468 research outputs found

    Rhizobacteria potential in the control of Meloidogyne incognita in fig

    Get PDF
    A figueira é economicamente importante pelo papel social que representa no contexto da agricultura familiar. No entanto, sua viabilidade econômica pode ser comprometida em áreas infestadas pelo nematoide das galhas (Meloidogyne incognita) devido à carência de medidas de controle efetivas e disponíveis. Assim, a inserção do controle biológico no manejo integrado dessa praga constitui-se como uma estratégia importante. As rizobactérias são consideradas biocontroladoras promissoras por promover o crescimento vegetal e/ou inibir a ação parasítica dos fitonematoides sobre as plantas hospedeiras. Dessa forma, objetivou-se com esse trabalho, avaliar o desempenho de 14 isolados bacterianos provenientes da rizosfera de figueira e de rochas de folhelhos betuminosos, no biocontrole de M. incognita em figueira. Mudas de figueira cv. ‘Roxo de Valinhos' microbiolizadas com os isolados bacterianos foram transplantadas em solo naturalmente infestado com M. incognita. Sete isolados (F08, F25, F71, F76, F78, FB34 e FB59), reduziram significativamente o fator de reprodução do nematoide das galhas (P<0,05) em valores que variaram entre 20 e 49%. Contudo, além de suprimir a multiplicação do patógeno, o isolado F78 (Streptomyces sp.) promoveu aumento do peso de raízes, maiores índices de clorofila e conteúdo das enzimas de resistência peroxidades e polifenol-oxidades, e, redução na concentração de fenóis das figueiras microbiolizadas. Nesse sentido, a condução de trabalhos adicionais nesse patossistema pode possibilitar a melhor compreensão dos mecanismos de atuação das bactérias testadas no biocontrole de M. incognita, além de fornecer informações adicionais para a implementação dessa técnica em um programa de manejo integrado do nematoide das galhas.The fig tree is economically important for the social role it plays in the context of family farming. However, its economic viability can be compromised in infested areas by root-knot nematode (Meloidogyne incognita) due to lack of effective and available control measures. Therefore, the insertion of the biological control on the integrated management of this pest constitutes an important strategy. The rhizobacteria are considered promising biocontrol agents for promoting plant growth and or inhibit the parasitic action of plant-parasitic nematodes in the host plants. So, the aim of this study was to evaluate the performance of 14 bacterial isolates from the rhizosphere of fig and shale rocks in biocontrol of M. incognita in fig. Seedlings of fig plants of cv. 'Roxo de Valinhos' were microbiolized with these bacterial isolates and they were transplanted in soil naturally infested with M. incognita subsequently. Seven isolates (F08, F25, F71, F76, F78, FB34 and FB59) reduced the reproduction factor of the root-knot nematode (P <0.05) at rate ranging between 20 and 49%. Besides to suppress the pathogen reproduction, the isolated F78 (Streptomyces sp.) promoting increasing of root weight, higher chlorophyll contents and content peroxidases and polyphenol oxidases resistance enzymes, and reduction of the phenol concentration of microbiolized fig plants. In this sense, conducting further studies in this pathosystem can enable a better understanding of the action mechanisms of the bacteria tested in the biocontrol of M. incognita, as well as providing additional information for the implementation of this technique in an integrated management program of root-knot nematode.Facultad de Ciencias Agrarias y Forestale

    Rhizobacteria potential in the control of Meloidogyne incognita in fig

    Get PDF
    A figueira é economicamente importante pelo papel social que representa no contexto da agricultura familiar. No entanto, sua viabilidade econômica pode ser comprometida em áreas infestadas pelo nematoide das galhas (Meloidogyne incognita) devido à carência de medidas de controle efetivas e disponíveis. Assim, a inserção do controle biológico no manejo integrado dessa praga constitui-se como uma estratégia importante. As rizobactérias são consideradas biocontroladoras promissoras por promover o crescimento vegetal e/ou inibir a ação parasítica dos fitonematoides sobre as plantas hospedeiras. Dessa forma, objetivou-se com esse trabalho, avaliar o desempenho de 14 isolados bacterianos provenientes da rizosfera de figueira e de rochas de folhelhos betuminosos, no biocontrole de M. incognita em figueira. Mudas de figueira cv. ‘Roxo de Valinhos' microbiolizadas com os isolados bacterianos foram transplantadas em solo naturalmente infestado com M. incognita. Sete isolados (F08, F25, F71, F76, F78, FB34 e FB59), reduziram significativamente o fator de reprodução do nematoide das galhas (P<0,05) em valores que variaram entre 20 e 49%. Contudo, além de suprimir a multiplicação do patógeno, o isolado F78 (Streptomyces sp.) promoveu aumento do peso de raízes, maiores índices de clorofila e conteúdo das enzimas de resistência peroxidades e polifenol-oxidades, e, redução na concentração de fenóis das figueiras microbiolizadas. Nesse sentido, a condução de trabalhos adicionais nesse patossistema pode possibilitar a melhor compreensão dos mecanismos de atuação das bactérias testadas no biocontrole de M. incognita, além de fornecer informações adicionais para a implementação dessa técnica em um programa de manejo integrado do nematoide das galhas.The fig tree is economically important for the social role it plays in the context of family farming. However, its economic viability can be compromised in infested areas by root-knot nematode (Meloidogyne incognita) due to lack of effective and available control measures. Therefore, the insertion of the biological control on the integrated management of this pest constitutes an important strategy. The rhizobacteria are considered promising biocontrol agents for promoting plant growth and or inhibit the parasitic action of plant-parasitic nematodes in the host plants. So, the aim of this study was to evaluate the performance of 14 bacterial isolates from the rhizosphere of fig and shale rocks in biocontrol of M. incognita in fig. Seedlings of fig plants of cv. 'Roxo de Valinhos' were microbiolized with these bacterial isolates and they were transplanted in soil naturally infested with M. incognita subsequently. Seven isolates (F08, F25, F71, F76, F78, FB34 and FB59) reduced the reproduction factor of the root-knot nematode (P <0.05) at rate ranging between 20 and 49%. Besides to suppress the pathogen reproduction, the isolated F78 (Streptomyces sp.) promoting increasing of root weight, higher chlorophyll contents and content peroxidases and polyphenol oxidases resistance enzymes, and reduction of the phenol concentration of microbiolized fig plants. In this sense, conducting further studies in this pathosystem can enable a better understanding of the action mechanisms of the bacteria tested in the biocontrol of M. incognita, as well as providing additional information for the implementation of this technique in an integrated management program of root-knot nematode.Facultad de Ciencias Agrarias y Forestale

    Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation.

    Get PDF
    Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation

    Mechanisms of vesicular stomatitis virus inactivation by protoporphyrin ix, zinc- protoporphyrin ix, and mesoporphyrin ix

    Get PDF
    © 2017 American Society for Microbiology. All Rights Reserved.Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ; Brazil; grant number E-26/201.167/2014), the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq; Brazil; grant number 306669/2013-7), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Brazil; grant number CsF 171/2012), the Fundacao para a Ciencia e Tecnologia-Ministério da Educação e Ciência (FCT-MEC; Portugal; project HIVERA/0002/2013), and Marie Skłodowska-Curie Actions (MSCA; European Commission project INPACT 644167). C.C.-O. acknowledges a Science without Borders postdoctoral fellowship from CAPES (171/2012), and J.M.F. acknowledges an FCT-MEC Ph.D. fellowship (SFRH/BD/70423/2010)info:eu-repo/semantics/publishedVersio

    Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer

    Get PDF
    PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with current standard-of-care therapies. Homologous recombination repair (HRR) gene alterations, including BRCA1/2 alterations, can sensitize cancer cells to poly (ADP-ribose) polymerase inhibition, which may improve outcomes in treatment-naïve mCRPC when combined with androgen receptor signaling inhibition. METHODS: MAGNITUDE (ClinicalTrials.gov identifier: NCT03748641) is a phase III, randomized, double-blinded study that evaluates niraparib and abiraterone acetate plus prednisone (niraparib + AAP) in patients with (HRR+, n = 423) or without (HRR-, n = 247) HRR-associated gene alterations, as prospectively determined by tissue/plasma-based assays. Patients were assigned 1:1 to receive niraparib + AAP or placebo + AAP. The primary end point, radiographic progression-free survival (rPFS) assessed by central review, was evaluated first in the BRCA1/2 subgroup and then in the full HRR+ cohort, with secondary end points analyzed for the full HRR+ cohort if rPFS was statistically significant. A futility analysis was preplanned in the HRR- cohort. RESULTS: Median rPFS in the BRCA1/2 subgroup was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.6 v 10.9 months; hazard ratio [HR], 0.53; 95% CI, 0.36 to 0.79; P = .001). In the overall HRR+ cohort, rPFS was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.5 v 13.7 months; HR, 0.73; 95% CI, 0.56 to 0.96; P = .022). These findings were supported by improvement in the secondary end points of time to symptomatic progression and time to initiation of cytotoxic chemotherapy. In the HRR- cohort, futility was declared per the prespecified criteria. Treatment with niraparib + AAP was tolerable, with anemia and hypertension as the most reported grade ≥ 3 adverse events. CONCLUSION: Combination treatment with niraparib + AAP significantly lengthened rPFS in patients with HRR+ mCRPC compared with standard-of-care AAP

    Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM) on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals.</p> <p>Methods</p> <p>In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn), an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn) was determined by real-time PCR in blood DNA obtained on the 1<sup>st </sup>(time 1) and 4<sup>th </sup>day (time 2) of the same work week. Individual exposures to PM<sub>10</sub>, PM<sub>1</sub>, coarse particles (PM<sub>10</sub>-PM<sub>1</sub>) and airborne metal components of PM<sub>10 </sub>(chromium, lead, arsenic, nickel, manganese) were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area.</p> <p>Results</p> <p>RMtDNAcn was higher on the 4<sup>th </sup>day (mean = 1.31; 95%CI = 1.22 to 1.40) than on the 1<sup>st </sup>day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17). PM exposure was positively associated with RMtDNAcn on either the 4<sup>th </sup>(PM<sub>10</sub>: β = 0.06, 95%CI = -0.06 to 0.17; PM<sub>1</sub>: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17) or the 1<sup>st </sup>day (PM<sub>10</sub>: β = 0.18, 95%CI = 0.09 to 0.26; PM<sub>1</sub>: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26). Metal concentrations were not associated with RMtDNAcn.</p> <p>Conclusions</p> <p>PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.</p

    Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites

    Get PDF
    Poly(ethylene 2,5-furan dicarboxylate) (PEF) is considered the biobased counterpart of the fossil based poly(ethylene terephthalate) for food packaging. In this research, PEF nanocomposites containing 2.5 wt% neat multi walled carbon nanotubes (MWCNTs), or functionalized MWCNTs or graphene oxide (GO), were in situ prepared by applying the melt polycondensation method. The nanocomposites showed faster crystallization rates compared to the pristine material as proved by both differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The latter evidenced an increased nucleation density in nanocomposites, due to the nucleating efficiency of the fillers, resulting in smaller spherulite size. However, a slightly reduced thermal stability was revealed for the nanocomposites by thermog-ravimetric analysis (TGA), especially in the case of GO-containing samples. The solid structure of the materials was studied by performing real time X-ray diffraction (XRD) measurements. In neat PEF, beta-crystals were observed in the solvent treated sample, while alpha-crystals were formed on cooling from the melt or cold-crystallization. On the contrary, in the XRD patterns of the nanocomposites only peaks associated with the alpha-crystal phase were found. Last, but not least, the effect of recrystallization on the thermal behavior was evaluated by means of modulated temperature DSC (MDSC). (C) 2016 Elsevier Ltd. All rights reserved

    Chemical composition and antigenotoxic properties of Lippia alba essential oils

    Get PDF
    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    Get PDF
    The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiver sity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxo nomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world’s known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world’s most biodiverse countries. We further identify collection gaps and summarize future goals that extend be yond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still un equally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the coun try. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.Fil: Gomes da Silva, Janaina. Jardim Botânico do Rio de Janeiro: Rio de Janeiro, BrasilFil: Filardi, Fabiana L.R. Jardim Botânico do Rio de Janeiro; BrasilFil: Barbosa, María Regina de V. Universidade Federal da Paraíba: Joao Pessoa; BrasilFil: Baumgratz, José Fernando Andrade. Jardim Botânico do Rio de Janeiro; BrasilFil: de Mattos Bicudo, Carlos Eduardo. Instituto de Botânica. Núcleo de Pesquisa em Ecologia; BrasilFil: Cavalcanti, Taciana. Empresa Brasileira de Pesquisa Agropecuária Recursos Genéticos e Biotecnologia; BrasilFil: Coelho, Marcus. Prefeitura Municipal de Campinas; BrasilFil: Ferreira da Costa, Andrea. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Costa, Denise. Instituto de Pesquisas Jardim Botanico do Rio de Janeiro; BrasilFil: Dalcin, Eduardo C. Rio de Janeiro Botanical Garden Research Institute; BrasilFil: Labiak, Paulo. Universidade Federal do Parana; BrasilFil: Cavalcante de Lima, Haroldo. Jardim Botânico do Rio de Janeiro; BrasilFil: Lohmann, Lucia. Universidade de São Paulo; BrasilFil: Maia, Leonor. Universidade Federal de Pernambuco; BrasilFil: Mansano, Vidal de Freitas. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; Brasil. Jardim Botânico do Rio de Janeiro; BrasilFil: Menezes, Mariângela. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Morim, Marli. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; BrasilFil: Moura, Carlos Wallace do Nascimento. Universidade Estadual de Feira de Santana. Department of Biological Science; BrasilFil: Lughadha, Eimear NIck. Royal Botanic Gardens; Reino UnidoFil: Peralta, Denilson. Instituto de Pesquisas Ambientais; BrazilFil: Prado, Jefferson. Instituto de Pesquisas Ambientais; BrasilFil: Roque, Nádia. Universidade Federal da Bahia; BrasilFil: Stehmann, Joao. Universidade Federal de Minas Gerais; BrasilFil: da Silva Sylvestre, Lana. Universidade Federal do Rio de Janeiro; BrasilFil: Trierveiler-Pereira, Larissa. Universidade Estadual de Maringá. Departamento de Análises Clínicas e Biomedicina; BrasilFil: Walter, Bruno Machado Teles. EMBRAPA Cenargen Brasília; BrasilFil: Zimbrão, Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Forzza, Rafaela C. Jardim Botânico do Rio de Janeiro; BrasilFil: Morales, Matías. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentin
    corecore