232 research outputs found

    Search for point-like sources of ultra-high energy neutrinos at the Pierre Auger Observatory and improved limit on the diffuse flux of tau neutrinos

    Get PDF
    The Surface Detector array of the Pierre Auger Observatory can detect neutrinos with energy between 10^17 eV and 10^20 eV from point-like sources across the sky south of +55 deg and north of -65 deg declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavours in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrinos interactions in the Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ~3.5 years of a full surface detector array for the Earth-skimming channel and ~2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k_PS E^-2 from a point-like source, 90% C.L. upper limits for k_PS at the level of ~5 x 10^-7 and 2.5 x 10^-6 GeV cm^-2 s^-1 have been obtained over a broad range of declinations from the searches of Earth-skimming and downward-going neutrinos, respectively.Peer Reviewe

    A Search for Point Sources of EeV Neutrons

    Get PDF
    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 to +15 degrees in declination using four different energy ranges above 1 EeV (10^18 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultra-high energy cosmic rays in the Galaxy.Peer Reviewe

    A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    Get PDF
    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30,..., 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.Peer Reviewe

    Highlights from the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is the world’s largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^{2}sr and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these, we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass-sensitive parameters from the 100 % duty cycle surface detector (SD) data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of ultrahigh-energy cosmic ray (UHECR) sources are briefly discussed.Peer Reviewe

    Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Get PDF
    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.Peer Reviewe

    The southern photometric local universe survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 ÎŒm pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30° , 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, Hα, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (ÎŽz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.Fil: De Oliveira, C. Mendes. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Ribeiro, T.. Universidade Federal de Sergipe; Brasil. National Optical Astronomy Observatory; Estados UnidosFil: Schoenell, W.. Universidade Federal do Rio Grande do Sul; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Overzier, R.A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil. MinistĂ©rio da CiĂȘncia, Tecnologia, Inovação e ComunicaçÔes. ObservatĂłrio Nacional; BrasilFil: Molino, A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Sampedro, L.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Coelho, P.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Barbosa, C.E.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Cortesi, A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Costa Duarte, M.V.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Herpich, F.R.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Hernandez Jimenez, J.A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Placco, V.M.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Xavier, H.S.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Abramo, L.R.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Saito, R.K.. Universidade Federal de Santa Catarina; BrasilFil: Chies Santos, A.L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ederoclite, A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil. Centro de Estudios de FĂ­sica del Cosmo de Aragon; EspañaFil: De Oliveira, R. Lopes. Universidade Federal de Sergipe; Brasil. MinistĂ©rio da CiĂȘncia, Tecnologia, Inovação e ComunicaçÔes. ObservatĂłrio Nacional; Brasil. University of Maryland; Estados UnidosFil: Goncalves, D.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Akras, S.. MinistĂ©rio da CiĂȘncia, Tecnologia, Inovação e ComunicaçÔes. ObservatĂłrio Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Almeida Fernandes, F.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Beers, T.C.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Bonatto, C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Bonoli, S.. Centro de Estudios de FĂ­sica del Cosmo de Aragon; EspañaFil: Cypriano, E.S.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Vinicius Lima, E.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentin

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore