1,837 research outputs found

    COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types

    Get PDF
    ABSTRACTCommon genetic polymorphisms associated with severity of COVID-19 illness can be utilized for discovering molecular pathways and cell types driving disease pathogenesis. Here, we assessed the effects of 679 COVID-19-risk variants on gene expression in a wide-range of immune cell types. Severe COVID-19-risk variants were significantly associated with the expression of 11 protein-coding genes, and overlapped with either target gene promoter or cis-regulatory regions that interact with target promoters in the cell types where their effects are most prominent. For example, we identified that the association between variants in the 3p21.31 risk locus and the expression of CCR2 in classical monocytes is likely mediated through an active cis-regulatory region that interacted with CCR2 promoter specifically in monocytes. The expression of several other genes showed prominent genotype-dependent effects in non-classical monocytes, NK cells, B cells, or specific T cell subtypes, highlighting the potential of COVID-19 genetic risk variants to impact the function of diverse immune cell types and influence severe disease manifestations.</jats:p

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF

    Non-standard neutrino interactions in IceCube

    Get PDF
    Non-standard neutrino interactions (NSI) may arise in various types of new physics. Their existence would change the potential that atmospheric neutrinos encounter when traversing Earth matter and hence alter their oscillation behavior. This imprint on coherent neutrino forward scattering can be probed using high-statistics neutrino experiments such as IceCube and its low-energy extension, DeepCore. Both provide extensive data samples that include all neutrino flavors, with oscillation baselines between tens of kilometers and the diameter of the Earth. DeepCore event energies reach from a few GeV up to the order of 100 GeV - which marks the lower threshold for higher energy IceCube atmospheric samples, ranging up to 10 TeV. In DeepCore data, the large sample size and energy range allow us to consider not only flavor-violating and flavor-nonuniversal NSI in the μ−τ sector, but also those involving electron flavor. The effective parameterization used in our analyses is independent of the underlying model and the new physics mass scale. In this way, competitive limits on several NSI parameters have been set in the past. The 8 years of data available now result in significantly improved sensitivities. This improvement stems not only from the increase in statistics but also from substantial improvement in the treatment of systematic uncertainties, background rejection and event reconstruction

    IceCube Search for Earth-traversing ultra-high energy Neutrinos

    Get PDF
    The search for ultra-high energy neutrinos is more than half a century old. While the hunt for these neutrinos has led to major leaps in neutrino physics, including the detection of astrophysical neutrinos, neutrinos at the EeV energy scale remain undetected. Proposed strategies for the future have mostly been focused on direct detection of the first neutrino interaction, or the decay shower of the resulting charged particle. Here we present an analysis that uses, for the first time, an indirect detection strategy for EeV neutrinos. We focus on tau neutrinos that have traversed Earth, and show that they reach the IceCube detector, unabsorbed, at energies greater than 100 TeV for most trajectories. This opens up the search for ultra-high energy neutrinos to the entire sky. We use ten years of IceCube data to perform an analysis that looks for secondary neutrinos in the northern sky, and highlight the promise such a strategy can have in the next generation of experiments when combined with direct detection techniques

    Search for high-energy neutrino sources from the direction of IceCube alert events

    Get PDF

    Posteriori analysis on IceCube double pulse tau neutrino candidates

    Get PDF
    The IceCube Neutrino Observatory at the South Pole detects Cherenkov light emitted by charged secondary particles created by primary neutrino interactions. Double pulse waveforms can arise from charged current interactions of astrophysical tau neutrinos with nucleons in the ice and the subsequent decay of tau leptons. The previous 8-year tau double pulse analysis found three tau neutrino candidate events. Among them, the most promising one observed in 2014 is located very near the dust layer in the middle of the detector. A posterior analysis on this event will be presented in this paper, using a new ice model treatment with continuously varying nuisance parameters to do the targeted Monte Carlo re-simulation for tau and other background neutrino ensembles. The impact of different ice models on the expected signal and background statistics will also be discussed
    corecore