4,427 research outputs found

    Digestibilidade "in situ" da matéria seca da silagem de capim elefante (Pennisetum purpureum, Schum) com diferentes níveis de cunha (Clitoria ternatea, L).

    Get PDF
    Para as condiçÔes em que este trabalho foi conduzido, pode-se concluir que, A degradabilidade da matéria seca de todas as silagens foi em media 67,76%, caracterizando silagens de bom valor nutritivo

    Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance

    Full text link
    This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.

    A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events

    Full text link
    Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.

    Study of Inclusive J/psi Production in Two-Photon Collisions at LEP II with the DELPHI Detector

    Get PDF
    Inclusive J/psi production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction gamma gamma -> J/psi+X is seen. The number of observed N(J/psi -> mu+mu-) events is 36 +/- 7 for an integrated luminosity of 617 pb^{-1}, yielding a cross-section of sigma(J/psi+X) = 45 +/- 9 (stat) +/- 17 (syst) pb. Based on a study of the event shapes of different types of gamma gamma processes in the PYTHIA program, we conclude that (74 +/- 22)% of the observed J/psi events are due to `resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.Comment: 13 pages, 8 figures, Accepted by Phys. Lett.

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies
    • 

    corecore