38 research outputs found

    Multi-Wavelength Studies of the Optically Dark Gamma-Ray Burst 001025A

    Full text link
    We identify the fading X-ray afterglow of GRB 001025A from XMM-Newton observations obtained 1.9-2.3 days, 2 years, and 2.5 years after the burst. The non-detection of an optical counterpart to an upper limit of R=25.5, 1.20 days after the burst, makes GRB 001025A a ``dark'' burst. Based on the X-ray afterglow spectral properties of GRB 001025A, we argue that some bursts appear optically dark because their afterglow is faint and their cooling frequency is close to the X-ray band. This interpretation is applicable to several of the few other dark bursts where the X-ray spectral index has been measured. The X-ray afterglow flux of GRB 001025A is an order of magnitude lower than for typical long-duration gamma-ray bursts. The spectrum of the X-ray afterglow can be fitted with an absorbed synchrotron emission model, an absorbed thermal plasma model, or a combination thereof. For the latter, an extrapolation to optical wavelengths can be reconciled with the R-band upper limit on the afterglow, without invoking any optical circumburst absorption, provided the cooling frequency is close to the X-ray band. Alternatively, if the X-ray afterglow is due to synchrotron emission only, seven magnitudes of extinction in the observed R-band is required to meet the R-band upper limit, making GRB 001025A much more obscured than bursts with detected optical afterglows. Based on the column density of X-ray absorbing circumburst matter, an SMC gas-to-dust ratio is insufficient to produce this amount of extinction. The X-ray tail of the prompt emission enters a steep temporal decay excluding that the tail of the prompt emission is the onset of the afterglow (abridged).Comment: 32 pages, 8 figures, ApJ in pres

    The very red afterglow of GRB 000418 - further evidence for dust extinction in a GRB host galaxy

    Get PDF
    We report near-infrared and optical follow-up observations of the afterglow of the Gamma-Ray Burst 000418 starting 2.5 days after the occurrence of the burst and extending over nearly seven weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K=4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions.Comment: Accepted for publication in The Astrophysical Journal. 12 pages; citations & references updated; minor textual change

    Detection of the optical afterglow of GRB 000630: Implications for dark bursts

    Get PDF
    We present the discovery of the optical transient of the long-duration gamma-ray burst GRB000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R = 23.04+-0.08. The transient displayed a power-law decline characterized by a decay slope of alpha = -1.035+-0.097. A deep image obtained 25 days after the burst shows no indication of a contribution from a supernova or a host galaxy at the position of the transient. The closest detected galaxy is a R=24.68+-0.15 galaxy 2.0 arcsec north of the transient. The magnitudes of the optical afterglows of GRB980329, GRB980613 and GRB000630 were all R>=23 less than 24 hours from the burst epoch. We discuss the implications of this for our understanding of GRBs without detected optical transients. We conclude that i) based on the gamma-ray properties of the current sample we cannot conclude that GRBs with no detected OTs belong to another class of GRBs than GRBs with detected OTs and ii) the majority (>75%) of GRBs for which searches for optical afterglow have been unsuccessful are consistent with no detection if they were similar to bursts like GRB000630 at optical wavelengths.Comment: accepted for publication in A&

    The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Full text link
    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4' and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the Astrophysical Journal Supplement Series following refereeing. Figures of the localizations in Table 3 may be found on the IPN website, at ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and day of the burst, sometimes with suffixes A or

    IPN localizations of Konus short gamma-ray bursts

    Full text link
    Between the launch of the \textit{GGS Wind} spacecraft in 1994 November and the end of 2010, the Konus-\textit{Wind} experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the IPN consisted of up to eleven spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, ∌\sim18 per year, exceeds that of many individual experiments.Comment: Published versio

    Search for Gravitational Wave Bursts from Six Magnetars

    Get PDF
    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom

    Optical follow-up observations of PTF10qts, a luminous broad-lined Type Ic supernova found by the Palomar Transient Factory

    Get PDF
    We present optical photometry and spectroscopy of the broad-lined Type Ic supernova (SN Ic-BL) PTF10qts, which was discovered as part of the Palomar Transient Factory. The supernova was located in a dwarf galaxy of magnitude r = 21.1 at a redshift z = 0.0907.We find that the R-band light curve is a poor proxy for bolometric data and use photometric and spectroscopic data to construct and constrain the bolometric light curve. The derived bolometric magnitude at maximum light is Mbol = -18.51 ± 0.2 mag, comparable to that of SN1998bw (Mbol = -18.7 mag) which was associated with a gamma-ray burst (GRB). PTF10qts is one of the most luminous SN Ic-BL observed without an accompanying GRB. We estimate the physical parameters of the explosion using data from our programme of follow-up observations, finding that it produced a larger mass of radioactive nickel compared to other SNeIc-BL with similar inferred ejecta masses and kinetic energies. The progenitor of the event was likely a _ 20M? star
    corecore