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COVID-19 genetic risk variants are associated with
expression of multiple genes in diverse immune cell
types
Benjamin J. Schmiedel 1,6, Job Rocha1,2,6, Cristian Gonzalez-Colin1,2,6, Sourya Bhattacharyya 1,6,

Ariel Madrigal1, Christian H. Ottensmeier 1,3, Ferhat Ay 1,4,7, Vivek Chandra 1,7 &

Pandurangan Vijayanand 1,3,5,7✉

Common genetic polymorphisms associated with COVID-19 illness can be utilized for dis-

covering molecular pathways and cell types driving disease pathogenesis. Given the impor-

tance of immune cells in the pathogenesis of COVID-19 illness, here we assessed the effects

of COVID-19-risk variants on gene expression in a wide range of immune cell types.

Transcriptome-wide association study and colocalization analysis revealed putative causal

genes and the specific immune cell types where gene expression is most influenced by

COVID-19-risk variants. Notable examples include OAS1 in non-classical monocytes, DTX1 in

B cells, IL10RB in NK cells, CXCR6 in follicular helper T cells, CCR9 in regulatory T cells and

ARL17A in TH2 cells. By analysis of transposase accessible chromatin and H3K27ac-based

chromatin-interaction maps of immune cell types, we prioritized potentially functional

COVID-19-risk variants. Our study highlights the potential of COVID-19 genetic risk variants

to impact the function of diverse immune cell types and influence severe disease

manifestations.
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The clinical presentation of SARS-CoV-2 infection in
humans can range from very mild or no symptoms to
severe respiratory failure1. Although hyperactivation of

various cellular components of the immune system has been
observed in patients with severe COVID-19 illness2,3, the host
genetic factors that determine susceptibility to severe COVID-19
illness are not well understood. Genome-wide association studies
(GWAS) addressing this question have identified a number of
genetic variants associated with COVID-19 susceptibility and
severity4–8. Several target genes associated with these COVID-19
risk variants were defined based on their proximity to the risk
loci4–8, although this approach does not accurately prioritize
causal genes9. To determine putative causal genes, a recent
COVID-19 GWAS additionally conducted Mendelian randomi-
zation (MR) and transcriptome-wide association study (TWAS),
utilizing information from expression quantitative trait loci
(eQTLs) datasets in lung tissues and whole blood (GTEx project),
and identified significant associations with the expression of
seven genes (IFNAR2, TYK2 from MR analysis, and CCR2, CCR3,
CXCR6, MAT2B, OAS3 from TWAS analysis)7.

Because the effects of common genetic variants on gene
expression are highly cell-type-specific10, utilizing eQTL datasets
from tissue samples with substantial cellular heterogeneity, like
whole blood, is likely to miss associations that are cell-type-spe-
cific, and also fail to pin-point the precise cell types where the
effects of COVID-19-risk variants are most prominent. Further-
more, the impact of COVID-19-risk variants on gene expression
in cell types that play a key role in COVID-19 pathogenesis, such
as immune cell types, has not been fully explored. The DICE
database of immune cell gene expression, epigenomics, and
expression quantitative trait loci (eQTLs) (http://dice-
database.org) was established to precisely address these ques-
tions as well as to help narrow down functional variants in dense
haploblocks linked to disease susceptibility10,11. Here, we utilize
eQTLs (DICE database) and chromatin accessibility profiles of 13
different immune cell types and two cell types in activated con-
ditions, as well as 3D cis-interactome maps to prioritize target
genes and cell types where expression of genes is most affected by
genetic variants linked to COVID-19 severity and susceptibility.

Results
Target genes associated with COVID-19 risk variants in
immune cell types. We utilized publicly available data from
meta-analyses of GWAS for three COVID-19 phenotypes: (A)
critical COVID-19 illness, (B) moderate to severe COVID-19
illness requiring hospitalization, and (C) reported SARS-CoV-2
infection (COVID-19 Host Genetics Initiative, release 5 from
January 18, 20214; GWAS association P value <5 × 10−8; Sup-
plementary Fig. 1a). These meta-analyses reported 19 indepen-
dent loci that were significantly associated with COVID-19
disease severity (A or B) or susceptibility (C)12. To predict cell
types that are likely to be major contributors to the genetic risk of
COVID-19, we first assessed enrichment of COVID-19-risk
variants in cis-regulatory regions from a wide range of cell types
and tissues using GARFIELD13 software. As expected, COVID-
19-risk variants showed significant enrichment in chromatin
accessibility regions (ATAC-seq and DNase-seq peaks) from
blood cells and immune cell types, but little or no enrichment in
other tissues and cell types (Supplementary Fig. 1b and Supple-
mentary Data 1).

To determine potential target genes and immune cell types
where the effects of COVID-19-risk variants are most prominent,
we first assessed the overlap of COVID-19-risk variants with
DICE eQTLs from 13 different immune cell types and two cell
types in activated conditions. We found that variants in 10

COVID-19-risk loci were significantly associated in cis with the
expression of 37 genes (called as eGenes) in immune cell types
(Table 1, Supplementary Data 2, and Supplementary Fig. 2).
However, due to the high enrichment of GWAS loci in eQTL
regions, this simple overlap approach can lead to false
associations9. Therefore, we utilized two complementary statis-
tical frameworks, colocalization analysis14,15, and TWAS9,16,17, to
prioritize putative casual genes in immune cell types that are
linked to COVID-19 severity or susceptibility. We performed
colocalization analysis using the COLOC framework14,15 to
determine the posterior probability of a variant to be significantly
associated with both COVID-19 risk and gene expression (eQTL)
(see Methods). GWAS variants in 5 independent COVID-19-risk
loci showed the high posterior probability of colocalization
(PP4 > 0.5 and PP4/PP3 ratio ≥5)15,18–21 with eQTLs associated
with the expression of 9 eGenes (Table 1, Fig. 1a, Supplementary
Fig. 3a, b, and Supplementary Data 3). Notably, a large fraction of
these eGenes showed prominent effects in specific immune cell
types (Fig. 1b). Next, we employed PrediXcan framework17 to
build models, which can predict gene expression in immune cell
types using DICE-eQTL dataset. Single-tissue (S-PrediXcan17)
and integrated (S-MulTiXcan16) TWAS using these models
showed that the expression of nine genes in four independent
loci was significantly associated with COVID-19 severity or
susceptibility (Table 1, Fig. 1c, d, Supplementary Fig. 3c, d, and
Supplementary Data 4 and 5). For many genes (e.g., OAS1,
IL10RB, DTX1, DONSON, CCR9, FYCO1, ACBD4, ARL17A,
LRRC37A2, NSF, NXPE3), our TWAS and colocalization analysis
using immune cell eQTLs (DICE dataset) provide the first
evidence that their expression in specific immune cell types is
likely to be causally linked to COVID-19 severity or susceptibility
(Table 1).

The COVID-19 risk allele is associated with reduced OAS1
expression non-classical monocytes. Potential defects in the type
1 interferon signaling pathway have been reported in patients
with severe COVID-19 illness22–25. Here, we found that coloca-
lized severe COVID-19-risk variants in chromosome 21 were
associated with reduced expression of the gene encoding inter-
feron receptor 2 (IFNAR2) in 12 of the 13 immune cell types
analyzed (Fig. 2a). TWAS also showed a significant association of
COVID-19 severity with reduced expression of IFNAR2 in mul-
tiple immune cell types, thus supporting a role for impaired
interferon signaling in immune cells in the pathogenesis of severe
COVID-19 illness (Fig. 1c, d). In addition, we found that colo-
calized severe COVID-19-risk variants in another independent
locus (chromosome 12) were also associated with reduced
expression of two interferon-inducible genes (OAS1 and OAS3)
(Fig. 2a–e). OAS1 and OAS3 encode for the oligoadenylate syn-
thase family of proteins that degrade viral RNA and activate
antiviral responses26. OAS1 showed a peak COVID-19-risk eQTL
(rs4767032, adj. association P value= 1.05 × 10−6) specifically in
patrolling non-classical monocytes (NCM) (Fig. 2a), whereas
OAS3 showed prominent eQTLs in T-cell subsets (Fig. 2a),
highlighting cell type-restricted effects of COVID-19-risk var-
iants. In NCM, TWAS confirmed that reduced expression of
OAS1 is associated with the severity of COVID-19 illness (Fig. 1c,
d and Supplementary Data 4 and 5). NCM plays a protective role
in viral infections27, and they have been shown to activate T cells
and NK cells as well as produce cytokines that can promote TH1
immune responses28–31. Interestingly, immuno-profiling studies
in COVID-19 patients have reported a dramatic reduction in the
frequency of NCM in COVID-19 illness32,33. Thus, genetic var-
iants that reduce OAS1 expression are likely to impair the
degradation of SARS-CoV-2 RNA and antiviral responses
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triggered by NCM, which may contribute to the pathogenesis of
severe COVID-19 illness.

To explore the molecular mechanisms that explain cell-specific
effects of COVID-19-risk variants in the OAS1 loci, we performed
(assay for transposase-accessible chromatin) ATAC-seq analysis
of the 13 DICE immune cell types and two activation conditions,
and also generated H3K27ac ChIP-seq as well as HiChIP-based
chromatin-interaction maps in NCM (see “Methods”). Although
the OAS1 promoter did not directly overlap COVID-19-risk
variants, we found several fine-mapped34,35 COVID-19-risk

variants, associated with OAS1 expression (eQTLs) (Supplemen-
tary Data 6), directly overlapped an intergenic transposase-
accessible and H3K27ac-enriched peak region, located 20 kb away
from OAS1 promoter (Fig. 2d). This potential cis-regulatory
region directly interacted with OAS1 promoter in NCM (Fig. 2d),
which suggested that perturbation of its activity by OAS1 eQTLs
is likely to explain their cell-type-specific effects. The OAS1
eQTLs in the NCM-specific H3K27ac peak region were predicted
to disrupt the binding sites of several transcription factors
(Supplementary Data 7). Most notable was the perturbation of
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three independent binding sites for retinoid X receptor alpha
(RXRα), which has also been shown to bind to this DNA region
(ENCODE Transcription factor ChIP-seq in liver tissue and liver
cell lines36) (Fig. 2d, bottom panel). Given the recognized role of
RXRα in regulating gene expression in monocytes37, we speculate
that perturbation of RXRα binding to the NCM-specific cis-

regulatory region could result in reduced OAS1 expression
specifically in NCM.

Cell type-restricted effects of COVID-19-risk variants. The
COVID-19-risk variants in the OAS1/OAS3/OAS2 locus were also
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associated with reduced expression of OAS3 in certain T cell
subsets but not in monocytes, NK cells, or B cells (Fig. 2a).
Accordingly, in naive T cells but not monocytes, the OAS3 pro-
moter interacted with the promoter of the neighboring gene
OAS2 that harbors OAS3 eQTLs (peak eQTL rs1298962, adj.
association P value= 3.75 × 10−5) (Fig. 2e), suggesting that per-
turbation of this T cell-specific cis-regulatory interaction is likely
to explain the cell-specific effects of OAS3 eQTLs. This notion is
supported by recent reports showing that promoters can interact
with neighboring gene promoters and regulate their
expression11,38. Notably, the OAS3 eQTL (rs1298962) was also
identified as a putative causal variant by fine-mapping34,35

(Supplementary Data 6) and predicted to disrupt the binding site
of GATA3, a T-cell transcription factor that has previously been
shown to bind to the neighboring OAS2 promoter region in
human thymocytes39, suggesting a potentially important role in
regulating OAS3 expression (Fig. 2e, bottom panel and Supple-
mentary Data 7). Of note, we also identified a canonical GATA
motif 10 nucleotides upstream of rs1298962 (Fig. 2e, bottom
panel), which led us to hypothesize that this variant may mod-
ulate the binding affinity of GATA3 either by perturbation of a
submaximal recognition motif that affects enhancer syntax
(“suboptimization”) or by motif independent mechanisms40–42.

Interestingly, we found that another colocalized severe
COVID-19-risk variant (rs2010604, adj. association P value=
4.50 × 10−2) in the OAS1/OAS3/OAS2 locus influenced the
expression of a neighboring gene (DTX1) specifically in naive B
cells (Fig. 3a–c). Active chromatin-interaction maps in naive B
cells showed that a cis-regulatory region near the eQTL
(rs2010604) indirectly interacted with the promoter of DTX1,
located >80 kb away, and likely modulates its transcriptional
activity (Fig. 3d). DTX1, encodes for a ubiquitin ligase Deltex1
that regulates NOTCH activity in B cells43. Deltex1 has also been
shown to promote anergy, a functionally hypo-responsive state, in
T cells44; if Deltex1 has similar functions in B cells, then genetic
modulation of DTX1 levels may have a profound impact on the
function of B cells in COVID-19 illness. In summary, our search
for target genes in the severe COVID-19-risk loci in chromosome
12 revealed three putative causal eGenes that display prominent
cell-type-restricted effects—OAS1 in NCM, OAS3 in T-cell
subsets, and DTX1 in B cells.

The COVID-19 risk allele is associated with increased IL10RB
expression in multiple immune cell types. We found that severe
COVID-19-risk variants in the IFNAR2 locus (chromosome 21)
were colocalized with eQTLs linked to increased expression of the
neighboring gene IL10RB in NK cells and T-cell subsets
(rs12482556, adj. association P value= 4.93 × 10−5 in NK cells)
(Fig. 3a, e, f). TWAS also confirmed the association of COVID-19
severity with increased expression of IL10RB (Fig. 1c, d).
H3K27ac HiChIP-based chromatin-interaction maps in NK cells
showed that multiple cis-regulatory regions, including the
IFNAR2 promoter, harbor COVID-19-risk eQTLs and directly or
indirectly interact with the IL10RB promoter and potentially
influence its expression (Fig. 3g). IL10RB encodes for IL-10
receptor beta, and given the immunomodulatory role of IL-
1045,46, it is likely that the higher expression on the IL10RB in NK
cells and T cells may enhance their responsiveness to IL-10. Thus,
our findings point to a potentially important role for IL-10 sig-
naling and NK cells in influencing the severity of COVID-19
illness.

Genetic variants in the 3p21.31 locus have been linked to the
severity of COVID-19 illness by multiple GWAS studies4–7,12.
The severe COVID-19-risk variants in the 3p21.31 locus contains
17 known protein-coding genes (Fig. 1c), including SLC6A20,
LZTFL1, CCR9, FYCO1, CXCR6, XCR1, CCR1, CCR3, CCR2, and
CCR5. A previous TWAS using whole blood and lung eQTL
datasets reported a significant association between COVID-19
severity and expression of chemokine receptor encoding genes
CCR2, CCR3, and CXCR6 in lung tissue7. We found that variants
in the 3p21.31 locus colocalized with distinct eQTLs linked to
CXCR6 and FYCO1 expression in TFH cells and stimulated
naive T cells, respectively (Fig. 4a, c). In naive regulatory T cells,
TWAS found a significant association between COVID-19
severity and CCR9, which encodes for the gut-homing chemokine
receptor CCR947 (Fig. 1c, d and Supplementary Data 4 and 5).
In other T-cell subsets like TFH, TH2, and TH1/17 cells, TWAS
also revealed associations between expression of genes in
chromosome 17 (ACBD4, ARL17A, and LRRC37A2) and
COVID-19 disease severity (Fig. 4b, c). As expected, we found
the expression of these genes in the corresponding T-cell subset
was significantly associated with distinct COVID-19-risk variants
in this region.

Fig. 2 COVID-19-risk variants affect genes in the IFN response pathway. a Mean expression levels (TPM) of selected severe COVID-19-risk-associated
eGenes (all with GWAS association P value <5 × 10−8) identified by colocalization analysis in the indicated cell types from subjects (n= 91) categorized
based on the genotype at the indicated GWAS cis-eQTL; each symbol represents an individual subject; adj. association P value *P < 0.05, **P < 0.001, and
***P < 0.00001. The boxplots show the 25th percentile, median, and 75th percentile, with the whiskers indicating the minimum and maximum values. b
Plot shows GWAS association P value for COVID-19-risk variants in the indicated locus; the colocalized variants for OAS1 in non-classical monocytes
(rs10774671, orange circle), OAS3 in naive CD4+ T cells (rs1293765, blue circle) and naive CD8+ T cells (rs10774679, pink circle) are highlighted. c Locus
compare plots63 for OAS1 in non-classical monocytes (left panel), OAS3 in naive CD4+ T cells (middle panel), and in naive CD8+ T cells (right panel). Each
variant is plotted to represent its −log10 COVID-19 GWAS association P value (x axis) and the −log10 association P value for cis-eQTLs associated with
expression of the indicated gene (y axis). The colors denote the strength of linkage disequilibrium (LD) with the indicated lead SNP from the colocalization
analysis (purple diamond). d Top panel, WashU Epigenome Browser tracks for the OAS1 locus, COVID-19-risk-associated GWAS variants (based on
respective GWAS meta-analyses, see Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with expression of OAS1 in classical
monocytes and non-classical monocytes, recombination rate tracks64,65, ATAC-seq tracks, H3K27ac ChIP-seq tracks, and H3K27ac HiChIP-based
chromatin-interactions in classical monocytes and non-classical monocytes (NCM). Bottom panel, OAS1 eQTLs that overlap the NCM-specific cis-
regulatory region (chr12:113,362,201-113,365,200; see “Methods”), of which three SNPs at the peak of the transposase-accessible region are predicted to
disrupt three distinct binding motifs of RXRα (see Supplementary Data 7) and overlap RXRα binding sites in ENCODE chromatin immunoprecipitation
sequencing (ChIP-seq) data of liver tissue and liver cell lines36. e Top panel, WashU Epigenome Browser tracks for the OAS3 locus, COVID-19-risk-
associated GWAS variants (based on respective GWAS meta-analyses, see Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with
expression of OAS3 in naive CD4+ T cells and naive CD8+ T cells, recombination rate tracks64,65, ATAC-seq tracks, H3K27ac ChIP-seq tracks, and
H3K27ac HiChIP-based chromatin-interactions in naive CD4+ T cells and naive CD8+ T cells. Bottom panel, OAS3 eQTLs that overlap OAS2 promoter
region (chr12:113,415,001-113,420,000; see “Methods”), of which one eQTL (rs1298962) is predicted to disrupt the binding of GATA3 (see Supplementary
Data 7) and overlaps a GATA3-binding site identified in human thymocytes39.
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Discussion
Several COVID-19-risk variants show cell-type-restriction of their
effects on gene expression, and thus have the potential to impact
the function of diverse immune cell types and gene pathways. Our
analysis of eQTLs, transposase accessible chromatin profiles, and
cis-interaction maps in multiple immune cell types enabled a
precise definition of the cell types and genes that drive genetic

susceptibility to severe COVID-19 illness, potentially contributing
to different clinical outcomes. However, COVID-19-risk variants
may display stronger associations with gene expression in other
immune cell types and activation conditions not examined in this
work. Our study also highlights how information about common
genetic polymorphisms can be used to define molecular pathways
and cell types that play a role in disease pathogenesis.
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Fig. 3 Cell type-restricted effects of COVID-19-risk variants. a Mean expression levels (TPM) of severe COVID-19-risk-associated GWAS eGenes DTX1
and IL10RB in the indicated cell types from subjects (n= 91) categorized based on the genotype at the indicated GWAS cis-eQTL; each symbol represents
an individual subject; adj. association P value *P < 0.05, **P < 0.001, and ***P < 0.00001. The boxplots show the 25th percentile, median, and 75th
percentile, with the whiskers indicating the minimum and maximum values. b Plot shows GWAS association P value for COVID-19-risk variants in the
indicated locus; the colocalized variant for DTX1 in naive B cells (rs2010604, green circle) is highlighted. c Locus compares plots63 for DTX1 in naive B cells.
Each variant is plotted to represent its -log10 COVID-19 GWAS association P value (x axis) and the −log10 association P value for cis-eQTLs associated with
the expression of DTX1 (y axis). The colors denote the strength of linkage disequilibrium (LD) with the indicated lead SNP from the colocalization analysis
(purple diamond). d WashU Epigenome Browser tracks for the DTX1 locus, COVID-19-risk-associated GWAS variants (based on respective GWAS meta-
analyses, see Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with expression of DTX1 in naive B cells, recombination rate
tracks64,65, ATAC-seq tracks, H3K27ac ChIP-seq tracks, and H3K27ac HiChIP-based chromatin-interactions in naive B cells. e Plot shows GWAS
association P value for COVID-19-risk variants in the indicated locus; the colocalized variants for IL10RB in NK cells (rs12053666, yellow circle), and IFNAR2
in naive CD4+ T cells (rs12482556, blue circle) and naive CD8+ T cells (rs2252639, pink circle) are highlighted. f Locus compares plots63 for IL10RB in NK
cells. Each variant is plotted to represent its −log10 COVID-19 GWAS P value (x axis) and the −log10 association P value for cis-eQTLs associated with the
expression of IL10RB (y axis). The colors denote the strength of linkage disequilibrium (LD) with the indicated lead SNP from the colocalization analysis
(purple diamond). g WashU Epigenome Browser tracks for the IL10RB locus, COVID-19-risk-associated GWAS variants (based on respective GWAS meta-
analyses, see Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with expression of IL10RB in NK cells, recombination rate
tracks64,65, ATAC-seq tracks, H3K27ac ChIP-seq tracks, and H3K27ac HiChIP-based chromatin-interactions in NK cells.
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Fig. 4 COVID-19-risk-associated genes prioritized by colocalization analysis and TWAS. a WashU Epigenome Browser tracks for the gene locus on
chromosome 3 harboring the genes FYCO1, CXCR6, and CCR9, COVID-19-risk-associated GWAS variants (based on respective GWAS meta-analyses, see
Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with expression of the indicated genes in various immune cell types and
conditions. bWashU Epigenome Browser tracks for the gene locus on chromosome 17 harboring the genes ACBD4, LRRC37A2, and ARL17A, COVID-19-risk-
associated GWAS variants (based on respective GWAS meta-analyses, see Supplementary Fig. 1a), adj. association P values for cis-eQTLs associated with
expression of the indicated genes in various immune cell types and conditions. c Mean expression levels (TPM) of selected COVID-19-risk-associated
GWAS eGenes (GWAS association P value <5 × 10−8), in the indicated cell types from subjects (n= 91) categorized based on the genotype at the
indicated GWAS cis-eQTL; each symbol represents an individual subject; adj. association P value *P < 0.05, **P < 0.001, and ***P < 0.00001. The boxplots
show the 25th percentile, median, and 75th percentile, with the whiskers indicating the minimum and maximum values. Significant associations with
COVID-19 GWAS variants found by colocalization (CXCR6 and FYCO1) or TWAS analysis (CCR9, CXCR6, ACBD4, ARL17A, and LRRC37A2) are highlighted
for each specific immune cell type.
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Methods
Leukapheresis samples. The Institutional Review Board (IRB) of the La Jolla
Institute for Allergy and Immunology (LJI; IRB protocol no. SGE-121-0714)
approved the study. For the DICE study, a total of 91 healthy volunteers were
recruited in the San Diego area, who provided leukapheresis samples at the San
Diego Blood Bank (SDBB) after written informed consent. All study subjects self-
reported ethnicity and race details, and were tested negative for hepatitis B,
hepatitis C, and human immunodeficiency virus (HIV).

DICE eQTLs and re-analysis of HLA transcript levels using HLApers. Details of
gene expression and eQTL analysis in 13 immune cell types and two cell types in
activated conditions have been reported for the DICE project (recalculated to
incorporate four previously missing RNA-seq samples; GENCODE annotation v19
(GRCh37.p13))10. HLA genes are highly polymorphic leading to inaccurate
quantification of transcript levels from RNA-seq which hinders eQTL identifica-
tion. To address this problem, we re-analyzed our RNA-seq data for all cell types
using a recent method (HLApers48) that quantifies HLA transcript levels con-
sidering the polymorphic nature of HLA genes. Briefly, we applied the HLApers
pipeline (https://github.com/genevol-usp/HLApers) for in silico HLA mapping and
obtaining transcript expression as performed earlier for all remaining cell types.
This pipeline generates personalized HLA index files for individual samples, which
are used to estimate sample-specific HLA genotype. We applied HLApers with its
default settings, aside from customizing it to support our single-end reads. We
executed HLApers by using STAR as the aligner and Salmon for quantifying the
transcripts. Matrix eQTL was used to obtain eQTLs from the HLApers-computed
gene expression values for HLA genes. For all downstream analysis, we replaced the
HLA eQTLs from the initial DICE release with this revised analysis.

COVID-19 GWAS datasets and overlap with DICE eQTLs. Genetic variants
associated with COVID-19 phenotypes: (A) critical COVID-19 illness, (B) mod-
erate to severe COVID-19 illness requiring hospitalization and (C) reported SARS-
CoV-2 infection, were downloaded from the COVID-19 Host Genetics Initiative
(release 5 from January 18, 2021). Genetic variants with GWAS association P value
< 5 × 10−8 were utilized for downstream analysis. Linkage disequilibrium (LD) for
lead COVID-19-risk variants was calculated using PLINK v1.90b3w49 for con-
tinental “super-populations” (AFR, AMR, EAS, EUR, SAS) based on data from
phase 3 of the 1000 Genomes Project50. SNPs in tight genetic linkage with GWAS
lead SNPs (LD threshold r2 > 0.80) in any of the five super-populations were
retrieved along with the SNP information (e.g., genomic location, allelic variant,
allele frequencies). Utilizing this dataset, GWAS SNPs (lead SNPs and SNPs in LD)
were analyzed for overlap with eQTLs in the DICE database (raw P value <0.0001,
adj. association P value (FDR) < 0.05, TPM >1.0) separately for each cell type to
identify COVID-19-risk variants that were associated with gene expression in
immune cell types (Table 1 and Supplementary Data 2).

Colocalization analysis. To determine whether the association of GWAS variant
with COVID-19 phenotypes is mediated through regulation of gene expression by
the variant (eQTL), we employed colocalization analysis using the COLOC
framework14,15. COLOC estimates the posterior probability that a GWAS variant
and an eQTL in a given COVID-19-risk loci share the same causal variant. First, we
extracted significant GWAS variants associated with COVID-19 phenotypes (asso-
ciation P value <5 × 10−8; COVID-19 Host Genetics Initiative; release 5 from Jan-
uary 18, 2021) and obtained GWAS summary statistics: association P values, effect
size estimate (β), and standard error of β. For each eGene in immune cell types
(DICE eQTL database), we extracted eQTL summary statistics: association P values,
the effect size estimate (β), standard error of β, and minor allele frequency for all the
variants within 1Mb of TSS of that eGene. As suggested in a previous report51, we
excluded all variants within the MHC locus (chr6: 28,477,897–33,448,354). For each
eGene, both eQTL and GWAS summary statistics were then applied to the coloc.abf
routine of the COLOC package. For each immune cell type (n= 15), an independent
COLOC analysis was performed using GWAS summary statistics from each
COVID-19 phenotype. We used the default setting (p1 or p2= 1 × 10−4) for the
prior probability of a variant being associated with either COVID-19 phenotype (p1)
or gene expression (p2). The prior probability (p12) of a variant to be associated with
both COVID-19 phenotype and gene expression was determined by sensitivity
analysis, as recommended, and set at 1 × 10−5 (see Supplementary Fig. 3a for sen-
sitivity analysis of the IFNAR2 locus in naive CD8+ T cells). An eGene was said to
have evidence of colocalization when the posterior probability of colocalization of a
GWAS variant and an eQTL linked to the eGene (PP4) was greater than 0.5 and
PP4/PP3 ratio ≥515,18–21. As the COLOC framework assumes a single causal variant
per colocalized region, we listed the corresponding colocalized variant in Supple-
mentary Data 3. Finally, we selected only those variants (and corresponding eGenes)
which are either eQTLs or exhibit strong LD (r2 > 0.80) with an eQTL. LD was
computed using PLINK (v1.90b3w).

TWAS analysis. We performed a transcriptome-wide association study (TWAS)
using DICE eQTL datasets from 13 immune cell types and two cell types in
activated conditions. We used the PrediXcan package17 with recommended minor
modifications52 to first generate prediction models of gene expression in immune

cell types using the DICE eQTL database. We utilized genotype data and nor-
malized gene expression data (transcript per million (TPM)) to perform prediction
model training, as described17. Briefly, we limited our analysis to genes annotated
as protein-coding, lncRNA, or miRNA. The first two principal components of the
genotyping data were used as covariates for the analysis. For each gene-cell-type
pair, we used the Elastic Net algorithm to train the prediction models. We used
default settings in PrediXcan: 0.5 as mixing parameter and use genetic variants in a
1 Mb region upstream of the gene start site and 1Mb downstream of the gene end
site, and then performed tenfold cross-validation. Gene prediction models with a
cross-validated correlation value >0.1 and a cross-validated prediction performance
P value <0.05 were used for downstream analysis.

We then performed transcriptome-wide association applying the MetaXcan
framework17. For single-tissue TWAS, the S-PrediXcan framework17 was utilized
for performing a total of 30,997 gene-cell-type pairs (15 immune cell types/
conditions) using our prediction models and GWAS summary statistics for all
reported COVID-19 phenotypes. We used a Bonferroni corrected P value threshold
(P < 0.05/number of gene-cell-type pairs tested (30,997)= P < 1.613 × 10−6) to
determine significant associations between genes located near significant GWAS
variants (<1Mb) and COVID-19 phenotypes in each immune cell type.

To minimize multiple testing burdens, we also applied the S-MulTiXcan
framework16, which integrates transcriptome prediction models across all cell types
by considering correlation across tissues. S-MulTiXcan was performed using cross-
cell-type SNP covariance, transcriptome prediction models and GWAS summary
statistics for all reported COVID-19 phenotypes. The cross-cell-type SNP
covariance was computed using all variants for every gene across different cell
types. To identify significant associations between genes located near significant
GWAS variants (<1Mb) and COVID-19 phenotypes, we used a Bonferroni
corrected P value threshold (P < 0.05/number of genes in at least one prediction
model (10,395)= P < 4.81 × 10−6).

Omni-ATAC-seq. Omni-ATAC-seq for immune cell types from two DICE donors
in technical duplicates was performed as described previously53. Following the
protocol and gating strategy previously reported10, immune cells were enriched
from peripheral blood mononuclear cells (PBMC) and sorted by FACS. For each
technical replicate, 50,000 sorted cells were pelleted and washed once in phosphate-
buffered saline (PBS). Nuclei were isolated with lysis buffer and washed with wash
buffer as described53. The cells were then resuspended in 50 μl of transposition
mixture and incubated at 37 °C for 30 min. After transposition DNA was purified
using “DNA Clean & concentrator” kit (Zymo Research). Before library amplifi-
cation, DNA was pre-amplified for five cycles to determine the required cycles of
amplification. PCR amplification of DNA was performed and purified libraries
were size-selected to 50–600 bp using AMPure XP beads (Beckman Coulter Life
Sciences) according to the manufacturer’s protocol and subjected to 2 × 100 bp
paired-end sequencing on NovaSeq6000 (Illumina), see Supplementary Data 8a for
details of sequencing libraries.

ATAC-seq data analysis. For analysis of ATAC-seq data, we utilized our custom
ATAC-seq data processing pipeline ATACproc (https://github.com/ay-lab/
ATACProc). Briefly, single-end ATAC-seq reads were aligned to hg19 reference
genome using Bowtie2 (version 2.3.3.1)54,55, with parameters -k 4–mm –threads 8
–X 2000. We excluded the reads corresponding to the mitochondrial genome and
chromosome Y. Uniquely mapped reads with mapping quality ≥ 30 were retained
using SAMtools (version 1.6)56. Duplicate reads were discarded by Picard tool’s
MarkDuplicates routine (https://broadinstitute.github.io/picard). To account for
the 9 bp distance between two adapters inserted by the Tn5 transposase57, we then
shifted all the reads aligned to the positive (+) strand by +4 bp, and the reads
aligned to the negative (−) strand by −5 bp, using Deeptools alignmentSieve
routine58. We also discarded reads overlapping with the blacklisted regions (pro-
vided in https://github.com/Boyle-Lab/Blacklist/tree/master/lists). Coverage tracks
were normalized by scaling factor, reads per kilobase per million mapped reads
(RPKM), using the “BamCoverage” routine from deepTools58 using the arguments
“-bs 10—effectiveGenomeSize 2864785220—normalizeUsing RPKM -e 200”.
MACS2 (version 2.1.0)59 was used for peak calling, with parameters: “-g hs –q
0.05—nomodel—nolambda—keep-dup all—call-summits—shift -100—extsize
200”. WashU Epigenome Browser was used to display the tracks.

Enrichment of COVID-19-risk variants in chromatin accessibility sites. We
utilized GARFIELD (v2) to investigate the enrichment patterns of COVID-19-risk
variants at chromatin accessibility sites, identified by ATAC-seq analysis of the 13
DICE cell types and 2 activation conditions, and pre-defined “peaks” from
ENCODE, GENCODE, and Roadmap Epigenomics project (excluding all fetal
tissues; n= 224 in total)13. In brief, GARFIELD tool evaluates enrichment using a
logistic regression model that accounts for allele frequency, distance to the TSS of
the nearest gene, and the number of LD proxies (r2 ≥ 0.80; correlation based on the
UK10K dataset provided by the software) to extract a set of independent variants
and annotates those to a known regulatory region. Enrichment odds ratios (OR)
were calculated at various GWAS P value thresholds (T; data retrieved from GWAS
meta-analysis B2_ALL_leave_23andme), and significant enrichment patterns were
identified using a Bonferroni corrected P value threshold (P < 9.8 × 10−5).
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Fine-mapping of COVID-19-risk variants. We employed the FINEMAP
package34,35 with default settings to perform statistical fine-mapping of the
COVID-19-risk variants and their LD SNPs. Summary statistics for individual
genetic variants such as reference and alternate alleles, MAF, P value, and beta were
obtained from the COVID-19 Host Genetics Initiative (association P value
<5 × 10−8; data retrieved from each GWAS meta-analysis). In brief, for each
GWAS locus, we defined a fine-mapping region as a 3 Mb window around a
significant variant (P value <5 × 10−8) and merged overlapping regions (as sug-
gested in https://github.com/FINNGEN/finemapping-pipeline). The individual
GWAS meta-analyses were pre-processed into separate files per region, and fine-
mapping was applied on the individual files using the package LDstore60 to
compute the LD statistics. FINEMAP was employed by allowing a maximum of ten
causal SNPs (—n-causal-snps 10) and executed both stepwise conditioning (—
cond) and shotgun stochastic search (—sss). A COVID-19-risk variant was defined
as a fine-mapped variant if it overlapped with fine-mapping outputs from either
stepwise conditioning or shotgun stochastic search approaches.

H3K27ac ChIP-seq and HiChIP for non-classical monocytes. ChIP-seq for
H3K27ac modification for non-classical monocytes from 6 DICE subjects were
performed as described previously11. Briefly, 500,000 FACS-sorted cells were
crosslinked with 1% formaldehyde and flash-frozen in liquid nitrogen. Sheared
chromatin from each sample was then immunoprecipitated with a polyclonal anti-
H3K27ac antibody (C15410196; Diagenode) by use of an automated ancillary
liquid handler SX-8G IP-Star from Diagenode. Immunoprecipitated chromatin was
captured, washed, Illumina library adaptors integrated by transposase-based
method, and library prepared by PCR amplification. Libraries were sequenced on
an Illumina HiSeq2500 sequencer to obtain 50-bp single-end reads. ChIP-seq reads
were analyzed as described previously11. Briefly, reads were aligned using Bowtie2
to hg19 reference genome. De-duplicated aligned reads were merged using SAM-
tools (http://samtools.sourceforge.net/) for all donors, to produce aggregate ChIP-
seq reads. MACS2 was used for peak calling. WashU Epigenome Browser was used
to display the tracks.

H3K27ac HiChIP for non-classical monocytes from 6 DICE subjects were
performed as described previously with some modifications11. Briefly, 1M FACS-
sorted cells were crosslinked with 1% formaldehyde and flash-frozen in liquid
nitrogen. The nuclear fraction was isolated from fixed cells, the chromatin was
digested in intact nuclei using 100 U of the 4-base cutter MboI (New England
Biolabs), and the restricted ends were re-ligated. Pelleted nuclei were dissolved in 70 μl
nuclear lysis buffer (50mM Tris-HCl, pH 7.5, 10 mM EDTA, and 0.5% SDS) and
sonicated using a Bioruptor for 6 cycles with 16 sec ON and 32 sec OFF. Sonicated
chromatin was diluted 10 times in ChIP Dilution Buffer (50mM Tris-HCl, pH 8.0,
167mM NaCl, 1.1mM EDTA, 0.55 mM EGTA, 0.11% Na-deoxycholate, 1.1% Triton
X-100, 0.05% SDS, and 1X protease inhibitors) and immunoprecipitated overnight at
4 °C by incubation with 1.0 μl of H3K27ac antibody (C15410196; Diagenode), pre-
coated on 15 μl protein A coated magnetic beads (Thermo Fisher Scientific).
Immunocomplexes were captured, washed, and resuspended in 100 μl of elution
buffer (50mM NaHCO3 and 1% SDS) as described11. After reverse cross-linking at
65 °C overnight and treatment with proteinase K (Thermo Fisher Scientific), DNA
was purified using affinity columns (Zymo Research) according to the manufacturer’s
protocol. After adapter ligation, the biotinylated DNA was captured using
Streptavidin C-1 beads according to the manufacturer’s protocol and resuspended in
20 μl of DNA elution buffer (10mM Tris-HCl). PCR amplification of DNA was
performed and purified HiChIP libraries were size selected to 300–800 bp using
AMPure XP beads (Beckman Coulter Life Sciences) according to the manufacturer’s
protocol and subjected to 2 × 150 bp paired-end sequencing on NovaSeq6000
(Illumina), see Supplementary Data 8b for details of sequencing libraries.

Analysis of HiChIP data. HiChIP data was analyzed as described previously11.
Briefly, we applied the HiC-Pro pipeline61 and mapped each end independently to
hg19 reference genome, using the aligner Bowtie2. Aligned reads were then paired,
and only paired reads involving two different MboI restriction sites were retained.
Valid read pairs of individual samples within the distance range 10 kb–3Mb were
merged and 70M valid pairs were randomly selected to create one aggregate HiChIP
contact map. FitHiChIP62 was then applied as described previously11 to call statis-
tically significant loops. A 5 kb fixed-sized bin was used to attribute a bin as peak-bin
if that bin overlaps with a ChIP-seq or HiChIP-inferred peak in the reference peaks
file. FitHiChIP applies fixed-size binning (here 5 kb) on the input set of valid HiChIP
reads and attributes a bin as peak-bin if that bin overlaps with a ChIP-seq or HiChIP-
inferred peak in the reference peaks file, subject to 1 bp minimum overlap without any
slack. Otherwise, the bin is labeled as a non-peak-bin. The background (set of locus
pairs used to infer the null model) as well as the foreground (i.e., set of locus pairs that
were assigned a significance estimate) of FitHiChIP can be either peak-to-peak (i.e.,
interactions between two peak bins) or peak-to-all (i.e., interactions involving peak
bins in at least one end). The default mode of FitHiChIP uses peak-to-all pairs for the
foreground, which is the setting employed in this study. The binomial distribution is
employed on the generated contact probabilities to estimate the P values, which are
then corrected for multiple testing. Interactions with an FDR < 0.01 are considered
significant and reported as loop calls. For the HiChIP samples reported in this study,
we executed FitHiChIP using both loose and stringent background models but results
reported in this study were from the stringent (S) background model of FitHiChIP62.

Analysis to identify transcription factor motifs perturbed by COVID-19-risk-
associated variants. COVID-19-risk variants were prioritized as potentially
functional based on their overlap with cis-regulatory regions that interacted with
target gene promoters (pieQTL) as described earlier11, and the transcription factor
motifs perturbed by these COVID-19-risk variants were obtained from the Hap-
loReg v4.1 database (https://pubs.broadinstitute.org/mammals/haploreg/
haploreg.php). To identify transcription factors that bind to intergenic cis-reg-
ulatory region interacting with OAS1 promoter, we examined the ENCODE
Transcription Factor Binding tracks containing 338 transcription factor ChIP-seq
peaks in 130 cell types, and extracted RXRα ChIP-seq data from liver tissue and
liver cell lines36. To determine GATA3 binding near the OAS2 gene promoter we
utilized the GATA3 ChIP-seq data from human thymocytes39.

Statistical analysis and data display. The number of subjects, samples, and
replicates analyzed, and the statistical test performed are indicated in the figure
legends. GraphPad Prism 9.1.0 software was used for generating graphs and per-
forming statistical significance tests. ATAC-seq peaks, ChIP-seq peaks, and HiChIP
interactions were visualized using WashU Epigenome Browser.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The DICE project is providing anonymized data for public access at http://dice-
database.org. Individual-specific RNA-sequencing and genotype data, H3K27ac ChIP-
seq, and HiChIP data in five common immune cell types have been previously
reported10,11. H3K27ac ChIP-seq and HiChIP data for non-classical monocytes and
ATAC-seq data for 15 DICE cell types were newly generated. All datasets have been
deposited in the Database of Genotypes and Phenotypes (dbGaP accession number:
phs001703.v4.p1). All relevant data supporting the findings of this study are available
from the corresponding author upon reasonable request.

Code availability
The codes used for colocalization analysis, TWAS analysis, and GWAS overlap analysis
are available on Github at https://github.com/vijaybioinfo. The codes used for ATAC-seq
and HiChIP data analysis are available on GitHub at https://github.com/ay-lab.
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