a variety of "model-independent" methods and find evidence for an accelerating universe at >97% level from this single dataset. We find good agreement between the supernova and BAO distance measurements, both consistent with a Lambda-dominated CDM cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (d_L) and angular diameter (d_A) distance measures. We then use these data to estimate w within this restricted redshift range (z<0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81 +0.16 -0.18(stat) +/- 0.15(sys) and Omega_M=0.22 +0.09 -0.08 assuming a flat universe. This value of w, and associated errors, only change slightly if curvature is allowed to vary, consistent with constraints from the Cosmic Microwave Background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.Comment: 13 pages, 7 figures, accepted for publication in MNRA

    A Description of Quasar Variability Measured Using Repeated SDSS and POSS Imaging

    Get PDF
    We provide a quantitative description and statistical interpretation of the optical continuum variability of quasars. The Sloan Digital Sky Survey (SDSS) has obtained repeated imaging in five UV-to-IR photometric bands for 33,881 spectroscopically confirmed quasars. About 10,000 quasars have an average of 60 observations in each band obtained over a decade along Stripe 82 (S82), whereas the remaining ~25,000 have 2-3 observations due to scan overlaps. The observed time lags span the range from a day to almost 10 years, and constrain quasar variability at rest-frame time lags of up to 4 years, and at rest-frame wavelengths from 1000A to 6000A. We publicly release a user-friendly catalog of quasars from the SDSS Data Release 7 that have been observed at least twice in SDSS or once in both SDSS and the Palomar Observatory Sky Survey, and we use it to analyze the ensemble properties of quasar variability. Based on a damped random walk (DRW) model defined by a characteristic time scale and an asymptotic variability amplitude that scale with the luminosity, black hole mass, and rest wavelength for individual quasars calibrated in S82, we can fully explain the ensemble variability statistics of the non-S82 quasars such as the exponential distribution of large magnitude changes. All available data are consistent with the DRW model as a viable description of the optical continuum variability of quasars on time scales of ~5-2000 days in the rest frame. We use these models to predict the incidence of quasar contamination in transient surveys such as those from PTF and LSST.Comment: 33 pages, 19 figures, replaced with accepted version. Catalog is available at http://www.astro.washington.edu/users/ivezic/macleod/qso_dr7

    Photometric Redshifts of Quasars

    Get PDF
    We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a sample of 2625 quasars, we show that photo-z determination is even possible for z<=2.2 despite the lack of a strong continuum break that robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within delta z = 0.2; the fraction of correct photometric redshifts is even better for z>3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of on the order of 10^6 quasars candidates in addition to the 10^5 quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.Comment: 29 pages, 8 figures, submitted to A

    The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine

    Full text link
    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribution of Ly-alpha absorption from the spectra of a sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter distance at z\approx2.5, BOSS will provide the first direct measurement of the expansion rate of the Universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars over 2.2 < z < 3.5, where their colors overlap those of stars. During the first year of the BOSS survey, quasar target selection methods were developed and tested to meet the requirement of delivering at least 15 quasars deg^-2 in this redshift range, out of 40 targets deg^-2. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85. While detection of the BAO signature in the Ly-alpha absorption in quasar spectra does not require a uniform target selection, many other astrophysical studies do. We therefore defined a uniformly-selected subsample of 20 targets deg^-2, for which the selection efficiency is just over 50%. This "CORE" subsample will be fixed for Years Two through Five of the survey. In this paper we describe the evolution and implementation of the BOSS quasar target selection algorithms during the first two years of BOSS operations. We analyze the spectra obtained during the first year. 11,263 new z>2.2 quasars were spectroscopically confirmed by BOSS. Our current algorithms select an average of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS quasar target selection. [Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars. Submitted to Ap
    • …
    corecore